The eight continuous AUs (and associated basins) are as follows:

- Pennsylvanian Saginaw Coal Bed Gas AU (Michigan Basin),
- [Devonian] Northwestern Ohio Shale AU (Appalachian Basin),
- [Devonian] Marcellus Shale AU (Appalachian Basin),
- Devonian Antrim Continuous Gas AU (Michigan Basin),
- Devonian Antrim Continuous Oil AU (Michigan Basin),
- [Silurian] Clinton-Medina Transitional AU (Appalachian Basin),
- [Ordovician] Utica Shale Gas AU (Appalachian Basin), and
- Ordovician Collingwood Shale Gas AU (Michigan Basin).

Of these eight continuous AUs, only the following four AUs were assessed quantitatively: [Silurian] Clinton-Medina Transitional AU, Devonian Antrim Continuous Gas AU, [Devonian] Marcellus Shale AU, and [Devonian] Northwestern Ohio Shale AU. The other four continuous AUs lacked sufficient data to assess quantitatively.

Resource Summary

For the U.S. portions of the Great Lakes, the USGS estimated the following quantities of undiscovered, technically recoverable oil and gas resources (table 1):

- 1. a mean value of 312 million barrels of oil,
- 2. a mean value of 5.2 trillion cubic feet of natural gas, and
- 3. a mean value of 122 million barrels of natural gas liquids.

These estimates are mean estimates. The ranges of uncertainty of these estimates are shown in table 1.

Oil and Gas Resource Allocations by Lake

Allocated oil and gas resources were compiled for each of the Great Lakes (tables 1 and 2). The only identified petroleum system beneath Lake Superior is the Precambrian Nonesuch TPS, which lacked sufficient data to assess quantitatively.

Oil and Gas Resource Allocations by State

Allocated oil and gas resources were compiled for each of the Great Lakes States (tables 1 and 3). The only identified petroleum system in the Minnesota portion of the Great Lakes is the Precambrian Nonesuch TPS, which lacked sufficient data to assess quantitatively.

Additional Information

Supporting geologic studies of the U.S. portions of the Great Lakes total petroleum systems, assessment units, and allocations are in progress. The results of this work, as well as information on the assessment methodology, are posted on the USGS Web site at http://energy.cr.usgs.gov/oilgas/noga as they become available. Assessment results for undiscovered oil and gas resources of the U.S. portions of the Appalachian and Michigan Basins may be found online at http://pubs.usgs.gov/fs/fs-009-03 and http://pubs.usgs.gov/ fs/2005/3070/, respectively.

Table 2. Summary of mean values of Great Lakes oil and gas resource allocations by lake.

[Compiled from table 1, which contains the full range of statistical

	Tota	l undiscovere	d resources
Lake	Oil (million barrels), mean	Gas (trillion cubic feet), mean	Natural gas liquids (million barrels), mean
Lake Erie	46.10	3.013	40.68
Lake Huron	141.02	0.797	42.49
Lake Michigan	124.59	1.308	37.40
Lake Ontario	0.00	0.112	1.12
Lake Superior	not	t assessed qua	ntitatively
Total	311.71	5.23	121.69

Table 3. Summary of mean values of Great Lakes oil and gas resource allocations by State.

[Compiled from table 1, which contains the full range of statistical

	Tota	al undiscovered	resources
State	Oil (million barrels), mean	Gas (trillion cubic feet), mean	Natural gas liquids (million barrels), mean
Illinois	0.75	0.003	0.14
Indiana	0.82	0.003	0.14
Michigan	282.48	2.157	83.27
Minnesota	no	ot assessed quan	titatively
New York	0.00	0.564	6.49
Ohio	25.71	1.942	24.72
Pennsylvania	0.00	0.552	6.58
Wisconsin	1.95	0.008	0.34
Total	311.71	5.229	121.68

By James L. Coleman, Christopher S. Swezey, Robert T. Ryder, and Ronald R. Charpentier

Great Lakes Review Team

James L. Coleman (Co-Task Leader; jlcoleman@usgs.gov), Christopher S. Swezey (Co-Task Leader; cswezey@usgs.gov), Robert T. Ryder (Co-Task Leader; rryder@usgs.gov), Ronald R. Charpentier, Robert C. Milici, Joseph R. Hatch, Troy A. Cook, Timothy R. Klett, Richard M. Pollastro, Christopher J. Schenk, and James W. Schmoker.

National Assessment of Oil and Gas Fact Sheet

Undiscovered Oil and Gas Resources Underlying the U.S. Portions of the Great Lakes, 2005

he U.S. Geological Survey recently completed allocations of oil and gas resources underlying the U.S. portions of the Great Lakes. These allocations were developed from the oil and gas assessments of the U.S. portions of the Appalachian Basin and the Michigan Basin. With the completion of the assessments of these two basins, the following quantities of undiscovered, technically recoverable oil and gas resources were allocated to the U.S. portions of the Great Lakes: (1) a mean value of 312 million barrels of oil, (2) a mean value of 5.2 trillion cubic feet of natural gas, and (3) a mean value of 122 million barrels of natural gas liquids.

