

National and Global Petroleum Assessment

Assessment of Undiscovered Oil and Gas Resources in the Haynesville Formation, U.S. Gulf Coast, 2016

Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 1.1 billion barrels of conventional oil and 195.8 trillion cubic feet of gas in the Upper Jurassic Haynesville Formation in onshore lands and State waters of the U.S. Gulf Coast region.

Introduction

The U.S. Geological Survey (USGS) assessed undiscovered, technically recoverable oil, gas, and natural gas liquids in the Upper Jurassic Haynesville Formation and stratigraphically equivalent units in the Gulf Coast from south Texas to the Florida Panhandle (fig. 1). The Haynesville Formation is part of the Upper $_{310}$ Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) in onshore lands and State waters of the U.S. Gulf Coast region. Strata in each assessment unit (AU) within a TPS share similar stratigraphic, structural, and petroleum-charge histories.

Geologic Models for Assessment

Mudstones within the Upper Jurassic Smackover and Haynesville Formations are sources of oil and gas in both conventional (Montgomery, 1993a, 1993b; Mancini and others, 2006) and continuous reservoirs (Hammes and others, 2011; Cicero and Steinhoff, 2013) throughout much of the assessment area. The conventional carbonate reservoirs of the Haynesville Formation in the western Gulf consist of lithofacies associated with deposition on a shallow marine shelf and include grainstone shoals/bars and local pinnacle reefs (Montgomery, 1993a). Conventional sandstone reservoirs in the eastern Gulf include lithofacies deposited in fluviodeltaic, marginal marine and marine shelf, slope, and basin floor settings (Montgomery, 1993b). Continuous mudstone reservoirs of the Havnesville Formation are interbedded with and (or) basinward of the Haynesville Formation carbonates (including the time equivalent Gilmer Limestone and Cotton Valley lime).

Assessment Units

Four Haynesville Formation AUs were assessed (fig. 1). In some locations, the conventional oil and gas AUs overlap with the continuous gas AUs. Table 1 lists input data used to calculate volumes of undiscovered resources in the four AUs.

The Havnesville Western Shelf Carbonate Gas and Oil AU is bounded on the north and west by fault systems and shallow-marine carbonates and reefs that extend basinward to the depositional shelf-break (Salvador, 1991; Hammes and others, 2011; Cicero and Steinhoff, 2013).

Figure 1. Map showing approximate boundaries for the four assessment units (AUs) in the Upper Jurassic Haynesville Formation.

The Haynesville Eastern Shelf Sandstone and Carbonate Oil and Gas AU is bounded on the east and north by fault systems and lithofacies that extend basinward to the continental shelf-break and beyond (Salvador, 1991; Cicero and Steinhoff, 2013). Reservoirs are transitional from fluviodeltaic and paralic deposits in the northeast (Montgomery, 1993b) to marine deposits basinward on the shelf, slope, and basin floor (Cicero and Steinhoff, 2013).

The Haynesville Shale Continuous Gas AU is defined by mudstone in the greater Sabine uplift area where restricted marine circulation allowed the accumulation and preservation of organic-rich mudstone (Hammes and others, 2011). The southern boundary of the mudstone is at the continental shelf-break (Cicero and Steinhoff, 2013).

The Haynesville Shale Peripheral Continuous Gas AU, present in two separate parts of the study area, is defined by lithofacies peripheral to the Haynesville Shale Continuous Gas AU (Salvador, 1991; Hammes and others, 2011; Cicero and Steinhoff, 2013). The southern limit of the Haynesville Shale Peripheral Continuous Gas AU is defined by the continental shelf-slope break.

Undiscovered Resources Summary

The USGS assessed undiscovered, technically recoverable resources for two conventional oil and gas AUs and two continuous AUs in the Haynesville Formation. The estimated mean totals for oil and gas resources are 1,103 million barrels of oil (MMBO), or 1.1 billion barrels of oil, with an F95–F5 range from 286 to 2,508 MMBO; 195,797 billion cubic feet of gas (BCFG), or 195.8 trillion cubic feet of gas, with an F95–F5 range from 96,267 to 340,963 BCFG; and 866 million barrels of natural gas liquids (MMBNGL) with an F95–F5 range from 304 to 1,747 MMBNGL (table 2).

