FWS/OBS-84/18
SEPTEMBER 1984

AN OVERVIEW OF
MAJOR WETLAND FUNCTIONS
AND VALUES

SATHER J.H ¢ SmuTH R.D.

Fish and Wildlife Service

U.S. Department of the Interior






FWS/0BS-84/18
September 1984

AN OVERVIEW OF MAJOR WETLAND FUNCTIONS AND VALUES

by
J. Henry Sather
R. Daniel Smith
3CI
155 West Harvard
Fort Collins, CO 80525

Contract #14-16-0009-82-033

Project Officer
Patricia J. Ruta Stuber
Western Energy and Land Use Team
U.S. Fish and Wildlife Service
2627 Redwing Road
Fort Collins, CO 80526-2899

Performed for
Western Energy and Land Use Team
Division of Biological Services
Research and Development
Fish and Wildlife Service
U.S. Department of Interior
Washington, DC 20240



This report should be cited as:

Sather, J.H., and R.D. Smith. 1984. An overview of major wetland
functions. U.S. Fish Wildl. Serv. FWS/0BS-84/18. 68 pp.



CONTENTS
Page

INTRODUCTION. . coveceecosscecnscsssacesscscnssosccscaosscnacsnssnssssl
REf ErENCES e coeeeeseecescecssssosssscsescsessssssssscnssssssssacssel
HYDROLOGY . evvee.. ceesenee P )
GeNETral.ceeecesesesssossccssassoossonsssososscrsasesssssssscsssssssed
F100d CONtrol.eeeeeeeeeceececessseoscscossncsoscsssscsssssssossnsd
Ground Water Recharge and Discharge....ceeeeeecceccccscccsccsassb
Shoreline Anchoring and Dissipation of Erosive Forces...... N
REfErENCES e teereecerscocceceassscesonsssoasossssossosscssnssnsseed
NATER QUALITY..I......................'.Q..'.....Q....‘...........'.11
General.ceeeeecsceesceoscsessscossccssccnse cessssessssssesssssssssll
Wastewater Treatmente.eeeeeeececscocoscoosssvsssecscscocsssecnssneall
Toxic SubstanceS.ceececececcees S
NUL T eNtSeeeeeeeecoserocscocsssssasssssscnssscsecssscsssssscesesld
REfErenCeS:ceeeeessesscsscsscssessssscssessosssassscssssssssscsselld
FOOD CHAIN SUPPORT/NUTRIENT CYCLING.:eeeeeoenocoscascssasccssenssaall
6T 1= - T 4 |
Primary Production...coceec.. 3 |
DecompOSTtiON.eeeeeerasscecssscsecscsossscsscscssssscccsscssvesecld
Nutrient EXport.ccccececececcesssscscscssessscsssssscacssssesanseld
Nutrient Util1izZationeeeeecececscecccoscosccscscsscacscsssosnocsell
REfEreNCeS . ceceeeeesoccescccsossosascssoccssssosscssssacnsncassssld
HABITAT ceeeevecnvocessesseesoosossoscsscssssscnosscsscsssensessesoesseldl
GENEIraleeeeseoessccessoocssocecssssessccsssscsscscscnsssssccssssldl
Invertebrates and Poikilothermal VertebrateS....eeceeececocecsesd3
FisSherieS.eeeeeeeeeocoeosoccocssnsseccssosccssoscssssscsscssasescdd
L1 O Y 1.
Nongame BirdS..ceeeeeeeececssacsescscsscssassasssssscscscsnsesesdl
Ga"e Birds.l....OCOOOOOQI00000.00000.0000.000.0.00.000...00..0.047
RefereNCeS e ceeeeccesscccccccssssessssscccscscssssssnsscscsncsesssd8
SOCIO-ECONOMIC.........................................-..-...,....58
GENEral.ceeeeeceecescossosvoscosasscsscnsnsasscns cessssscsscessed8
Nonconsumptive Use Valu€ieeeeeeoeeooeccssnccscccscsccans P Y.
Consumptive Use ValU€.vieveeoooesooesacsesssncssscsnsssesssnsnsebdl
REf EreNCeS . cteeeercresocscososassssassossssscsssssssssssscccseseb?

iii



Number

TABLES

Summary of current status of knowledge of selected wetland
functions - hydrology.

Summary of current status of knowledge of selected wetland
functions - water quality.

Summary of current status of knowledge of selected wetland
functions - food chain support/nutrient cycling.

Summary of current status of knowledge of selected wetland
functions- habitat.