Introduction

The U.S. Geological Survey (USGS) completed an assessment of the undiscovered oil and gas potential of the U.S. portions of the Appalachian Basin and the Michigan Basin in 2002 and 2004, respectively. Following the assessments of these two basins, oil and gas allocations were assigned to the U.S. portions of the Great Lakes (fig. 1) — Lake Superior (Michigan, Minnesota, and Wisconsin), Lake Michigan (Illinois, Indiana, Michigan, and Wisconsin), Lake Huron (Michigan), Lake Erie (Michigan, New York, Ohio, and Pennsylvania), and Lake Ontario (New York). Allocations for Lake St. Clair (Michigan) were included with those of Lake Erie.

The allocations are based on the geologic elements of each total petroleum system (TPS) defined in the region and the projected extent of those elements from onshore beneath each of the lakes. These geologic elements include the hydrocarbon source rocks, reservoir rocks, and traps. By using this geologic framework, the USGS defined 8 total petroleum systems and 21 assessment units (AUs) within the Great Lakes and estimated the quantity of undiscovered technically recoverable oil and gas resources within 16 of the 21 AUs in the Great Lakes

Total Petroleum Systems

The eight total petroleum systems identified in the U.S. portions of the Great Lakes are the (1) Precambrian Nonesuch TPS. (2) Ordovician Foster TPS, (3) [Ordovician] Utica-Lower Paleozoic TPS, (4) Ordovician to Devonian Composite TPS, (5) Silurian Niagara/Salina TPS, (6) Devonian Antrim TPS, (7) Devonian Shale-Middle and Upper Paleozoic TPS, and (8) Pennsylvanian Saginaw TPS. Each TPS is named according to the petroleum source rock(s) of that system. For most of the systems, each TPS is associated with only one source rock. The Ordovician to Devonian Composite TPS, however, is a composite petroleum system having contributions from one or more of the following different source rocks: Ordovician Collingwood Shale, Devonian Detroit River Group, and Devonian Antrim Shale.

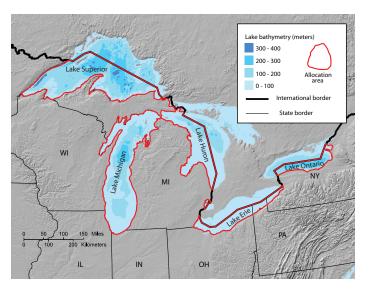


Figure 1. Map showing the allocated areas (U.S. portions) of the Great Lakes. Allocation areas do not include islands within the

Assessment Units

Of the AUs, 13 are characterized as conventional oil and gas accumulations, and 8 are characterized as continuous (unconventional) accumulations. The 13 conventional AUs (and associated basins) are as follows:

- Devonian to Mississippian Berea/Michigan Sandstones AU (Michigan Basin):
- 2. Middle Devonian Carbonates AU, which includes the Detroit River Group, Dundee Limestone, and Traverse Group (Michigan
- [Devonian] Oriskany Sandstone-Stratigraphic AU (Appalachian
- Devonian Sylvania Sandstone AU (Michigan Basin);
- [Silurian] Lockport Dolomite AU (Appalachian Basin);
- Silurian A–1 Carbonate AU (Michigan Basin);
- Silurian Niagara AU (Michigan Basin);
- Silurian Burnt Bluff AU (Michigan Basin):
- [Ordovician] Black River-Trenton Hydrothermal Dolomite AU (Appalachian Basin);
- 10. Ordovician Trenton/Black River AU (Michigan Basin):
- 11. [Ordovician] Knox Unconformity AU (Appalachian Basin);
- 12. Ordovician Sandstones and Carbonates AU, which includes the Prairie du Chien Group, St. Peter Sandstone, Glenwood Formation, and equivalent stratigraphic units (Michigan Basin); and
- 13. Precambrian Nonesuch AU (Michigan Basin).

All these conventional AUs were assessed quantitatively, except for the Precambrian Nonesuch AU, which lacked sufficient data to assess quantitatively.

U.S. Department of the Interior Fact Sheet 2006-3049 U.S. Geological Survey

Table 1. Great Lakes oil and gas resource allocations by total petroleum system and assessment unit.

