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Estimates of Water Use Associated with Continuous Oil 
and Gas Development in the Permian Basin, Texas and New 
Mexico, 2010–19, with Comparisons to the Williston Basin, 
North Dakota and Montana

Water Use During Oil and Gas Extraction

Oil and gas are extracted from continuous oil and gas (COG) reser-
voirs by directionally drilling and hydraulically fracturing the reservoir rock 
surrounding the borehole. Hydraulic fracturing techniques involve injecting 
water and sand, or synthetic materials called proppant, under pressure into 
the borehole to generate stress and open fractures in the reservoir rock 
(Valder and others, 2018). The fractures are held open by the proppant, 
enabling extraction of reservoir fluids, typically a mix of water and oil.

The extraction of oil and gas from COG reservoirs using hydrau-
lic fracturing requires large volumes of water (Jiang and others, 2014). 
However, estimating the total volume of water used to extract oil and gas 
from COG reservoirs is difficult because geologic properties, drilling depth, 
and the requirements of hydraulic fracturing vary by well. Three types of 
water use associated with COG development are (1) direct water use (used 
for drilling, cementing, stimulating, and maintaining [hydraulic fracturing 
and borehole maintenance] the well during production); (2) indirect water 
use (used at or near the well for crew camps, well pad upkeep, and dust 
abatement on roads); and (3) ancillary water use (all other water used dur-
ing the life cycle of COG development, such as domestic and public supply, 
including recreation) (fig. 1; Valder and others, 2018).
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Figure 1. Schematic showing various water and energy features of conventional and continuous oil and gas development in the Midland Basin of 
the Permian Basin (modified from Carter and others, 2016). Oil and gas extraction, whether in a conventional or continuous reservoir, targets specific 
stratigraphic sequences in the Permian Basin. Direct water use is greater with continuous oil and gas wells owing to water needed for hydraulic fracturing. 
Indirect and ancillary water use also occurs during well drilling and development (modified from fig. 3 in Valder and others, 2021).



COG Extraction Methods

The Permian Basin, in west Texas and southeastern New Mexico 
(fig. 2), is one of the largest conventional oil and gas reservoirs in the 
United States and is becoming one of the world’s largest COG reservoirs 
(Scanlon and others, 2017). Advances in technology have enabled oil 
and gas to be extracted from reservoirs that historically were developed 
using conventional, or vertical, well drilling techniques (Valder and others, 
2018). Conventional oil and gas reservoirs have discrete deposits that are 
well defined and are typically trapped by an overlying geologic formation 
or caprock, whereas COG reservoirs contain deposits that are distributed 
evenly throughout the geologic formation, typically have  much lower 
permeability (the capacity of a porous rock to transmit a fluid) than the con-
ventional deposits, and require specialized horizontal extraction techniques 
(McShane and others, 2020). The methods to extract the oil from the two 
different reservoirs require differing amounts of water, and the horizontal 
extraction methods typically require substantially more water. In 2015, the 
U.S. Geological Survey (USGS) started a topical study to quantify water 
used during COG development. The Permian Basin, which contains both 
types of reservoirs (continuous and conventional), was the second basin in 
the United States in the USGS’s topical study to quantify water used during 
COG development.

Developing Methods to Estimate Total 
Water Use

The topical study to quantify water use in areas of COG develop-
ment led to the development of a method to assess the life cycle of water 
use in areas of COG development (described in detail in Valder and oth-
ers, 2018, 2019).

A conceptual model and an analytical framework for estimating water 
use related to COG development, including uncertainty (Valder and others, 
2019), was initially used to estimate COG-related water use in the Williston 
Basin (phase 1) in North Dakota and Montana (fig. 2) (McShane and others, 
2020). Then, the conceptual model and framework were used to analyze 
water use related to COG development in the Permian Basin (phase 2). 
Analysis of water use in the Permian Basin began in 2019.

Data needed to use the model and analytical framework in the 
Permian Basin were compiled from several sources and are available in 
a data release (Ball and others, 2020). These data include water volumes 
and well information (FracFocus, 2020; IHS Markit, 2020; Texas Water 
Development Board, 2020; U.S. Geological Survey, 2020), climate data 
(Parameter-Elevation Regressions on Independent Slopes Model [PRISM] 
Climate Group, 2020), and population data (U.S. Census Bureau, 2020).
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Figure 2. Location of the Permian Basin in Texas and New Mexico and the Williston Basin in North Dakota and Montana (modified from fig. 1 in 
Valder and others, 2021).



Estimating Water Use in the Permian Basin

Estimates of direct water use indicate an upward trend in the amount 
of water used in the Permian Basin from 2010 to 2019, ranging from 
3,003 million gallons per year (Mgal/yr) in 2010 to 72,220 Mgal/yr in 2019 
in Texas and from 353 Mgal/yr in 2010 to 11,403 Mgal/yr in 2019 in New 
Mexico (fig. 3). In both States, direct water use increased steadily dur-
ing the study period, nearly tripling between 2016 and 2018. Indirect and 
ancillary water use did not increase at the same rate as direct water use, and 
the ratio of direct water use to indirect and ancillary water use was larger 
in Texas than in New Mexico (fig. 3).The difference in direct water use 
between the two States is a result of differences in the number of oil and 
gas wells developed per year (approximately 4,000 wells were developed 
in Texas in 2019 and approximately 900 in New Mexico in 2019) and the 
volume of water used per well (Ball and others, 2020).