Table 1.Key assessment input data for two conventional and two continuous assessment units (AUs) in the Haynesville Formation of Alabama,Arkansas, Florida, Louisiana, Mississippi, and Texas.

[AU, assessment unit; %, percent; EUR, estimated ultimate recovery per well; MMBO, million barrels of oil; BCFG, billion cubic feet of gas. The average EUR input is the minimum, median, maximum, and calculated mean. Shading indicates not applicable]

Accessment input data	Haynesvi	le Western S	helf Carbonate	Gas and Oil AU	Haynesville Eastern Shelf Sandstone and Carbonate Oil and Gas AU						
Assessment input uata	Minimum	Median	Maximum	Calculated mean	Minimum	Median	Maximum	Calculated mean			
Number of oil fields	0	4	10	4.2	1	75	250	80.7			
Number of gas fields	1	50	150	53.2	1	150	500	161.5			
Sizes of oil fields (MMBO)	0.5	1.0	10	1.3	0.5	1.5	1,600	13.6			
Sizes of gas fields (BCFG)	3	6	300	11.6	3	18	10,000	118.1			
AU probability	1.0				1.0						
A					Haynesville Shale Peripheral Continuous Gas AU						
Assessment input data	Ha	aynesville Sha	ale Continuous	Gas AU	Hay	nesville Shale l	Peripheral Continuo	ous Gas AU			
Assessment input data	Ha Minimum	aynesville Sha Mode	ale Continuous Maximum	Gas AU Calculated mean	Hay Minimum	nesville Shale Mode	Peripheral Continuc Maximum	ous Gas AU Calculated mean			
Assessment input data Potential production area of AU (acres)	Ha Minimum 4,017,000	aynesville Sha Mode 5,565,000	ale Continuous Maximum 10,779,000	Gas AU Calculated mean 6,787,000	Hay Minimum 10,000	nesville Shale I Mode 5,116,000	Peripheral Continuo Maximum 14,034,000	Dus Gas AU Calculated mean 6,386,667			
Assessment input data Potential production area of AU (acres) Average drainage area of wells (acres)	Ha Minimum 4,017,000 80	aynesville Sha Mode 5,565,000 100	ale Continuous Maximum 10,779,000 140	Gas AU Calculated mean 6,787,000 107	Hay Minimum 10,000 60	nesville Shale Mode 5,116,000 100	Peripheral Continuo Maximum 14,034,000 180	Calculated mean 6,386,667 113			
Assessment input data Potential production area of AU (acres) Average drainage area of wells (acres) Success ratio (%)	Ha Minimum 4,017,000 80 50	aynesville Sha Mode 5,565,000 100 70	ale Continuous Maximum 10,779,000 140 90	Gas AU Calculated mean 6,787,000 107 70	Hay Minimum 10,000 60 10	nesville Shale I Mode 5,116,000 100 50	Peripheral Continuo Maximum 14,034,000 180 90	Calculated mean 6,386,667 113 50			
Assessment input data Potential production area of AU (acres) Average drainage area of wells (acres) Success ratio (%) Average EUR (BCFG)	Ha Minimum 4,017,000 80 50 2.0	aynesville Sha Mode 5,565,000 100 70 3.0	ale Continuous Maximum 10,779,000 140 90 5.0	Gas AU Calculated mean 6,787,000 107 70 3.093	Hay Minimum 10,000 60 10 0.5	nesville Shale I Mode 5,116,000 100 50 1.5	Peripheral Continue Maximum 14,034,000 180 90 3.0	Calculated mean 6,386,667 113 50 1.562			

Table 2. Assessment results for two conventional and two continuous assessment units (AUs) in the Haynesville Formation of Alabama, Arkansas, Florida, Louisiana, Mississippi, and Texas.