[All tabulated results are for technically recoverable resources. MMBO is million barrels of oil. BCFG is billion cubic feet of gas. MMBNGL is million barrels of natural gas liquids. Results shown are fully risked estimates. For gas fields, all liquids are included under the NGL (natural gas liquids) category. F95 represents a 95-percent chance of at least the amount tabulated. Other fractiles are defined similarly. Fractiles are additive under the assumption of perfect positive correlation. TPS is total petroleum system. AU is assessment unit. Gray shade indicates not applicable or not assessed quantitatively]

	Moon	0.00	0.00	0.00	0.00	15.22	0.03	12.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.22	0.00	0.00	0.00	0.00	0.00	2.27	2.27	0.10	0.10	1.71	0.10	3.55	0.00	0.00	0.00	0.00	0.32	0.00	0.00	0.00	0.15	0.00	0.00	0.02	0.02	0.35	0.07	6.85	0.21	0.27	0.00	0.00	0.00	0.00	18.08	29.32	
	(MMB	0.00 0.00	0.00 0.00	0.00 0.00	0.50 0.90	13.78 30.16	0.03 0.10	11.54 26.09	0.00 0.00	0.00 0.00 0.09 0.21	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00 0.00 0.42 1.56	0.00 0.00	0.99 3.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	1.50 7.08	1.51 7.08	0.07 0.31	0.07 0.32	1.14 5.28	0.07 0.31 0.01 0.04	2.37 11.03	0.00 0.00	0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.40 1.56	0.25 0.87 0.70 2.46	0.00 0.00 0.13 0.51	0.00 0.00 0.00 0.83 2.95	0.00 0.00 0.00 0.05	0.13 0.35 0.23 0.76	0.00 0.00	0.00 0.00	0.02 0.07	0.02 0.07	0.25 0.00	0.05 0.21	5.30 17.88	0.17 0.50	0.22 0.64	0.00 0.00	0.00	0.00 0.00	0.00 0.00 3.98 8.61	17.43 29.20 5.42 9.88	27.69 20.76	NGL (MMBNGL)
	201	0.00	0.00	0.00	0.00	5.20	0.00	4.35	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.10	0.00	0.00	0.08	0.00	0.16	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.03	0.00	0.00	0.00	00.00	0.02	00.00	1.15	0.05	0.06	0.00	0.00	0.00	0.00	9.15	13.92	
Ses	Moon	0.00	0.00	0.00	8.65	194.89	0.44	165.05	0.00	0.00	0.00	0.00	0.00	7.05	0.00	15.21	0.00	0.00	0.00	0.00	0.00	32.38	32.38	1.45	4.1.	24.46	1.44	50.81	0.00	0.00	0.00	0.00	32.54 92.15	0.00	0.00	0.00	15.21 29.54	4.22	2.09	0.56	0.56	8.43	1.69	162.60	10.61	13.26	0.00	0.00	747.47	74.66	1,506.52	1 5,230.62 urces	
vely] ered resources	.FG)	0.00	0.00	0.00	23.60	362.23	1.18	315.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	36.08	0.00	0.00	0.00	0.00	0.00	98.61	99.21	4.40	4.40	74.00	4.40	154.67	0.00	0.00	0.00	0.00	84.08	0.00	0.00	0.00	33.45	0.00	5.78	1.65	1.62	24.58	4.95	412.88	24.10	30.98	0.00	0.00	0.00	179.31 674.58	756.52	ered resource	.E
I quantitative undiscover	Gas (BCFG)	00.0	0.00	0.00	0.00	181.49	0.33	0.51	0.00	0.00	30.06	0.00	0.00	5.33	0.00	12.71	00.00	0.00	0.00	0.00	0.00	22.12	22.09	0.99	0.99	16.72	0.99	34.84	0.00	0.00	0.00	0.00	25.54	0.00	0.00	0.00	13.27	3.28	1.58	0.41	0.40	6.02	1.21	128.57	8.94	24.32	0.00	0.00	728.39	63.95	463.27	3,144.64 3 undiscover	Gae (RCFG)
Total u		0.00	0.00	0.00	0.54	72.90	0.03	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.8 0.00	0.00	0.00	0.00	0.00	0.00	1.52	1.51	0.07	0.07	1.11	0.03	2.33	0.00	0.00	0.00	0.00	4.89	0.00	0.00	0.00	3.60	0.00	0.00	0.03	0.03	4.0	0.08	29.15	2.75	2.98	0.00	0.00	445.18	5.51	843.70	.,725.09 Total u	
