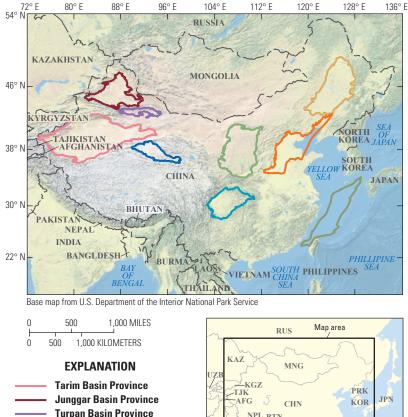


National and Global Petroleum Assessment

Assessment of Undiscovered Conventional Oil and Gas Resources of China, 2020

Using a geology-based assessment methodology, the U.S. Geological Survey estimated undiscovered, technically recoverable mean resources of 13.4 billion barrels of oil and 244.4 trillion cubic feet of gas in nine geologic provinces of China.

Introduction


The U.S. Geological Survey (USGS) quantitatively assessed the potential for undiscovered, technically recoverable conventional oil and gas resources in nine geologic provinces of China (fig. 1). This assessment includes the Tarim Basin, Junggar Basin, Turpan Basin, Qaidam Basin, Sichuan Basin, Ordos Basin, Bohaiwan Basin, Songliao Basin, and the East China Sea Basin Provinces. Within these 9 provinces. 16 geologic assessment units (AUs) were defined, and each AU was assessed for undiscovered conventional oil, gas, and natural-gas liquids.

China contains a mosaic of cratonic terranes, remnants of oceanic crust, orogenic belts, suture zones, accretionary complexes, island-arc assemblages, and regional faults that record a complex history of terrane accretion and orogeny along the southern and eastern margins of Eurasia (Liu and others, 2013; Zheng and others, 2013; Zhao and others, 2014; Han and Zhao, 2018; Zhou and others, 2018). Beginning in the Paleozoic, several cratonic blocks separated diachronously from the northern margin of Gondwana and translated north across the Tethys Ocean as oceanic crust was subducted; these terranes eventually collided and accreted, knitting together a collage of tectonic elements. Major cratonic terranes that accreted to Eurasia included the Tarim Basin, Ordos Basin, and Sichuan Basin Provinces. In contrast, the basement of the Junggar, Turpan, Qaidam, and Songliao Basin Provinces are interpreted as fragments of oceanic crust that were not subducted, but rather were incorporated into orogenic belts (Mao and others, 2016; Han and Zhao, 2018). As accretion proceeded, the margins of the cratonic and oceanic fragments became sites of fold and thrust belts, suture zones, faults, and an amalgamation of island-arc and accretionary complexes; several of the terranes developed foreland basins. By the Permian, compressive deformation developed sufficient tectonic topography to isolate several of the basins from marine waters. This topographic relief led to hydraulically closed basins (Garcia-Castellanos, 2006; Marenssi and others, 2020), characterized by the development of extensive, basinwide lacustrine systems. The Junggar and Turpan Basin Provinces developed lacustrine systems by compressive deformation along the margins in the Permian, and lacustrine systems formed following compressional deformation in the Sichuan, Ordos, Tarim, and Qaidam Basin Provinces. In contrast, horst and graben systems along the eastern margin of Eurasia were formed by widespread back-arc extension related to changing motions of the Pacific plate. Extensive lacustrine systems formed within grabens in the Songliao, Bohaiwan, and East China Sea Basin Provinces (Li and others, 2012; Liang and Wang, 2019; Yang and others, 2020).

Petroleum source rocks within these nine provinces reflect the long and complex tectonic history (Jiang and others, 2016). As the cratonic blocks separated from Gondwana and traversed the Tethyan realm in the early Paleozoic, organic-rich marine sediments were deposited in basinal positions mainly associated with passive margin carbonate platforms, such as in the Tarim, Sichuan, and Ordos Basin Provinces (Yang and others, 2005). In

the late Paleozoic, subsequent terrane collisions led to the development of marginal fold belts and associated foreland basins. Potential source rocks in the upper Paleozoic foreland basins are dominated by marginal marine to nonmarine, coal-bearing gas-prone sequences. Beginning in the Permian, along with the compressional formation of hydraulically closed basins, climatic conditions were appropriate to form extensive lacustrine systems with viable lacustrine source rocks, which are well known in the basins of China (Jiang and others, 2016).

The Sichuan Basin Province, which resides in the western part of the South China terrane, provides an example of the evolution of the tectonic control on the development of petroleum source rocks (Shi and others, 2016; Mu and others, 2019). The cratonic terrane of the Sichuan Basin Province was rimmed by passive margins as the terrane

East China Sea Basin Province

Figure 1. Map showing the location of nine geologic provinces of China assessed in this study.

moved north from Gondwana, which led to the deposition of widespread organic-rich marine source rocks. As the South China terrane impinged on the Eurasia margin, a foreland basin was formed in the Sichuan Basin Province and was the depositional site for marine, marginal marine, and coal-bearing sequences. In the Late Triassic, as the South China terrane collided with the North China and Songpan Ganzi terranes, compressional deformation resulted in topography, a hydraulically closed basin, and the development of an extensive basinwide lacustrine system. A similar temporal development of marine to nonmarine source rocks is interpreted for the Tarim Basin Province (Jin and others, 2008; Wang and others, 2019). In contrast, because the Junggar Basin Province is floored by upper Paleozoic oceanic crust, there is no lower Paleozoic section. Permian deformation isolated the Junggar Basin from marine waters, and the

principal petroleum source rocks developed within a lacustrine depositional system. The Turpan and Qaidam Basin Provinces illustrate a similar tectonic development of lacustrine source-rock conditions.