In the Permian Basin, estimates of water use per well for hydraulic 
fracturing were 29 times higher in 2019 than in 2010 (fig. 4). Direct water 
use for drilling and cementing were small compared to direct water use for 
hydraulic fracturing (fig. 4).
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Figure 3. Direct, indirect, and ancillary water use in the Permian Basin 
from 2010 to 2019. A, Texas. B, New Mexico (modified from fig. 5 in Valder 
and others, 2021).

20

15

10

5

0

0.25

0.20

0.15

0.10

0.05

0
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Year

A

B

Direct—Hydraulic fracturing

Ancillary

Indirect

EXPLANATION
An

nu
al

 w
at

er
 u

se
, i

n 
m

ill
io

n 
ga

llo
ns

 p
er

 w
el

l
95-percent confidence interval—Range of values that 95 percent of the 

time contain the actual value of the parameter (Helsel and others, 2020)

Direct—Drilling

Direct—Cementing

Estimated from linear regression models

Figure 4. Annual estimates of direct, indirect, and ancillary water use in 
the Permian Basin from 2010 to 2019. A, Hydraulic fracturing (direct) and 
ancillary uses. B, Indirect, drilling (direct), and cementing (direct) uses 
(modified from fig. 8 in Valder and others, 2021).

Comparing the COG Reservoirs between 
the Williston and Permian Basins

Appreciable accumulations of COG hydrocarbons in the Williston 
Basin are present in the Upper Devonian to Lower Mississippian Three 
Forks and Bakken Formations (fig. 5; Sandberg and Hammond, 1958; U.S. 
Energy Information Administration, 2020a). Appreciable accumulations 
of COG hydrocarbons in the Midland and Delaware Basins of the greater 
Permian Basin (fig 1; U.S. Energy Information Administration, 2020b) are 
present in the lower Permian (Leonardian) Spraberry Formation (fig. 6) 
(Midland Basin) and time-equivalent Bone Spring Formation (Delaware 
Basin), and in the underlying lower Permian to Upper Pennsylvanian 
(Leonardian to Missourian) Wolfcamp shale (fig. 6) (informal name; 
Gaswirth and others, 2016, 2018, and references therein) in the Midland 
and Delaware Basins.

The COG reservoirs in the Williston and Permian Basins consist of 
stacked shale units, but the Permian Basin units are thicker and contain 
as many as 10 stacked shale intervals (Scanlon and others, 2017). The 
features in the Permian Basin that contain the stacked shale intervals are the 
Delaware and Midland Basins, which are separated by the shallow Central 
Basin Platform (Valder and others, 2021). These differences in geology 
mean that the Permian Basin has more intervals within its stratigraphic 
sequence for potential hydraulic fracturing compared to the Williston Basin.
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Comparing Water Use Between the 
Williston Basin and Permian Basin

Estimates of water use for COG development in the Williston Basin 
(McShane and others, 2020) and the Permian Basin (Valder and oth-
ers, 2021) indicate a similar trend of increased direct water use per well 
because of changes in hydraulic fracturing water needs from 2010 to 
2015. Water use increased in the Williston Basin, from 1.4 Mgal per well 
in 2010 to 4.7 Mgal per well in 2015 (fig. 5A) and increased similarly in 
the Permian Basin from 0.6 Mgal per well in 2010 to 5.4 Mgal per well 
in 2015 (fig. 7B). However, by 2017, hydraulic fracturing water use per 
well was much greater in the Permian Basin (14.3 Mgal per well; fig. 5B) 
than in the Williston Basin (8.4 Mgal per well; fig. 7A). The differences in 
water use per well over time and between the basins are likely caused by 
the potential differences in the length of well laterals (the horizontal part of 
the wellbore), the hydraulic fracturing practices of operators, the geologic 
properties of the COG reservoirs, and the supply and cost of local surface 
water or groundwater.

Conversely, the average indirect water use per well was less in the 
Permian Basin than in the Williston Basin. This difference may be the result 
of differences in data sources between the two basins or a difference in 
water uses in the basin for items such as well pad upkeep, dust abatement, 
and crew camps. The Permian Basin also has water supply challenges for 
oil and gas extraction because of the semiarid climate, growing popula-
tion, and limited availability of groundwater and surface-water resources 
(Kondash and Vengosh, 2015). The COG conceptual model and analytical 
framework includes procedures that can be adapted to other areas of COG 
production throughout the United States to estimate water use (McShane 
and McDowell, 2021). Currently (2021), the USGS is working to opera-
tionalize the model and framework developed in this phase of the study.
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