Earthquake early warning systems like ShakeAlert work because the warning message can be transmitted almost instantaneously, while shaking waves from the earthquake travel through the Earth at speeds of a few miles per second. When an earthquake occurs, seismic waves—including compressional (P) waves, transverse (S) waves, and surface waves—radiate outward from the epicenter. The faster but weaker P waves trip nearby sensors, causing alert signals to be sent out, giving people and automated electronic systems some time (seconds to minutes) to take protective actions before the arrival of the slower but stronger S waves and surface waves. Computers and mobile phones receiving the alert message can calculate the expected arrival time and intensity of shaking at your location. USGS image created by Erin Burkett (USGS) and Jeff Goertzen (Orange County Register).
A ShakeAlert network of sensors is more concentrated near major faults and population centers. Illustration modified from Allen (2013).

Earthquake early warning systems, which rapidly detects seismic waves as an earthquake happens, calculates the maximum expected shaking, and sends alerts to electronic devices and people before damaging waves arrive. Early warning is possible because information can be sent through communication systems virtually instantaneously, whereas seismic waves travel through the shallow Earth at speeds ranging from 0.5 to 3 miles per second. This means that the shaking can take seconds or even minutes to travel from where the earthquake occurred to where you are.

Thus it is possible for automated systems or even your personal electronic devices, such as smartphones, to receive an alert before destructive shaking arrives. The USGS, in collaboration with State agencies, universities, and private companies, has been developing and testing ShakeAlert, an early warning system for the West Coast of the United States.

How Does ShakeAlert Work?

ShakeAlert has been in development since 2006 and began sending alerts to test users in California in January 2012 (see http://www.shakealert.org). The system detects earthquakes using our Nation’s existing infrastructure for earthquake monitoring. The California Integrated Seismic Network (CISN) is a network of more than 400 high-quality ground motion sensors operated by the USGS in partnership with the State of California, California Institute of Technology, and University of California, Berkeley. The Pacific Northwest Seismic Network (PNSN) is a collaboration of the USGS, University of Washington, and University of Oregon. These regional networks are part of the Advanced National Seismic System (ANSS). ShakeAlert leverages and extends these networks’ current research and post-earthquake response functions. When fully operational, ShakeAlert will be able to distribute alerts through all available distribution channels, including FEMA’s Wireless Emergency Alerts (WEA) and Integrated Public Alert and Warning System (IPAWS), smartphone apps, social media providers, and other electronic alert technologies as they develop.

Test users of ShakeAlert currently receive alerts through a computer application with both audible and visual alert features. When ShakeAlert detects an earthquake, a map pops up on the user’s screen to show the location of the earthquake epicenter (the point on the surface directly above the quake’s starting point) and of waves moving toward the user; also shown is the time remaining until waves will reach the user’s location and an estimate of the intensity of shaking. An alert sound alternates with a voice that counts down to the arrival time of seismic waves and announces the expected intensity.

How Much Warning is Possible?

An early warning system like ShakeAlert can provide seconds to minutes of warning before strong shaking arrives. The amount of warning time depends on the speed of the warning system and your distance from the epicenter.
An effective system requires a dense network of sensors to ensure that there are enough of them near all possible earthquake sources. Such a dense network can reduce the area near the epicenter for which reliable warning is not possible because the earthquake source is too close for an alert to outpace the seismic waves. The farther a location is from the epicenter, the greater the amount of warning time. To maximize warning time, the system must minimize delays in data processing, communication, and delivery of alerts.

Major Components of an Early Warning System

The ability to send adequate warning before shaking arrives requires the following:
- A network of sensors that are densely spaced and close to faults
- Quick and robust telecommunication from sensors to data processing centers
- Computer algorithms to quickly estimate an earthquake’s location, magnitude, and fault rupture length, and to map resulting intensity
- Quick and reliable mass notifications
- End users educated in how to use the alerts

Future Developments

During its testing phase, ShakeAlert has detected thousands of earthquakes, including two that caused damage. The system began sending alerts within 4 seconds of the beginning of the M5.1 La Habra earthquake on March 28, 2014. ShakeAlert also sent alerts for the M6.0 South Napa earthquake on August 24, 2014, giving test users in Berkeley, California, 5 seconds of warning before shaking arrived.

Ongoing improvements to the sensor networks and data processing centers allowed the ShakeAlert system to advance from a “demonstration” to a “production prototype” phase in February 2016, allowing selected users to develop pilot implementations that take protective actions. USGS has published an implementation plan spelling out the steps needed to complete the system and begin issuing public alerts (Given and others, 2014). Public alerts and large-scale automatic implementation require additional development and further testing to make ShakeAlert sufficiently reliable (see sidebar “How Warning Can Increase Safety and Prevent Damage”), as well as end-user education on how to understand and use alerts.

The successful completion of the system will require the coordinated

Why ShakeAlert Emphasizes Intensity, not Magnitude

The shaking you feel is described by earthquake intensity rather than magnitude. High intensities are what cause damage in earthquakes.

Intensity
- Represents the level of shaking caused by earthquake waves at a particular location
- Depends on magnitude + distance + local geology
- Varies from place to place in a single earthquake

Magnitude
- Is one number representing the amount of energy released in an earthquake
- Depends on the size (surface area) of fault rupture

ShakeMaps (Wald and others, 2003) rapidly show the distribution of intensity after an earthquake (https://earthquake.usgs.gov/earthquakes/shakemap/).

You can also report the ground shaking you experienced to help create Did You Feel It? intensity maps (https://earthquake.usgs.gov/earthquakes/dyfi/).

Will the West Coast have an Early Warning System Before or After the Next Big Quake?

Most countries with early warning systems built them after a devastating earthquake.

Japan invested $600 million in such a system after the 1995 Kobe earthquake killed 6,400 people. Today, Japan’s system allows every citizen to receive advance alert of earthquake ground shaking from the Japan Meteorological Agency. Thanks to this system, no trains derailed in the 2011 magnitude 9.0 Tohoku earthquake, and according to a poll in Japan, 90 percent of the citizens think the system is worth the investment (Fujinawa and Noda, 2013).

Other countries that built systems after devastating earthquakes include
- China (after the 2008 Wenchuan earthquake killed 87,587 people)
- Taiwan (after the 1999 Chi Chi earthquake killed 2,415)
- Turkey (after the 1999 Izmit earthquake killed 17,127)
- Mexico (after the 1985 Mexico City earthquake killed 10,153)
efforts of government agencies at all levels, private companies, and the public. California has committed to developing earthquake early warning statewide, and companies are beginning to develop products to use and distribute the alerts.

The ongoing work of USGS scientists, together with partner organizations, on earthquake early warning systems is only part of the National Earthquake Hazard Reduction Program’s efforts to safeguard lives and property from the future quakes that are certain to strike along the West Coast and other areas of the United States.

References

Erin R. Burkett, Douglas D. Given, and Lucie M. Jones
Edited by Peter H. Stauffer and Jessica Dyke
Layout by Vivian Nguyen

COOPERATING ORGANIZATIONS
California Geological Survey
California Institute of Technology
California Office of Emergency Services
The Moore Foundation
Southern California Earthquake Center
Swiss Federal Institute of Technology, Zürich
University of California, Berkeley
University of Oregon
University of Washington

For more information contact:
U.S. Geological Survey
Earthquake Hazards Program
Earthquake Early Warning
https://earthquake.usgs.gov/research/earlywarning/
or
Robert de Groot
rdegroot@usgs.gov

This Fact Sheet and any updates to it are available online at:
https://pubs.usgs.gov/fs/2014/3083/