The Bohaiwan Basin Province is an example of the development of lacustrine conditions in an extensional system resulting from complex motion during the subduction of the Pacific plate (Allen and others, 1998). Extension resulted in a regional system of horsts and grabens, which were isolated from marine waters, and many of the grabens developed lacustrine depositional systems (Feng and others, 2016). This process also led to lacustrine systems being formed in the Songliao and East China Sea Basin Provinces (Ge and others, 2012; Wang and others, 2016; Liang and Wang, 2019; Yang and others, 2020). Key assessment input data are summarized in table 1.

Table 1. Key input data for 16 conventional assessment units in China.

[Shading indicates not applicable. AU, assessment unit; MMBO, million barrels of oil; BCFG, billion cubic feet of gas]

Assessment input data—	Tari	-Cenozoic Reserv	oirs AU	Tarim Paleozoic Reservoirs AU								
Conventional AUs	Minimum	Median	Maximum	Calculated mean	Minimum	Median	Maximum	Calculated mean				
Number of oil fields	1	30	90	31.9	1	100	200	102.5				
Number of gas fields	1	50	150	53.2	1	250	500	256.1				
Size of oil fields (MMBO)	5	8	200	12.2	5	8	3,500	37.3				
Size of gas fields (BCFG)	30	60	20,000	260.1	30	60	20,000	260.1				
AU probability		1.0			1.0							
Assessment input data—	Junggar Upper P						ic–Cenozoic Reservoirs AU					
Conventional AUs	Minimum	Median	Maximum	Calculated mean	Minimum	Median	Maximum	Calculated mean				
Number of oil fields	1	45	90	46.1	1	12	25	12.3				
Number of gas fields	1	80	160	82.0	1	12	25	12.3				
Size of oil fields (MMBO)	5	10	700	21.7	5	8	200	12.2				
Size of gas fields (BCFG)	30	72	12,000	230.8	30	60	3,500	122.0				
AU probability	1.0				1.0							
Assessment input data— Conventional AUs	Qaidam Mesozoic—Cenozoic Reservoirs AU				Sichuan Southeast Fold Belt Reservoirs AU							
	Minimum	Median	Maximum	Calculated mean	Minimum	Median	Maximum	Calculated mean				
Number of oil fields	1	40	80	41.0	1	200	(00	207.2				
Number of gas fields	1	40	80	41.0	1	300	600	307.3				
Size of oil fields (MMBO) Size of gas fields (BCFG)	30	10 72	5,000	14.8 160.2	6	36	10,000	161.9				
AU probability	1.0	12	3,000	100.2	1.0	30	10,000	101.9				
	1.0 Sichuan Foreland Basin Reservoirs AU				Sichuan Central Uplift Reservoirs AU							
Assessment input data— Conventional AUs	Minimum Median		Maximum	Calculated mean	Minimum	Median	Maximum	Calculated mean				
Number of oil fields	IVIIIIIIIIIIIII	Wieulali	IVIAXIIIIUIII	Gaiculateu illeali	1	4		4.1				
Number of gas fields	1	150	300	153.7	1	8	16	8.2				
Size of oil fields (MMBO)	1	130	300	155.7	1	2	20	2.6				
Size of gas fields (BCFG)	6	36	3,000	92.1	6	12	100	14.8				
AU probability	1.0	30	3,000	72.1	1.0	12	100	11.0				
Assessment input data—	Ordos Lower Paleozoic Conventional Reservoirs AU				Ordos Western Deformed Belt Reservoirs AU							
	UI UUS LU	wer Paleozoi	IC Conventional R	eservoirs AU	Ura	los Western D	eformed Belt Kese	ervoirs AU				
Conventional AUs	Minimum	Median	Maximum	Calculated mean	Minimum	os Western D Median	eformed Belt Kese Maximum	rvoirs AU Calculated mean				
Conventional AUs					Minimum	Median	Maximum	Calculated mean				
Conventional AUs Number of oil fields	Minimum	Median	Maximum	Calculated mean	Minimum 1	Median 10	Maximum 30	Calculated mean 10.6				
Conventional AUs Number of oil fields Number of gas fields	Minimum	Median	Maximum	Calculated mean	Minimum 1 1	Median 10 30	Maximum 30 90	Calculated mean 10.6 31.9				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO)	1 30 1.0	50 48	150 6,000	53.2	Minimum 1 1 5	Median 10 30 8 72	Maximum 30 90 200 10,000	10.6 31.9 12.2 212.6				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—	30 1.0	50 48	Maximum 150	53.2	Minimum 1 1 5 30 0.9	Median 10 30 8 72	Maximum 30 90 200	10.6 31.9 12.2 212.6				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs	1 30 1.0	50 48 os Mesozoic Median	Maximum 150 6,000 Sandstone Reser Maximum	53.2 123.3 voirs AU Calculated mean	Minimum 1 1 5 30	Median 10 30 8 72 Bohaiwan 0 Median	Maximum 30 90 200 10,000 Genozoic Reservoir Maximum	Calculated mean				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields	30 1.0	Median 50 48 os Mesozoic	Maximum 150 6,000 Sandstone Reser	53.2 123.3 voirs AU	Minimum 1 1 5 30 0.9 Minimum 1	Median 10 30 8 72 Bohaiwan C Median 500	Maximum 30 90 200 10,000 Senozoic Reservoir Maximum 1,000	Calculated mean				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of gas fields	Minimum 1 30 1.0 Orde Minimum 1	Median 50 48 os Mesozoic Median 40	Maximum 150 6,000 Sandstone Reser Maximum 80	53.2 123.3 voirs AU Calculated mean 41.0	Minimum 1 1 5 30 0.9 Minimum 1 1	Median 10 30 8 72 Bohaiwan C Median 500 70	Maximum	Calculated mean 10.6 31.9 12.2 212.6 s AU Calculated mean 512.2 74.4				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO)	Minimum 1 30 1.0 Orde	50 48 os Mesozoic Median	Maximum 150 6,000 Sandstone Reser Maximum	53.2 123.3 voirs AU Calculated mean	Minimum 1 5 30 0.9 Minimum 1 1 1	Median 10 30 8 72 Bohaiwan C Median 500 70 2	Maximum	Calculated mean 10.6 31.9 12.2 212.6 s AU Calculated mean 512.2 74.4 8.2				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG)	Minimum 1 30 1.0 Ordo Minimum 1 5	Median 50 48 os Mesozoic Median 40	Maximum 150 6,000 Sandstone Reser Maximum 80	53.2 123.3 voirs AU Calculated mean 41.0	Minimum 1 5 30 0.9 Minimum 1 1 6	Median 10 30 8 72 Bohaiwan C Median 500 70	Maximum	Calculated mean 10.6 31.9 12.2 212.6 s AU Calculated mean 512.2 74.4				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability	30 1.0 Orde Minimum 1 5	Median 50 48 os Mesozoic Median 40	Maximum 150 6,000 Sandstone Reser Maximum 80 400	53.2 123.3 voirs AU Calculated mean 41.0 14.8	Minimum 1 1 5 30 0.9 Minimum 1 1 1 6 1.0	Median 10 30 8 72 Bohaiwan C Median 500 70 2 24	Maximum 30 90 200 10,000 Senozoic Reservoir Maximum 1,000 210 600 2,500	Calculated mean 10.6 31.9 12.2 212.6 s AU Calculated mean 512.2 74.4 8.2 66.0				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—	Minimum 1 30 1.0 Orde Minimum 1 5 1.0 Bohaiwai	Median 50 48 os Mesozoic Median 40 8	Maximum 150 6,000 Sandstone Reser Maximum 80 400 pzoic–Paleozoic	Calculated mean 53.2 123.3 voirs AU Calculated mean 41.0 14.8 Reservoirs AU	Minimum 1 5 30 0.9 Minimum 1 1 6 1.0	Median 10 30 8 72	Maximum	Calculated mean 10.6 31.9 12.2 212.6 s AU Calculated mean 512.2 74.4 8.2 66.0				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs	30 1.0 Orde Minimum 1 5	Median 50 48 os Mesozoic Median 40 8 n Mid-Protero	Maximum 150 6,000 Sandstone Reser Maximum 80 400 pzoic-Paleozoic Maximum	Calculated mean 53.2 123.3 voirs AU Calculated mean 41.0 14.8 Reservoirs AU Calculated mean	Minimum 1 1 5 30 0.9 Minimum 1 1 1 6 1.0	Median 10 30 8 72 Bohaiwan C Median 500 70 2 24 congliao Syn-R Median	Maximum	Calculated mean 10.6 31.9 12.2 212.6 s AU Calculated mean 512.2 74.4 8.2 66.0 voirs AU Calculated mean				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields	Minimum 1 30 1.0 Orde Minimum 1 5 1.0 Bohaiwar Minimum 1	Median 50 48 os Mesozoic Median 40 8 n Mid-Protero Median 150	Maximum 150 6,000 Sandstone Reser Maximum 80 400 pzoic-Paleozoic Maximum 450	Calculated mean 53.2 123.3 voirs AU Calculated mean 41.0 14.8 Reservoirs AU Calculated mean 159.5	Minimum 1 1 5 30 0.9 Minimum 1 1 1 6 1.0 S Minimum 1	Median 10 30 8 72 Bohaiwan C Median 500 70 2 24 congliao Syn-R Median 10	Maximum	Calculated mean 10.6 31.9 12.2 212.6 s AU Calculated mean 512.2 74.4 8.2 66.0 coirs AU Calculated mean 10.3				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of oil fields	Minimum 1 30 1.0 Orde Minimum 1 5 1.0 Bohaiwat Minimum 1 1	Median 50 48 os Mesozoic Median 40 8 n Mid-Protero Median 150 50	Maximum 150 6,000 Sandstone Reser Maximum 80 400 Dzoic-Paleozoic Maximum 450 150	Calculated mean 53.2 123.3 voirs AU Calculated mean 41.0 14.8 Reservoirs AU Calculated mean 159.5 53.2	Minimum 1 1 5 30 0.9 Minimum 1 1 6 1.0 Siminimum 1 1 1	Median 10 30 8 72 Bohaiwan 0 Median 500 70 2 24 congliao Syn-R Median 10 50	Maximum	Calculated mean 10.6 31.9 12.2 212.6 S AU Calculated mean 512.2 74.4 8.2 66.0 Calculated mean 10.3 51.2				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields (MMBO) Size of gas fields (BCFG) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO)	Minimum 1 30 1.0 Ordo