
Hydrographic Surveys of Rivers and Lakes Using a 
Multibeam Echosounder Mapping System
Using Sound Waves to Map River and Lake Bottoms

A multibeam echosounder (MBES) is a type of sound 
navigation and ranging device that uses sound waves to “see” 
through even murky waters (fig. 1: Note that all figures used 
in this report are for an illustrative rather than an interpretive 
purpose, not all geographic locations will be shown). Unlike 
a single beam echosounder (also known as a depth sounder 
or fathometer) that releases a single sound pulse in a single, 
narrow beam and “listens” for the return echo, a multibeam 
system emits a multidirectional 
radial beam to obtain informa-
tion within a fan-shaped swath 
(figs. 1, 2). The timing and 
direction of the returning sound 
waves provide detailed informa-
tion on the depth of water and 
the shape of the river channel, 
lake bottom, or any underwater 
features of interest. This infor-
mation has been used by the 
U.S. Geological Survey (USGS) 
to efficiently generate high-
resolution maps of river and 
lake bottoms.

The Multibeam Echosounder Mapping System
A multibeam echosounder mapping system (MBMS) is 

an integration of several individual components: the MBES, 
an inertial navigation system (INS), and a data-collection and 
data-processing computer. The MBES that was used for numer-
ous surveys completed by the USGS in Missouri is the Teledyne 
RESON SeaBat® 7125–SV2 (fig. 3), which is operated at a 
frequency of 200 or 400 kilohertz.
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Figure 1.  Schematic of a survey with a multibeam 
echosounder mapping system on the Mississippi 
River near the Jefferson Barracks Bridge on 
Interstate 255 near St. Louis, Mo. Photograph by 
Richard Huizinga, U.S. Geological Survey.
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Figure 2.  Example of single beam (top) and multibeam echosounder 
(bottom) output (modified from Alvarado and Robinson, 2011).
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Figure 3.  The 
Teledyne RESON 
SeaBat® 7125–
SV2 multibeam 
echosounder. A, As 
viewed from the 
bottom. B, Mounted 
on the port side of 
the U.S. Geological 
Survey survey boat. 
Photograph by 
Richard Huizinga, 
U.S. Geological 
Survey. Any use 
of trade, product, 
or firm names is 
for descriptive 
purposes only and 
does not imply 
endorsement by the 
U.S. Government.

To accurately position and interpret the data received by 
the MBES, the INS uses two Global Navigation Satellite System 
antennae and an inertial motion unit to provide position in 
three-dimensional space and measure the heave, pitch, roll, and 
heading of the vessel (and, thereby, the MBES). A connection to 
a source of real-time kinematic corrections often is established to 
improve real-time display of a survey. Whether or not a source 
of real-time kinematic corrections is used during a survey, data 
from the INS typically are postprocessed to mitigate the effects 
of degraded positional accuracy of the vessel during the survey. 
After the survey is completed, the acquired data from the MBES 
are processed to remove data spikes and other spurious points 
in the MBES soundings, georeferenced using the postprocessed 
INS data, and visualized as a triangulated irregular network sur-
face or a point cloud (figs. 1, 2). The various components of the 
MBES mapping system are described in detail in studies of the 
Missouri and Mississippi Rivers in Missouri (Huizinga, 2016, 
2017; Huizinga and others, 2010).

Applications of the Multibeam Echosounder Mapping 
System
Channel-Bed Scour

Scour in river channels is the removal of channel-bed 
and bank material by flowing water and is the leading cause 
of bridge failures in the United States (Richardson and Davis, 
2001). Scour at a bridge site is the result of short- and long-term 
geomorphic processes and local effects caused by elements 
of the structure (pier, footing) in or adjacent to the waterway 
(Richardson and Davis, 2001; Huizinga and Rydlund, 2004). 
Scour processes can be exacerbated during high-flow condi-
tions because velocity and depth typically increase. Because the 
effects of scour can be severe and dangerous, bridges and other 
structures over waterways are inspected routinely. Multibeam 
surveys around bridges can reveal the short- and long-term 
effects of bed scour near the bridge structures (figs. 4, 5).
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Figure 4.  Examples of three-dimensional representations of scour 
around a bridge pier obtained using a multibeam mapping system. 
The top image is the Interstate 635 Bridge on the Missouri River at 
Riverside, Mo., and the bottom image is the Interstate 435 Bridge on 
the Missouri River at Randolph, Mo. (Huizinga 2016).