Summary of current status of knowledge of .selected wetland
functions - socio-economic.

iv

12
22
42

59



INTRODUCTION

This report was prepared to provide background information for
participants at the National Wetland Values Assessment Workshop held at
Alexandria, Virginia in May 1983 (Sather and Stuber 1984). The Wetlands
Values Bibliographic Database (created by U.S. Fish and Wildlife Service
National Wetland Inventory) proved to be of inestimable value in the
initial stages of the literature search. Annotations of each referenced
document can be found in the Database.

In this report we have viewed wetlands as being those habitats that
fall within the Cowardin et al. (1979) definition of wetlands. That

definition is as follows:

Wetlands are lands transitional between terrestrial and
aquatic systems where the water table is usually at or
near the surface, or the land is covered by shallow
water. For purposes of this classification wetlands
must have one or more of the following three attributes:
(1) at least periodically, the land supports
predominantly hydrophytes; (2) the substrate is
predominantly undrained hydric soil; and (3) the
substrate is nonsoil and is saturated with water or
covered by shallow water at some time during the growing
season of each year.

A number of recent papers have addressed a broad range of wetland
functions. Several of these papers have included extensive literature
reviews (Reppert et al. 1979; Larson 1981, 1982; Linder and Hubbard 1982;
National Wildlife Federation 1982; Zinn and Copeland 1982; Adamus 1983).
When these comprehensive reviews are combined with reviews that are
specific to one or two functions, the result is an up-to-date and
reasonably complete picture of what is currently known about wetland
functions. This report is an attempt to briefly summarize the information
- available in these literature reviews.

This review is divided into the following major headings: hydrology;
water quality; food chain; habitat; and socio-economic. We are aware of
the fact that there is a considerable amount of overlap among some of these
broad categories; however, this type of arrangement was deemed most
appropriate to assist participants in their preparation for deliberations

at the Wetland Values Assessment Workshop.
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HYDROLOGY

GENERAL

It is generally accepted that natural wetland functions are closely
linked to hydrology. Wetland primary productivity; nutrient cycling;
wildlife habitat; harvest of fiber, fin, and fur; and aesthetics are
unquestionably tied to the presence, movement, quality, and quantity of
water in the wetland (Clark and Clark 1979). It is also generally agreed
that wetlands are among the most difficult hydrologic environments to
assess (Remson and Stonestrom 1978) and that the difficulty in assessment
1argely accounts for the fact that the hydraulic and hydrologic
characterisitics of wetlands are not well understood. Methodologies
developed for the study of the hydrologic properties of rivers, lakes, and
mineral soils are not satisfactory for studying wetlands and organic soils.
Despite the fact that the importance of prairie potholes and lakes to
waterfowl has been recognized for a long time, very little is known about
the hydrologic functions of those wetlands (Winter 1981).

In the following discussion, we have chosen to review the hydrologic
literature as it pertains to the following major wetland functions: ground
water recharge and discharge; flood storage and desynchronization; and
shoreline anchoring and dissipation of erosive forces. This is consistent
with the manner in which the hydrology review is handled in the Adamus
(1983) report. We have also attempted to summarize the current status of
knowledge regarding these functions in Table 1. The status of knowledge is
broken into three categories to which studies are assigned based upon
interpretation of the authors' statements in the paper. A listing of some
assessment systems that address these functions is also included in Table
1.

FLOOD CONTROL

Any depression in the landscape has the potential to store water and,
thereby, plays a role in flood control. Many depressions contain wetlands,
and any basins that are not already filled to capacity will perform a flood
control function. There is general agreement that wetlands associated with
streams provide flood storage, slow flood waters, reduce flood peaks, and
increase the duration of the flow (Carter et al. 1978; Verry and Boelter
1978; Clark and Clark 1979; Larson 1981, 1982; Zinn and Copeland 1982).
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Studies of the Charles and Neponset River watersheds in Massachusetts
are frequently cited to document the influence of wetlands on peak flows
(Anderson-Nichols and Co., Inc. 1971; U.S. Army Corps of Engineers 1972;
Larson 1981; Zinn and Copeland 1982). In the Charles River study, the U.S.
Army Corps of Engineers (1972) determined that a loss of 40% of the
wetlands within the basin would increase flood damage by at least
$3,193,000 annually. Loss of the entire 8,422 acres of wetland within the
basin would result in average annual flood damages of $17,084,606. On the
basis of this study, the Corps determined that the most economical way to
control flood losses in the basin was to protect the wetlands. The
Neponset River study also indicated that a significant increase in
downstream flood stages would occur with the loss of wetlands. The
basinwide flood stage increase for the 100-year flood was predicted to
range from 0.15 m with a 10% loss of wetlands to 0.9 m with a 50% loss.