Minimum 1 5 1.0 Bohaiwan Minimum 1 1	Median 50 48 os Mesozoic Median 40 8 n Mid-Protero Median 150 50 2	Maximum 150 6,000 Sandstone Reser Maximum 80 400 Dozoic-Paleozoic Maximum 450 150 40	Calculated mean 53.2 123.3 voirs AU Calculated mean 41.0 14.8 Reservoirs AU Calculated mean 159.5 53.2 3.0	Minimum 1 1 5 30 0.9 Minimum 1 1 6 1.0 Minimum 1 5 Minimum 1 5	Median 10 30 8 72	Maximum	Calculated mean 10.6 31.9 12.2 212.6 s AU Calculated mean 512.2 74.4 8.2 66.0 coirs AU Calculated mean 10.3 51.2 12.2				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields (MMBO) Size of gas fields (BCFG) Size of oil fields (MMBO) Size of oil fields (MMBO) Size of gas fields (MMBO) Size of gas fields (MMBO)	Minimum 1 30 1.0 Ordo Minimum 1 5 1.0 Bohaiwan Minimum 1 1 1 6	Median 50 48 os Mesozoic Median 40 8 n Mid-Protero Median 150 50	Maximum 150 6,000 Sandstone Reser Maximum 80 400 Dzoic-Paleozoic Maximum 450 150	Calculated mean 53.2 123.3 voirs AU Calculated mean 41.0 14.8 Reservoirs AU Calculated mean 159.5 53.2	Minimum 1 1 5 30 0.9 Minimum 1 1 1 6 1.0 Minimum 1 1 5 30	Median 10 30 8 72 Bohaiwan 0 Median 500 70 2 24 congliao Syn-R Median 10 50	Maximum	Calculated mean 10.6 31.9 12.2 212.6 S AU Calculated mean 512.2 74.4 8.2 66.0 Calculated mean 10.3 51.2				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability	Minimum 1 30 1.0 Order Minimum 1 5	Median 50 48 os Mesozoic Median 40 8 n Mid-Protero Median 150 50 2 24	Maximum 150 6,000 Sandstone Reser Maximum 80 400 Dzoic-Paleozoic Maximum 450 150 40 3,000	Calculated mean 53.2 123.3 voirs AU Calculated mean 41.0 14.8 Reservoirs AU Calculated mean 159.5 53.2 3.0 71.5	Minimum 1 1 5 30 0.9 Minimum 1 1 6 1.0 Minimum 1 5 Minimum 1 5	Median 10 30 8 72	Maximum 30 90 200 10,000 Senozoic Reservoir Maximum 1,000 210 600 2,500 Sift Sourced Reserv Maximum 20 100 200 7,000	Calculated mean 10.6 31.9 12.2 212.6 S AU Calculated mean 512.2 74.4 8.2 66.0 Calculated mean 10.3 51.2 12.2 182.7				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—AU probability	Minimum 1 30 1.0 Order Minimum 1 5	Median 50 48 os Mesozoic Median 40 8 n Mid-Protero Median 150 50 2 24 gliao Post-Ri	Maximum 150 6,000 Sandstone Reser Maximum 80 400 Dzoic-Paleozoic Maximum 450 150 40 3,000 ft Sourced Reser	Calculated mean 53.2 123.3 voirs AU Calculated mean 41.0 14.8 Reservoirs AU Calculated mean 159.5 53.2 3.0 71.5	Minimum 1 1 5 30 0.9 Minimum 1 1 1 6 1.0 Si Minimum 1 1 5 30 1.0	Median 10 30 8 72 Bohaiwan 0 Median 500 70 2 24 congliao Syn-R Median 10 50 8 72 East Chin	Maximum 30 90 200 10,000 Eenozoic Reservoir Maximum 1,000 210 600 2,500 lift Sourced Reserv Maximum 20 100 200 7,000 a Sea Reservoirs A	Calculated mean 10.6 31.9 12.2 212.6 S AU Calculated mean 512.2 74.4 8.2 66.0 Calculated mean 10.3 51.2 12.2 182.7				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs	Minimum 1 30 1.0 Orde Minimum 1 5 1.0 Bohaiwar Minimum 1 1 6 1.0 Son Minimum	Median 50 48 os Mesozoic Median 40 8 n Mid-Protero Median 150 50 2 24 gliao Post-Ri Median	Maximum 150 6,000 Sandstone Reser Maximum 80 400 Dzoic-Paleozoic Maximum 450 150 40 3,000 ft Sourced Reser Maximum	Calculated mean 53.2 123.3 voirs AU Calculated mean 41.0 14.8 Reservoirs AU Calculated mean 159.5 53.2 3.0 71.5 voirs AU Calculated mean	Minimum 1 1 5 30 0.9 Minimum 1 1 1 6 1.0 Simimum 1 1 5 30 1.0 Minimum	Median 10 30 8 72 Bohaiwan 0 Median 500 70 2 24 congliao Syn-R Median 10 50 8 72 East Chin	Maximum	Calculated mean 10.6 31.9 12.2 212.6 S AU Calculated mean 512.2 74.4 8.2 66.0 Calculated mean 10.3 51.2 12.2 182.7				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields (MMBO) Size of gas fields Size of oil fields (MMBO) Size of gas fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields (BCFG)	Minimum	Median 50 48 os Mesozoic Median 40 8 n Mid-Protero Median 150 50 2 24 gliao Post-Ri Median 80	Maximum 150 6,000 Sandstone Reser Maximum 80 400 Decoic—Paleozoic Maximum 450 150 40 3,000 ft Sourced Reser Maximum 160	Calculated mean 53.2 123.3 voirs AU Calculated mean 41.0 14.8 Reservoirs AU Calculated mean 159.5 53.2 3.0 71.5 voirs AU Calculated mean 82.0	Minimum 1 1 5 30 0.9 Minimum 1 1 1 6 1.0 Minimum 1 1 5 30 