[MMBO, million barrels of oil; BCFG, billion cubic feet of gas; NGL, natural gas liquids; MMBNGL, million barrels of natural gas liquids. Results shown are fully risked estimates. For gas accumulations, all liquids are included under the natural gas liquids category. F95 represents a 95-percent chance of at least the amount tabulated; other fractiles are defined similarly. Fractiles are additive under the assumption of perfect positive correlation. Shading indicates not applicable]

Total notroloum avatam and	AU probability	Accumulation type	Total undiscovered resources											
assessment units (AUs)			Oil (MMBO)			Gas (BCFG)				NGL (MMBNGL)				
			F95	F50	F5	Mean	F95	F50	F5	Mean	F95	F50	F5	Mean
Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System														
Haynesville Western Shelf Carbonate	1.0	Oil	2	5	10	5	3	7	15	7	0	1	2	1
Gas and Oil AU		Gas					275	573	1,102	616	2	5	11	6
Haynesville Eastern Shelf Sandstone	1.0	Oil	284	927	2,498	1,098	378	1,261	3,648	1,535	39	129	375	157
and Carbonate Oil and Gas AU		Gas					6,915	17,364	37,109	19,033	61	159	357	178
Total conventional resources			286	932	2,508	1,103	7,571	19,205	41,874	21,191	102	294	745	342
Haynesville Shale Continuous Gas AU	1.0	Gas					78,970	124,335	198,614	129,663	176	366	678	389
Haynesville Shale Peripheral	1.0	Gas					0 726	28 006	100 475	44 042	26	111	224	125
Continuous Gas AU							9,720	38,900	100,475	44,945	20	111	324	155
Total continuous resources							88,696	163,241	299,089	174,606	202	477	1,002	524
Total undiscovered resources			286	932	2,508	1,103	96,267	182,446	340,963	195,797	304	771	1,747	866

References Cited

- Cicero, A.D., and Steinhoff, Ingo, 2013, Sequence stratigraphy and depositional environments of the Haynesville and Bossier shales, east Texas and north Louisiana, chap. 3 *of* Hammes, Ursula, and Gale, Julia, eds., Geology of the Haynesville gas shale in east Texas and west Louisiana, U.S.A.: American Association of Petroleum Geologists Memoir 105, p. 25–46.
- Hammes, Ursula, Hamlin, H.S., and Ewing, T.E., 2011, Geologic analysis of the Upper Jurassic Haynesville shale in east Texas and west Louisiana: American Association of Petroleum Geologists Bulletin, v. 95, no. 10, p. 1643–1666.
- Mancini, E.A., Peng, Li, Goddard, D.A., and Zimmerman, R.K., 2006, Petroleum source rocks of the onshore interior salt basins, north central

and northeastern Gulf of Mexico: Gulf Coast Association of Geologic Societies Transactions, v. 55, p. 486–504.

- Montgomery, Scott, 1993a, Cotton Valley lime of east Texas—New pinnacle reef play in the Late Jurassic: Petroleum Frontiers, v. 10, no. 2, 55 p.
- Montgomery, Scott, 1993b, Haynesville of southern Alabama—A new Jurassic play in the eastern Gulf: Petroleum Frontiers, v. 10, no. 1, 65 p.
- Salvador, Amos, 1991, Triassic-Jurassic, *in* Salvador, Amos, ed., The Gulf of Mexico basin, *part of* The geology of North America: Boulder, Colo., The Geological Society of America, v. J, p. 131–180.

For More Information

Assessment results are available at the USGS Energy Resources Program website at http://energy.usgs.gov.

Haynesville Formation Assessment Team

Stanley T. Paxton, Janet K. Pitman, Scott A. Kinney, Nicholas J. Gianoutsos, Ofori N. Pearson, Katherine J. Whidden, Russell F. Dubiel, Christopher J. Schenk, Lauri A. Burke, Timothy R. Klett, Heidi M. Leathers-Miller, Tracey J. Mercier, Seth S. Haines, Brian A. Varela, Phuong A. Le, Thomas M. Finn, Stephanie B. Gaswirth, Sarah J. Hawkins, Kristen R. Marra, and Marilyn E. Tennyson