Characteristics of wetlands that are most often cited as having a role
in controlling flood waters are: size (the 1arger the wetland, the more
area provided for flood storage and velocity reduction); location within
the drainage basin; texture of the substrate, and lifeform of the wetland
vegetation (Carter et al. 1978; Novitzki 1978; Clark and Clark 1979;
Reppert et al. 1979). A thorough review of how different characteristics
affect the role of wetlands in flood control is included in Novitzki
(1978). Novitzki classified wetlands into four "hydrologic wetland
classes" and then showed how the different characteristics of each class
determine how the wetlands modify flood and base flows.

Although it is possible for an isolated wetland to perform a
significant flood control function, effective flood control is more often
the result of the interrelationship of a series of wetlands within a
particular watershed. In Wisconsin, flood peaks were reduced by 60 to 80%
in watersheds with a 30% wetland or lake area, as compared to watersheds
with no wetland or 1ake area (Verry and Boelter 1978). It has also been
reported that peak flows will be 60 to 65% lower if a watershed has 15% of
its area in wetlands or lakes than if no wetlands or lakes are present
(Zinn and Copeland 1982).

Although it is accepted that wetlands perform a flood control function,
it is by no means clear how effective different types of wetlands are
(Reppert et al. 1979). Larson (1981 and 1982) expressed the view that
techniques have not yet been developed that will accurately assess the
effectiveness of wetlands in flood control. Adamus (1983) identified some
of the major factors that affect this function; however, he also indicated
that there are only a few quantitative and qualitative approaches that
examine the contributions of wetlands to flood storage. It is also
apparent that existing studies of the flood control function of wetlands do
not cover all geographic areas. Larson (1981 and 1982) notes that studies
up to now have been restricted primarily to glaciated areas.

In summary, it appears that there is a significant lack of the type of
information that would enable the measurement of the flood control
effectiveness of a particular wetland.



GROUND WATER RECHARGE AND DISCHARGE

The role that wetlands play in ground water recharge is not clear.
Hydologists seem to agree that, while some wetlands recharge the ground
water system, most do not (Carter et al. 1978; Clark and Clark 1979;
Reppert et al. 1979; Larson 1981). Contrary to previous assumptions, there
is very little evidence in the literature that indicates that wetlands
perform a significant recharge function (Carter et al. 1978). Wetlands
probably contribute less to ground water supplies than do undeveloped
‘'upland areas because the wetland evapotranspiration rate may be greater and
the soils less permeable than in many upland areas (Clark and Clark 1979;
Larson 1981).

Hydrologic studies conducted in Massachusetts indicate that wetlands in
that region serve as valuable potential sources of ground water (Motts and
Heeley 1973). Temporary or seasonal wetlands seem to be more 1ikely to
perform a recharge function than wetlands that are permanent or
semipermanent (Lissey 1968; Sloan 1972; Carter et al. 1978; Novitzki 1978;
Verry and Boelter 1978; Clark and Clark 1979; Reppert et al. 1979; Linder
and Hubbard 1982). ' '

The following wetland features are frequently mentioned as being
closely associated with the ground water recharge function: water
permanence; nature of the substrate; nature of surface outlets; the amount
of edge; and the type and amount of vegetation. Adamus (1983) states that
the recharge function of wetlands has been studied less than any other
function and, in some regions, has apparently been totally unmeasured in
systematic water budget studies. He concluded that more wetlands function
as important ground water discharge areas than ground water recharge areas.
Novitzki (1978) and Larson (1981) supported this view by noting that most
wetlands occur where water is discharging to the surface. In addition,
Carter et al. (1978) cited a number of studies that support the contention
that many wetlands perform a ground water discharge function and that such
wetlands are, therefore, good indicators of potential water supplies for
communities or municipalities. It is generally accepted that wetlands are
likely to be sites of significant ground water discharge.

As with the flood control function, much more work is needed in order
to understand the interactions that exist between wetlands and ground
water; this is especially true in the unglaciated sections of the country
(Carter et al. 1978; Larson 1981; Linder and Hubbard 1982).