1.0 Minimum 1	Median 10 30 8 72 Bohaiwan 0 Median 500 70 2 24 congliao Syn-R Median 10 50 8 72 East Chin Median 30	Maximum 30 90 200 10,000 lenozoic Reservoir Maximum 1,000 210 600 2,500 lift Sourced Reserv Maximum 20 100 200 7,000 a Sea Reservoirs A Maximum 90	Calculated mean 10.6 31.9 12.2 212.6 S AU Calculated mean 512.2 74.4 8.2 66.0 Calculated mean 10.3 51.2 12.2 182.7 AU Calculated mean 32.0				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields (MMBO) Size of gas fields Size of oil fields (MMBO) Size of gas fields Number of gas fields Number of gas fields Number of gas fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of gas fields	Minimum 1 30 1.0 Order Minimum 1 5	Median 50 48 os Mesozoic Median 40 8 n Mid-Protero Median 150 50 2 24 gliao Post-Ri Median 80 10	Maximum 150 6,000 Sandstone Reser Maximum 80 400 Dzoic-Paleozoic Maximum 450 150 40 3,000 ft Sourced Reser Maximum 160 20	Calculated mean 53.2 123.3 voirs AU Calculated mean 41.0 14.8 Reservoirs AU Calculated mean 159.5 53.2 3.0 71.5 voirs AU Calculated mean 82.0 10.3	Minimum 1 1 5 30 0.9 Minimum 1 1 1 6 1.0 Siminimum 1 1 5 30 1.0 Minimum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Median 10 30 8 72 Bohaiwan 0 Median 500 70 2 24 congliao Syn-R Median 10 50 8 72 East Chin Median 30 80	Maximum 30 90 200 10,000 Ienozoic Reservoir Maximum 1,000 210 600 2,500 lift Sourced Reserv Maximum 20 100 200 7,000 a Sea Reservoirs A Maximum 90 240	Calculated mean 10.6 31.9 12.2 212.6 S AU Calculated mean 512.2 74.4 8.2 66.0 Calculated mean 10.3 51.2 12.2 182.7 AU Calculated mean 32.0 85.1				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields (MMBO) Size of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields Number of gas fields Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data—Conventional AUs Number of oil fields Number of oil fields Number of gas fields Size of oil fields Number of gas fields	Minimum	Median 50 48 os Mesozoic Median 40 8 n Mid-Protero Median 150 50 2 24 gliao Post-Ri Median 80 10 8	Maximum 150 6,000 Sandstone Reser Maximum 80 400 Dzoic-Paleozoic Maximum 450 150 40 3,000 ft Sourced Reser Maximum 160 20 300	Calculated mean 53.2 123.3 voirs AU Calculated mean 41.0 14.8 Reservoirs AU Calculated mean 159.5 53.2 3.0 71.5 voirs AU Calculated mean 82.0 10.3 13.6	Minimum 1 1 5 30 0.9 Minimum 1 1 1 6 1.0 S Minimum 1 1 5 30 1.0 Minimum 1 1 5 30 5 5 30 1.0	Median 10 30 8 72 Bohaiwan C Median 500 70 2 24 congliao Syn-R Median 10 50 8 72 East Chin Median 30 80	Maximum 30 90 200 10,000 lenozoic Reservoir Maximum 1,000 210 600 2,500 lift Sourced Reserv Maximum 20 100 200 7,000 a Sea Reservoirs A Maximum 90 240 1,000	Calculated mean 10.6 31.9 12.2 212.6 S AU Calculated mean 512.2 74.4 8.2 66.0 Calculated mean 10.3 51.2 12.2 182.7 AU Calculated mean 32.0 85.1 24.9				
Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of gas fields Size of oil fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields (MMBO) Size of gas fields Size of oil fields (MMBO) Size of gas fields Number of gas fields Number of gas fields Number of gas fields (MMBO) Size of gas fields (BCFG) AU probability Assessment input data— Conventional AUs Number of oil fields Number of gas fields	Minimum 1 30 1.0 Order Minimum 1 5	Median 50 48 os Mesozoic Median 40 8 n Mid-Protero Median 150 50 2 24 gliao Post-Ri Median 80 10	Maximum 150 6,000 Sandstone Reser Maximum 80 400 Dzoic-Paleozoic Maximum 450 150 40 3,000 ft Sourced Reser Maximum 160 20	Calculated mean 53.2 123.3 voirs AU Calculated mean 41.0 14.8 Reservoirs AU Calculated mean 159.5 53.2 3.0 71.5 voirs AU Calculated mean 82.0 10.3	Minimum 1 1 5 30 0.9 Minimum 1 1 1 6 1.0 Siminimum 1 1 5 30 1.0 Minimum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Median 10 30 8 72 Bohaiwan 0 Median 500 70 2 24 congliao Syn-R Median 10 50 8 72 East Chin Median 30 80	Maximum 30 90 200 10,000 Ienozoic Reservoir Maximum 1,000 210 600 2,500 lift Sourced Reserv Maximum 20 100 200 7,000 a Sea Reservoirs A Maximum 90 240	Calculated mean 10.6 31.9 12.2 212.6 S AU Calculated mean 512.2 74.4 8.2 66.0 Calculated mean 10.3 51.2 12.2 182.7 AU Calculated mean 32.0 85.1				

