Domestic Uranium Assessment

Assessment of Undiscovered Sandstone-Hosted Uranium Resources in the Texas Coastal Plain, 2015

The U.S. Geological Survey estimated a mean of 220 million pounds of recoverable uranium oxide (U_3O_8) remaining as potential undiscovered resources in southern Texas. This estimate used a geology-based assessment method for Tertiary sandstone-hosted uranium deposits in the Texas Coastal Plain sedimentary strata (fig. 1).

Introduction

The United States is the world’s largest consumer of uranium used in nuclear power plants, which provide approximately 19 percent of the Nation’s electricity. More than 90 percent of the uranium used domestically to generate nuclear power is imported (U.S. Department of Energy, 2015). Assessment of undiscovered domestic uranium resources is a critical component of a sustainable nuclear industry in the United States.

In 2015, the U.S. Geological Survey (USGS) completed an assessment of undiscovered uranium resources hosted by Tertiary sedimentary sequences of the Texas Coastal Plain. These deposits are found in sandstones, which are the most prolific uranium deposits in the United States. Deposits in the Texas Coastal Plain region are estimated to contain the third largest domestic sandstone-hosted uranium resource after the Colorado Plateau and Wyoming Basin regions.

Estimates of undiscovered uranium resources associated with sandstone-hosted deposits in the Texas Coastal Plain were made for geologic units known to have uranium occurrences: the Eocene Claiborne and Jackson Groups, the Oligocene Catahoula Formation, the Miocene Oakville Sandstone, the Pliocene Goliad Sand and Willis Formation, and the Pleistocene Lissie Formation (fig. 1). Sandstone facies that host mineralization were deposited in mixed marine-coastal-fluvial facies (Claiborne and Jackson Groups) and by dominantly fluvial systems (Catahoula Formation, Oakville Sandstone, Goliad Sand, Willis and Lissie Formations). Uranium exploration is active throughout the region, and the Goliad Sand is host to two operating, in situ recovery mines, Alta Mesa and La Palangana (fig. 1).

Assessment Methodology

The USGS assessment methodology, the three-part form, uses known uranium mineral site locations and deposit resources in combination with associated geologic features to estimate numbers of undiscovered deposits and to identify regions that may host them. The method includes (1) delineation of geographic regions (tracts) that are permissive for the occurrence of deposits as guided by known deposits and a descriptive mineral deposit model, (2) probabilistic estimation of numbers of undiscovered deposits within each permissive tract, and (3) calculation of the probable amount of undiscovered uranium based on the estimated number of undiscovered deposits and grade-tonnage models of known deposits in the region using Monte Carlo simulation (Singer and Menzie, 2010).

There are at least 169 identified mineral sites in the region that have produced in total approximately 81 million pounds of uranium oxide (U_3O_8) with reported in-place (unmined) uranium resources of about 59 million pounds of U_3O_8. Ore bodies typically are narrow and long, with strike lengths ranging from meters to kilometers. In order to establish a uniform and consistent definition for a uranium deposit, individual mineral sites within the same ore body were grouped.

Geologic sedimentary units known to host uranium deposits were used to delineate three permissive tracts: (1) the Claiborne-Jackson tract, (2) the Catahoula-Oakville tract, and (3) the Goliad-Willis-Lissie tract (table 1). The tracts group stratigraphic sequences that were deposited in broadly similar depositional environments. The tracts were geographically subdivided into the Rio Grande Embayment sub-tract (the southwestern region with more known occurrences and higher mineral potential) and the Houston Embayment sub-tract (the northeastern region with less known occurrences and lower mineral potential), forming a total of six sub-tracts (fig. 2).

Fifty-gallon barrel containing uranium oxide (U_3O_8), or yellowcake, produced by the Hobson Processing Plant in southern Texas. (Photo used with permission from Uranium Energy Corporation.)
Table 1. Assessment results for identified and undiscovered uranium resources in sandstone-hosted uranium deposits, Texas Coastal Plain.

[The tracts are arranged in stratigraphic order, from oldest (Claiborne-Jackson Tract) to youngest (Goliad-Willis-Lissie Tract). RE, Rio Grande Embayment; HE, Houston Embayment; km², square kilometers; area, area of permissive tract in square kilometers; \(N_{\text{known}} \), number of known deposits in the tract that have identified resources (deposits represent grouped occurrences, as explained in the fact-sheet); \(N_{\text{undis}} \), expected number of undiscovered deposits; \(\text{U}_3\text{O}_8 \), uranium oxide; lbs, pounds. Undiscovered resources are reported to two significant figures; numbers may not add up because of rounding. The permissive area is inclusive of the favorable and prospective areas. \(N_{\text{undis}} \) is calculated using a regression equation (Singer and Menzie, 2010). Identified uranium resources include produced (mined) and in-place resources; undiscovered resources are calculated as recoverable not in-place. Undiscovered resources are calculated by combining probabilistic estimates of numbers of undiscovered deposits with a custom grade and tonnage model using Monte Carlo simulation (Root and others, 1991). See Singer and Menzie (2010) for an explanation of quantitative mineral resource assessment methods.