icable or no	Moon	0.00	0.00	0.00	4.21	94.74	0.21	80.23	0.00	5.01	0.00	0.03	0.10	14.13	1.02	30.51	0.00	0.00	0.00	0.00	00.00	16.16	16.18	0.72	0.72	12.21	0.72	25.27	0.00	0.00	0.00	0.00	6.51	0.00	0.00	0.00	3.04	00.00	0.00	0000	000	000	000	0.00	311./1								_
es not appli		0.00	0.00	0.00	11.09	163.97	0.56	144.54	00.00	9.33	0.00	0.08	0.32	37.08	3.16	69.62	0.00	0.00	0.00	0.00	00.00	47.98	48.54	2.13	2.15	36.33	2.15	74.13	0.00	0.00	0.00	0.00	16.25	0.00	0.00	0.00	6.43	00.00	0.00	00.0	000	000	000	00.0	78.670			\parallel					ć
ade indicat	Oil (MMBO)	0.00	0.00	0.00	3.34	90.59	0.17	75.55	0.00	4.76	0.00	0.02	0.07	10.91	89.0	26.17	0.00	0.00	0.00	0.00	0.00	11.41	11.35	0.51	0.51	8.59	0.51	17.93	0.00	0.00	0.00	0.00	5.22	0.00	0.00	0.00	2.73	0.00	0.00	0000	00.0	0000	000	00.00	c0.172								O:I /MMMDO
nit. Gray sh	105	0.00	0.00	0.00	0.28	38.86	0.01	32.31	0.00	1.88	0.00	0.00	0.00	2.26	0.04	6.03	0.00	0.00	0.00	0.00	0.00	0.79	0.78	0.03	0.03	0.59	0.03	1.23	0.00	0.00	0.00	0.00	1.03	0.00	0.00	0.00	0.78	00:00	0.00	00.0	00.0	0000	000	0.00	80.98								
ssment ur	type	lio J	Oil	Se Oil	Oil	Oil	Gil Oil	Gas	Gas	Gas	Gas Oil	Gas Oil	Gas	Gas	Gas	Oil		Oil	Gas		JE SE	Jio Š	<u> </u>		Oil Cas	[] [] []	Gas	Gas	G Oil	Oil Cas	Gas	Oil Gas	Oil Gas	Oil Gas	Oil	Oil Gas	Oil Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas	Gas Gas	Gas	Gas	Iotal	
m. AU is asse	State	Ohio	Pennsylvania	Michigan	Michigan	Michigan	Wisconsin	Michigan	Michigan	Michigan	Michigan	Illinois	Indiana	Michigan	Wisconsin	Michigan	Michigan	Illinois	Michigan	Wisconsin	Michigan	Ohio	Michigan	Illinois	Indiana	Michigan	Wisconsin	Michigan	New York	Ohio	Pennsylvania	New York	Ohio	Pennsylvania	New York	New York	Ohio	Pennsylvania	New York	Indiana	Michigan	Wisconsin	Michigan	Michigan	New York	Ohio Pennsylvania	New York Ohio Pennsylvania	Michigan	Michigan Wisconsin	Michigan New York	Ohio Pennsylvania		
etroleum syste	Lake	ake Erie	ake Erie	ake Erie	ake Erie	ake Michigan	ake Michigan	ake Huron	ake Erie	ake Huron	ake Erie	ake Michigan		ake Michigan	ake Michigan	ake Huron	Lake Huron	ake Michigan	ake Michigan	ake Michigan	Lake Huron	ake Erie	ake Erie	ake Michigan	ake Michigan	ake Michigan	ake Michigan	ake Huron	ake Erie	ake Erie	ake Erie				urio			$\neg \neg$		ake Michioan					Lake Erie	ake Erie	Lake Erie Lake Erie	ake Erie	ake Michigan lake Michigan lake Michigan l	ake Huron	ake Erie		
relation. TPS is total j	Assessment	Oriskany Sandstone-L		Devonian Sylvania L	Silurian Niagara AU	<u> </u>	<u> </u>	<u> </u>		Mississippian Berea/Michigan	 _	Carbonates AU	<u> </u>	<u> </u>	<u> </u>		Silurian A-1	Carbonate AU Silurian Burnt Bluff L		<u> </u>	1H	Ordovician Trenton/ L		<u> </u>	<u> </u>	1-1		<u>ı — (</u>	Lockport Dolomite L	OA TI		Black River-Trenton L Hydrothermal				Knox Unconformity L			┵	Sandstones and	<u> </u>	41 l=	-1		Northwestern Ohio	Shale AU	Marcellus Shale AU L	Devonian Antrim	Continuous Gas L AU	Zlinton-Medina L	Transitional AU L		
of perfect positive cor	systems		Middle and Upper Paleozoic	TPS Silurian Niagara/ E	Salina TPS				Ordovician to	Devonian Composite TPS							<u> 01</u>	1∞				10							Utica-Lower L			<u> #4</u>				<u> </u>				TPS					Devonian Shale-	Middle and Upper Paleozoic		Devonian Antrim D			Paleozoic TPS		
<u> </u>	type			100					10										səo.	inos	as re	g pu	ıs li	o Isi	noiton	IƏΛU	οЭ		ו																		resor	gas	snon				