Undiscovered Resources Summary

The USGS quantitatively assessed undiscovered oil, gas, and natural gas liquids resources within nine geologic provinces of China (table 2). The fully risked mean totals are 13,400 million barrels of oil (MMBO) or 13.4 billion barrels of oil, with a F95–F5 fractile range from 7,022 to 22,267 MMBO; 244,436 billion cubic feet of gas

(BCFG), or 244.4 trillion cubic feet, with an F95–F5 range from 122,343 to 412,088 BCFG; and 3,775 million barrels of natural gas liquids (MMBNGL), or 3.8 billion barrels of natural gas liquids, with an F95–F5 range from 1,819 to 6,561 MMBNGL. Assessment results were published previously for the Pearl River Mouth Basin, Beibuwan Basin, Qiongdongnan Basin, and Taixinan Basin Provinces (Schenk and others, 2020).

 Table 2.
 Results for 16 conventional assessment units in China.

[Results shown are fully risked estimates. F95 represents a 95-percent chance of at least the amount tabulated; other fractiles are defined similarly. Shading indicates not applicable. MMBO, million barrels of oil; BCFG, billion cubic feet of gas; NGL, natural gas liquids; MMBNGL, million barrels of natural gas liquids]

Total petroleum system and assessment units (AUs)	A11		Total undiscovered resources											
	AU	Accumulation	Oil (MMBO)					Gas (BCFG)			NGL (M		IMBNGL)	
	probability	type	F95	F50	F5	Mean	F95	F50	F5	Mean	F95	F50	F5	Mean
		Mesozoic (omposi	te Total P	etroleum	System,	Tarim Basi	n Province	e					
Tarim Mesozoic–Cenozoic Reservoirs AU		Oil	181	361	687	388	380	758	1,441	815	12	24	46	26
	1.0	Gas					4,318	12,037	29,875	13,925	156	433	1,075	501
	1	Lower Paleozo	ic Comr	nsite Tot	ı al Petrole	um Systi				,		100	1 -,-,-	
Tarim Paleozoic Reservoirs AU		Oil	1,680	3,505	7,013	3,820	3,862	8,064	16,123	8,787	89	185	371	202
	1.0	Gas	1,000	3,303	7,013	3,020	37,067		103,939	66,508	1,001	1,731	2,807	1,796
	D	aleozoic–Mesoz	oio Com	nocito To	ol Botrol	oum Cvat				00,308	1,001	1,/31	2,007	1,790
	r:			1						000		10	1.0	11
Junggar Upper Paleozoic– Cenozoic Reservoirs AU	1.0	Oil	525	947	1,657	1,000	469	852	1,498	900	6	10	18	11
		Gas					9,641	17,877	31,791	18,949	115	214	383	227
	P	Paleozoic–Meso		i e		· -			1	1	1			
Turpan Mesozoic–Cenozoic Reservoirs AU	1.0	Oil	77	139	262	150	77	139	263	150	2	3	6	3
	1.0	Gas					612	1,307	3,101	1,507	15	33	78	38
		/lesozoic-Cenoz	oic Com	posite To	tal Petrol	eum Syst	tem, Qaida	m Basin P	rovince					
Qaidam Mesozoic–Cenozoic Reservoirs AU	1.0	Oil	368	589	906	606	587	941	1,451	970	1	1	2	1
	1.0	Gas					3,350	6,170	11,011	6,547	12	22	39	23
	P	aleozoic–Mesoz	oic Com	posite To	tal Petrol	eum Syst	tem, Sichu	an Basin F	Province					
Sichuan Southeast Fold Belt										40.000	4.1		110	
Reservoirs AU	1.0	Gas					29,376	48,300	75,259	49,808	41	72	118	75
Sichuan Foreland Basin Reservoirs AU	1.0	Gas					8,500	13,744	21,184	14,142	16	26	42	27
Sichuan Central Uplift	1.0	Oil	5	10	19	10	8	15	28	16	0	0	0	0
Reservoirs AU	1.0	Gas					70	116	191	122	1	2	3	2
		Paleozoic (Composi	te Total P	etroleum	System,	Ordos Bas	in Provinc	е	•				
Ordos Lower Paleozoic Conventional Reservoirs AU	1.0	Gas					2,571	5,960	12,647	6,558	2	5	12	6
Ordos Western Deformed Belt		Oil	0	110	246	117	0	22	50	23	0	0	0	0
Reservoirs AU	0.9	Gas	0	110	240	117	0	5,457	13,928	6.097	0	5	13	5
		Cenozoic C	omnosit	o Total D	otroloum	Cyctom		-,		0,077	U] 3	13	
0.1.14 : 0.14		Centrazore d	UIIIPUSII	e iotai ri	enoieuiii	System,	Uluus bas	III FIOVIIIC	e			1		
Ordos Mesozoic Sandstone Reservoirs AU	1.0	Oil	334	576	976	605	65	115	199	121	0	0	0	0
		Cenozoic Cor	nposite	Total Petr	oleum Sy	ystem, Bo	haiwan Ba	asin Provir	nce					
Bohaiwan Cenozoic Reservoirs AU	1.0	Oil	2,576	4,093	6,234	4,203	2,557	4,086	6,260	4,203	20	33	50	34
		Gas					2,055	4,550	8,934	4,896	56	123	241	132
Bohaiwan Mid-Proterozoic— Paleozoic Reservoirs AU	1.0	Oil	241	444	798	471	216	399	720	424	5	8	15	9
		Gas					1,456	3,472	7,309	3,802	34	80	168	87
		Songliao Syn-Rit	t Comno	site Tota	Petrolei	ım Svstei	,		. ,	7		1		
Songliao Syn-Rift Sourced		Oil	64	114	222	125	166	297	577	324	1	2	4	2
Reservoirs AU	1.0	Gas	01	117		123	4,704	8,798	15,880	9,350	42	79	144	84
Songliao Post-Rift Sourced Reservoirs AU	1.0	Oil	602	1,082	1 661	1 114	403	648						
			682	1,082	1,661	1,114	_		1,008	1 514	12	1	2	1
ACSCI VOIIS ALU		Gas	0	. T		0 :	583	1,293	3,228	1,514	12	27	68	32
	Mes	ozoic-Cenozoic		1								T		
East China Sea Reservoirs AU	1.0	Oil	289	703	1,586	791	1,331	3,234	7,301	3,640	21	52	117	58
	1.0	Gas					7,919	18,120	36,892	19,669	158	363	739	393
Total undiscovered conventional resources			7,022	12,673	22,267	13,400	122,343	230,979	412,088	244,436	1,819	3,534	6,561	3,775