Channel-Bottom Characteristics

In rivers, the channel-bed features reflect dynamic 
interactions between flowing water and the mobile sedi-
ment available on the bed. These interactions generate a 
wide range in channel-bed characteristics depending on 
the hydrologic and geologic context and provide a vari-
ety of aquatic habitat conditions for fish and inverte-
brates. Knowing when and where selected channel-bed 
conditions are found, how these features are used by 
aquatic species of interest, and how these features may 
change with time are all valuable pieces of informa-
tion for fisheries managers. For example, channel-bed 
features acquired using the MBMS, in conjunction with 
velocity distribution data provided by an acoustic Dop-
pler current profiler (Mueller and others, 2013), were 
used to assess pallid sturgeon habitat in the Missssippi 
River near a proposed bridge construction site (fig. 6; 
Huizinga and others, 2010).

Multibeam echosounder surveys have been com-
pleted by the USGS at numerous bridge locations along 
the Missouri and Mississippi Rivers to determine chan-
nel-bed characteristics. At all the surveyed locations, a 
variety of fluvial features were detected in the channel, 
ranging from a planar or nearly planar bed—indicat-
ing minimal bedload transport in these areas—to large 
dunes that indicate substantial transport of bedload. 

Rock outcrops also were detected at sev-
eral sites where the alluvial material of 
the channel bed had been washed away. 
Repeated surveys at these locations have 
allowed for the quantification of bed 
changes (deposition and scour) with time 
and provide some indication of the bed 
volume change and the relation between 
streamflow changes and the associated 
channel-bed responses (fig. 7).
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Figure 5.  Planar view of mapped Missouri River channel reach 
indicating substantial scour around a bridge pier and other channel 
substrate features (Interstate 635 Bridge over the Missouri River at 
Riverside, Mo.; Huizinga, 2016).

Estimation of Bedload Transport

Bedload, defined as “the sediment that slides, rolls, or skips 
along in almost continuous contact with the streambed” (Hub-
bell, 1964, p. 2), currently (2018) is not measured consistently 
in most rivers. Direct measurement of bedload in large sand-bed 
rivers is highly inaccurate (Hubbell, 1964; Edwards and Glys-
son, 1999), and unconfirmed theoretical estimates commonly 
are used (Gomez, 2006). Techniques using time-lagged MBMS 
surveys (as demonstrated in figure 7), such as about an hour, 
have been developed to estimate bedload transport based on 
dune movement and the associated change in areas of scour and 
fill (Abraham and others, 2011).

Lake Surveys and Volume Calculations

Sedimentation in lakes and reservoirs can result in reduced 
capacity for flood storage and water supply and a loss of usable 
aquatic habitat over time. A detailed bathymetric survey allows 
for an accurate determination of available lake capacity for 
various uses. The MBMS has been used to map and determine 
accurate volume estimates for lakes in Missouri (fig. 8) and 
surrounding States. Such information can be used to determine 
water-supply availability, reservoir sedimentation rates and pro-
jected lifespans, and the spatial distribution of selected aquatic 
habitat.
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Figure 6.  Planar view of mapped Mississippi River channel reach indicating bed features and 
corresponding velocity distribution (Huizinga and others, 2010).
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Figure 7.  Planar view of mapped Missouri River channel reach at Kansas City, Mo., indicating the change in bed conditions between 
surveys in 2015 and 2011 (Interstate 635 Bridge over the Missouri River at Riverside, Mo.; Huizinga, 2016).
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Figure 8.  Planar view of mapped bottom of Reservoir 
3 near Cameron, Mo., from a multibeam echosounder 
survey in July 2013 (Huizinga, 2014). 
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