<table>
<thead>
<tr>
<th>Tract name</th>
<th>Depositional setting</th>
<th>Geologic units</th>
<th>Age</th>
<th>Sub-tract</th>
<th>Permissive area (km²)</th>
<th>(N_{\text{known}})</th>
<th>(N_{\text{undis}})</th>
<th>Probability of at least the indicated amount of undiscovered (\text{U}_3\text{O}_8) (lbs)</th>
<th>Mean undiscovered (\text{U}_3\text{O}_8) resources (lbs)</th>
<th>Identified (\text{U}_3\text{O}_8) resources (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claiborne-Jackson</td>
<td>Marine-coastal; barrier island/strand plain system</td>
<td>Claiborne Group Jackson Group</td>
<td>Eocene</td>
<td>RE</td>
<td>38,460</td>
<td>18</td>
<td>27</td>
<td>13,000,000 48,000,000 99,000,000</td>
<td>53,000,000</td>
<td>25,753,429</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HE</td>
<td>62,670</td>
<td>1</td>
<td>3</td>
<td>370,000 4,600,000 14,000,000</td>
<td>6,400,000</td>
<td>675,000</td>
</tr>
<tr>
<td>Catahoula-Oakville</td>
<td>Transitional; fluvial-coastal, channels and deltaic</td>
<td>Catahoula Formation Oakville Sandstone</td>
<td>Oligocene to Miocene</td>
<td>RE</td>
<td>14,220</td>
<td>35</td>
<td>41</td>
<td>29,000,000 79,000,000 130,000,000</td>
<td>82,000,000</td>
<td>68,815,764</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HE</td>
<td>16,710</td>
<td>0</td>
<td>3</td>
<td>350,000 4,900,000 14,000,000</td>
<td>6,400,000</td>
<td>450,000</td>
</tr>
<tr>
<td>Goliad-Willis-Lissie</td>
<td>Fluvial; meander belts, flood plains</td>
<td>Goliad Sand, Willis and Lissie Formations</td>
<td>Pliocene to Pleistocene</td>
<td>RE</td>
<td>45,200</td>
<td>10</td>
<td>33</td>
<td>20,000,000 53,000,000 130,000,000</td>
<td>66,000,000</td>
<td>44,906,694</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HE</td>
<td>52,250</td>
<td>0</td>
<td>4</td>
<td>370,000 5,300,000 16,000,000</td>
<td>7,000,000</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>229,510</td>
<td>64</td>
<td>111</td>
<td>220,000,000</td>
<td>140,600,000</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 (facing page). Generalized geologic map of the southern Texas Coastal Plain showing operating mines and known uranium occurrences symbolized by their host geologic unit (color) and type (size and shape). Deposits represent mineral sites with recorded uranium production and (or) identified resources. Other types of uranium occurrences include prospects (sites that have some level of exploration), showings (sites of interest that have been recorded), and anomalies (sites with indications that mineralizing processes may have taken place). The region is subdivided by the San Marcos Arch, a broad southeast-trending geologic feature that influenced the deposition and subsequent subsidence of Jurassic through Miocene strata.

Figure 2. Mineral resource assessment tracts showing areas permissive for sandstone-hosted deposits in the Texas Coastal Plain. The dashed lines represent the approximate location of the San Marcos Arch, which separates the tracts into the southwestern Rio Grande Embayment (RE) and northeastern Houston Embayment (HE) sub-tracts.
Within each sub-tract, undiscovered resources were assessed to a depth of 1,500 feet (~450 meters). Although most uranium mining has taken place at depths less than 800 feet (~240 meters), economic deposits have been identified to depths of more than 1,200 feet (~365 meters); therefore, 1,500 feet (~450 meters) is the practical depth for the purposes of uranium mineral resource assessment in the region at this time.

Undiscovered Resource Summary

A mean estimate of 220 million pounds of undiscovered, recoverable U$_3$O$_8$ encompassing all six permissive sub-tracts in the Texas Coastal Plain represents nearly 1.6 times the amount of uranium that has already been identified and (or) produced from the region (table 1). The Rio Grande Embayment sub-tract region has the largest estimated undiscovered resource, with a calculated mean total of 200 million pounds of undiscovered U$_3$O$_8$, whereas the Houston Embayment sub-tract region is estimated to host a mean of 20 million pounds of U$_3$O$_8$. Among the six tracts, the Catahoula-Oakville tract, as a whole, has the largest estimated undiscovered resource (calculated mean total of 88 million pounds U$_3$O$_8$), followed by the Goliad tract (73 million pounds of U$_3$O$_8$) and the Claiborne-Jackson tract (59 million pounds of U$_3$O$_8$).

In 2014, U.S. utilities purchased 53 million pounds of U$_3$O$_8$ for use in civilian nuclear power reactors (U.S. Department of Energy, 2015). Based on these data, the current identified in-place resource represents about 1 year of U.S. nuclear fuel requirements. If found and produced, the undiscovered resources of the Texas Coastal Plain may satisfy roughly another 4 years of domestic requirements.

References

Additional Information

Assessment Team

Contact Information

Mark Mihalasky
mjm@usgs.gov
(509) 368-3118

Susan Hall
susanhall@usgs.gov
(303) 236-1656