References Cited

- Allen, M.B., Macdonald, D.I.M., Xun, Z., Vincent, S.J., and Bronet-Menzies, C., 1998, Transtensional deformation in the evolution of the Bohai Basin, northern China, in Holdsworth, R.E., Strachan, R.S., and Dewey, J.F., eds., Continental transpressional and transtensional tectonics: The Geological Society of London Special Publication 135, p. 215–229.
- Feng, Y., Jiang, S., Hu, S., Li, S., Lin, C., and Xie, X., 2016, Sequence stratigraphy and importance of syndepositional structural slope-break for architecture of Paleogene syn-rift lacustrine strata, Bohai Bay Basin, China: Marine and Petroleum Geology, v. 69, p. 183–204.
- Garcia-Castellanos, D., 2006, Long-term evolution of tectonic lakes—Climatic controls on the development of internally drained basins, *in* Willett, S.D., Hovius, N., Brandon, M.T., and Fisher, D.M., eds., Tectonics, climate, and landscape evolution: Geological Society of America Special Publication 398, p. 283–294. [Also available at https://doi.org/10.1130/2006.2398(17).]
- Ge, R., Zhang, Q., Wang, L., Chen, J., Xie, G., and Wang, X., 2012, Late Mesozoic rift evolution and crustal extension in the central Songliao Basin, northeastern China—Constraints from cross-section restoration and implications for lithospheric thinning: International Geology Review, v. 54, no. 2, p. 183–207. [Also available at https://doi.org/10.1080/00206814.2010.511900.]
- Han, Y., and Zhao, G., 2018, Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt—Constraints on the closure of the Paleo-Asian ocean: Earth-Science Reviews, v. 186, p. 129–152. [Also available at https://doi.org/10.1016/j.earscirev.2017.09.012.]
- Jiang, S., Xu, Z., Feng, Y., Zhang, J., Cai, D., Chen, L., Wu, Y., Zhou, D., Bao, S., and Long, S., 2016, Geologic characteristics of hydrocarbon-bearing marine, transitional and lacustrine shales in China: Journal of Asian Earth Sciences, v. 115, p. 404–418. [Also available at https://doi.org/10.1016/j.jseaes.2015.10.016.]
- Jin, Z., Yang, M., Lu, X., Sun, D., Tang, X., Peng, G., and Lei, G., 2008, The tectonics and petroleum system of the Qiultagh fold and thrust belt, northern Tarim Basin, NW China: Marine and Petroleum Geology, v. 25, no. 8, p. 767–777. [Also available at https://doi.org/ 10.1016/j.marpetgeo.2008.01.011.]
- Li, S., Zhao, G., Dai, L., Liu, X., Zhou, L., Santosh, M., and Suo, Y., 2012, Mesozoic basins in eastern China and their bearing on the deconstruction of the North China craton: Journal of Asian Earth Sciences, v. 47, p. 64–79. [Also available at https://doi.org/10.1016/ j.jseaes.2011.06.008.]
- Liang, J., and Wang, H., 2019, Cenozoic tectonic evolution of the East China Sea Shelf Basin and its coupling relationships with Pacific plate subduction: Journal of Asian Earth Sciences, v. 171, p. 376–387. [Also available at https://doi.org/10.1016/j.jseaes.2018.08.030.]
- Liu, S., Su, S., and Zhang, G., 2013, Early Mesozoic basin development in North China—Indications of cratonic deformation: Journal of Asian Earth Sciences, v. 62, p. 221–236. [Also available at https://doi.org/10.1016/j.jseaes.2012.09.011.]

