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The Everglades Vulnerability Analysis: Integrating  
Ecological Models and Addressing Uncertainty

The Everglades is a large (about 47,000 square kilometers), 
unique subtropical wetland ecosystem in central and south 
Florida. This ecosystem provides habitat for many endemic and 
endangered species, offers protection against flooding, and sup-
plies south Florida with a substantial amount of its water supply. 
In 2000, the U.S. Congress passed the Water Resources Devel-
opment Act of 2000 (Public Law 106–541), which authorized the 
Comprehensive Everglades Restoration Plan (CERP). The CERP 
seeks to improve the timing, distribution, and quality of water 
flow through The Everglades to facilitate the recovery of the 
unique habitats historically present in the system. Restoration of 
The Everglades is one of the largest and most expensive eco-
logical restoration efforts in the world, and its implementation 
requires extensive cooperation among stakeholders to ensure that 
restoration efforts are successful (LoSchiavo and others, 2013).

The Role of Ecological Models in Everglades Decision 
Making

Decision makers are tasked with balancing the needs of 
various stakeholders and must select among competing restora-
tion plans. Ecological models facilitate evaluation and assess-
ment of each plan’s potential impacts on The Everglades system. 
However, there are many distinct models which may or may 
not account for the variability present within the system. These 
different model outputs must be synthesized by considering the 
assumptions of each model and how uncertainty might factor 
into the predicted outcomes. More efficient and accessible deci-
sion making could be achieved through the integration of The 
Everglades ecological models into a common modeling frame-
work that would provide standardized outputs and measures 
of uncertainty.

What Is the Everglades Vulnerability Analysis?
The Everglades vulnerability analysis (EVA) is a project led 

by the U.S. Geological Survey in cooperation with the National 
Park Service and U.S. Army Corps of Engineers to accomplish 
one of the science goals of Restoration Coordination & Veri-
fication (RECOVER), a multiagency group responsible for 
providing scientific and technical evaluations and assessments 
for improving CERP’s ability to restore, preserve, and protect 
the south Florida ecosystem while providing for the region’s 
other water-related needs. In 2016, RECOVER acknowledged 
the need for a tool that could synthesize the decades of ecosys-
tem science in The Everglades and identify areas vulnerable to 
changing conditions on the landscape. The EVA tool answers 
this need through a landscape-scale modeling framework that 

provides annual responses and relative vulnerability for a suite 
of indicators of ecosystem health in The Everglades (fig. 1). 
(Herein, “vulnerability” is defined as the degree to which an 
indicator of ecosystem health moves away from an ideal state 
defined by the tool’s end users.) The tool helps scientists and 
decision makers visualize the variability in predictions across the 
landscape to inform decision making. The EVA tool integrates 
multiple systemwide indicators of ecosystem vulnerability, 
explicitly accounts for system variability, and can consider 
alternative restoration plans and how climate-related long-term 
changes such as sea-level rise may affect the projected outcomes 
of those plans.
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Figure 1.  The extent of the modeling domain of the 
Everglades vulnerability analysis (EVA) in 2021 in south 
Florida.
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Modeling Framework
Currently, the EVA tool assesses four indicators of ecosystem 

health: (1) dynamics of sawgrass (Cladium jamaicense) peat 
subsidence and accretion; (2) patterns of vegetation across the 
landscape; (3) suitability of the landscape for nesting American 
alligators (Alligator mississippiensis); and (4) size and location 
of nesting wading bird colonies. The EVA tool employs a flexible 
modeling approach through a series of connected spatially 
explicit Bayesian networks (fig. 2). This modeling framework 
allows for the integration of information from experiments and 
observations and knowledge from experts into its analysis. For 
each indicator of ecosystem health, influence diagrams were 
developed to describe how a system works. Those influence 
diagrams were then translated into a Bayesian network. 

Each Bayesian network requires hydrologic and landscape 
information, which is then rendered into categorical outcomes 
through probability tables that describe the relation among 
variables in the network. These probability tables show how the 
Bayesian network incorporates uncertainty within the system. 
The EVA tool has the flexibility to use outputs from various 
hydrological models as inputs, including the Everglades Depth 
Estimation Network (Haider and others, 2020), the Biscayne and 
Southern Everglades Coastal Transport model (Swain and others, 
2019), or the Regional Simulation Model (South Florida Water 
Management District, 2005). The outcomes for each indicator 
are then compared to an ideal state defined by the user. Through 
an ordination process, the distance from the ideal state is calcu-
lated for each indicator, and areas further from the ideal state are 
classified as relatively more vulnerable.

Managers and decision makers can use the resulting 
vulnerability surface (fig. 3) to compare restoration projects 

to consider the landscape-scale impacts and the probability of 
these outcomes. Similarly, sea-level rise impacts on the system’s 
vulnerability can be investigated through adjusting the Bayesian 
network inputs to reflect potential climatic futures and compar-
ing restoration alternatives in the context of a changing climate.

Data Flexibility
Using the Bayesian network modeling framework, data 

from multiple sources and formats are combined to generate the 
relations that drive model outcomes. For example, the Bayesian 
networks of vegetation type dynamics, alligator nesting, 
and wading bird colony size are developed from long-term 
monitoring data. The Bayesian network of peat subsidence and 
accretion dynamics uses results from mesocosm experiments in 
the coastal areas of The Everglades (Wilson and others, 2018) 
(fig. 4). Bayesian networks of future indicators may use expert 
opinion to describe the relations between variables. The EVA 
tool allows for integration across these disparate data sources 
to leverage the vast amounts of scientific research generated on 
The Everglades ecosystem into a comprehensive landscape-scale 
analytic tool for decision making.

Future Directions
Currently, the EVA focuses on vegetation, soil elevation, 

and wildlife species within The Everglades system. Climate 
impacts beyond sea-level rise, such as changes in precipitation 
or severe weather patterns, could be easily incorporated into this 
framework. Additionally, because of the tool’s built-in flexibility, 
further Bayesian networks for indicators of economic and social 
impacts can be integrated into the current framework.
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Figure 2.  Influence diagrams of two indicators within the Everglades vulnerability analysis (EVA) tool. A predicts vegetation type 
across the landscape, and B predicts American alligator nest presence across the landscape. White circles are hydrologic or 
landscape inputs to the model, whereas green circles are outcomes from the model. mm, millimeter.
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Figure 3.  Vulnerability surfaces for 
the American alligator resulting from 
two restoration alternatives. A is a 
baseline alternative that assumes no 
future changes to hydrologic conditions, 
whereas B is an alternative that 
assumes some changes to hydrologic 
conditions.
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Figure 4.  Coastal sawgrass peat vulnerability (A, B) 
for two separate years and relative certainty of the 
predictions (C, D) for those respective years. Darker 
reds indicate areas where sawgrass peat is most 
likely to collapse into open water because of an 
interaction between drought and saltwater intrusion. 
Darker blues indicate areas with higher certainty.
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