- Mao, L., Xiao, A., Zhang, H., Wu, Z., Wang, L., Shen, Y., and Wu, L., 2016, Structural deformation patterns within the NW Qaidam Basin in the Cenozoic era and its tectonic implications: Tectonophysics 687, p. 78–93. [Also available at https://doi.org/10.1016/j.tecto.2016.09.008.]
- Marenssi, S.A., Limarino, C.O., Schencman, L.J., and Ciccioli, P.I., 2020, Tectonic and geomorphic controls on the lacustrine deposits of the Neogene Vinchina Basin, northwestern Argentina: Journal of Sedimentary Research, v. 90, no. 2, p. 250–267. [Also available at https://doi.org/10.2110/jsr.2020.13.]
- Mu, H., Yan, D.-P., Qiu, L., Yang, W.-X., Kong, R.-Y., Gong, L.-X., and Li, S., 2019, Formation of the Late Triassic western Sichuan foreland basin of the Qinling Orogenic Belt, SW China—Sedimentary and geochronological constraints from the Xujiahe Formation: Journal of Asian Earth Sciences, v. 183, 20 p.
- Schenk, C.J., Mercier, T.J., Woodall, C.A., Finn, T.M., Le, P.A., Marra, K.R., Leathers–Miller, H.M., and Drake, R.M., II, 2020, Assessment of undiscovered conventional oil and gas resources of Southeast Asia, 2020: U.S. Geological Survey Fact Sheet 2020–3046, 2 p. [Also available at https://doi.org/10.3133/fs20203046.]
- Shi, H., Shi, X., Glasmacher, U.A., Yang, X., and Stockli, D.F., 2016, The evolution of the eastern Sichuan Basin, Yangtze block since Cretaceous—Constraints from low temperature thermochronology: Journal of Asian Earth Sciences, v. 116, p. 208–221. [Also available at https://doi.org/10.1016/j.jseaes.2015.11.008.]
- Wang, P.-J., Mattern, F., Didenko, N.A., Zhu, D.-F., Singer, B., and Sun, X.-M., 2016, Tectonics and cycle system of the Cretaceous Songliao Basin—An inverted active continental margin basin: Earth-Science Reviews, v. 159, p. 82–102. [Also available at https://doi.org/10.1016/j.earscirev.2016.05.004.]
- Wang, T., Jin, Z., Shi, Z., Dai, X., and Cheng, R., 2019, Phanerozoic plate history and structural evolution of the Tarim Basin, northwestern China: International Geology Review, v. 62, no. 12, p. 1555–1569. [Also available at https://doi.org/10.1080/00206814.2019.1661038.]
- Yang, C., Sun, J., Yang, Y., Yang, C., and Wang, J., 2020, Key factors controlling Mesozoic hydrocarbon accumulation in the southern East China Sea Basin: Marine and Petroleum Geology, v. 118, 20 p.
- Yang, Y., Li, W., and Ma, L., 2005, Tectonic and stratigraphic controls on hydrocarbon systems in the Ordos Basin–A multicycle cratonic basin in central China: American Association of Petroleum Geologists Bulletin, v. 89, no. 2, p. 255–269. [Also available at https://doi.org/10.1306/ 10070404027.]
- Zhao, S., Li, S., Liu, X., Suo, Y., Dai, L., Lou, D., Sun, W., Li, T., Wang, X., and Yang, Z., 2014, Intracontinental orogenic transition—Insights from structures of the east Junggar Basin between the Altay and Tianshan orogens: Journal of Asian Earth Sciences, v. 88, p. 137–148. [Also available at https://doi.org/10.1016/j.jseaes.2014.03.008.]
- Zheng, Y.-F., Xiao, W.-J., and Zhao, G., 2013, Introduction to tectonics of China: Gondwana Research, v. 23, no. 4, p. 1189–1206. [Also available at https://doi.org/10.1016/j.gr.2012.10.001.]
- Zhou, J.-B., Wilde, S.A., Zhao, G.-C., and Han, J., 2018, Nature and assembly of microcontinental blocks within the Paleo–Asian ocean: Earth-Science Reviews, v. 186, p. 76–93. [Also available at https://doi.org/10.1016/j.earscirev.2017.01.012.]

For More Information

Assessment results are also available at the USGS Energy Resources Program website, https://www.usgs.gov/energy-and-minerals/energy-resources-program.

China Assessment Team

Christopher J. Schenk, Tracey J. Mercier, Cheryl A. Woodall, Geoffrey S. Ellis, Thomas M. Finn, Phuong A. Le, Kristen R. Marra, Heidi M. Leathers-Miller, and Ronald M. Drake II.

ISSN 2327-6932 (online) https://doi.org/10.3133/fs20213051