SHORELINE ANCHORING AND DISSIPATION OF EROSIVE FORCES

The role that vegetation plays in controlling shoreline erosion and the
forces leading to shoreline erosion are well documented (Scoffin 1970;
Wayne 1975; Allen 1978; Carter et al. 1978; Dean 1978; Clark and Clark
1979; Reppert et al. 1979; Knutsen et al. 1982; Zinn and Copeland 1982).
On the basis of their examination of the literature, Carter et al. (1978)
concluded that wetland vegetation plays three major roles in erosion



control: (1) it binds and stabilizes substrates; (2) it dissipates wave
and current energy; and (3) it traps sediments. These authors also cite
several references that indictate that the role played by vegetation in
erosion control is the same for coastal as it is for inland lakes and
riverine habitats. - On the other hand, Larson (1981) indicated that
experimental evidence of the shoreline stabilization role of wetlands
appears to be lacking and that it is a subject that requires further study.
Larson's conclusion was apparently influenced by the work of Tilton et al.
(1978), who concluded that, where physical processes combine to produce
shore erosion, those energies involved prevent the establishment of wetland
communi ties.

Clark and Clark (1979) pointed out that there is not much information
available on the relative erosion control values of various types of
wetland plant communities; most of the information comes from studies of
individual plant species. These authors concluded that the effectiveness
of shoreline vegetation in controlling erosion depends on the particular
plant species involved (e.g., its flood tolerance and resistance to
undermining), the width of the vegetated shoreline band, the efficiency of
the vegetated band in trapping sediments (based on growth form and
diversity), the soil composition of the bank or shore, the height and slope
of the bank or shore, and the elevation of the toe of the bank with respect
to mean storm high water.

Silberhorn et al. (1974) stated that any marsh two feet (0.61 m) or
more in average width has significant value as an erosion deterrent.
Garbisch (1977) concurred about the erosion control value of wetland
vegetation; however, he specified 10 ft (3.05 m) as the minimum width
required to reduce erosion. Reppert et al. (1979) stated that the wider
the area of the wetland, the greater the degree of shoreline protection.
And they stated that the greater the lateral extent of the wetland along
the coastline, the greater the potential for reducing soil erosion and wave
damage over the entire adjacent inland area. These authors also stated
that wetlands fringing coastal areas with long fetches are more important
in protecting shorelines from wave action than are areas characterized by
relatively short fetches.

In summary, it appears that wetlands perform a significant role in
shoreline anchoring and erosion .control; however, experimental evidence as
to the exact nature of that role is inadequate for most types of wetland.
Knutsen et al. (in press) recently described a technique to evaluate the
erosion control effectiveness of marsh vegetation in terms of wave
dissipation potential. Their work, to date, has been focused on smooth
cordgrass marshes and has led them to conclude that such marshes play a
significant role in controlling shoreline erosion. Expansion of this type
of research to include other wetland plant species and plant communities
may result in a clearer understanding of the role that wetlands play in
shoreline anchoring and dissipation of erosive forces.
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WATER QUALITY

GENERAL

Wetlands are believed important in maintaining water quality because
they function as filters to remove pollutants and sediments from moving
waters. Water changes as it passes through wetlands. These changes occur
primarily as a result of: (1) a reduction in the velocity of flowing water
as it enters and/or passes through a wetland; (2) the decomposition of
organic substances by micro-organisms; (3) the metabolic activities of
plants and animals; (4) photosynthesis; and (5) sediment binding of
particles.

This section reviews the wastewater treatment functions of wetlands
and, more specifically, the role wetlands play in the improvement of water
quality through the removal of toxic substances, sediments, and certain
nutrients. The section on Food Chain Support/Nutrient Cycling contains a
more detailed discussion of the changes in wetland water chemistry that are
associated with nutrients. We have attempted to summarize the current
status of knowledge regarding this function in Table 2. A listing of some
assessment systems that address this function is also included in Table 2.

WASTEWATER TREATMENT

During the past decade, there has been a great deal of interest with
regard to the possibility of utilizing natural and/or manmade wetlands for
the treatment of wastewater. Studies related to this function have covered
a variety of wetland types (e.g., cypress domes, brackish marshes,
freshwater tidal marshes, freshwater inland marshes, bogs), located in a
broad geographic range (Grant and Patrick 1970; Banus et al. 1975; Dedong
1976; Ewel and Odum 1978; Fetter et al. 1978; Craig et al. 1980;
Thibodeau and Ostro 1981). Several reviews of the current status of
knowledge about wetlands as wastewater treatment systems have appeared in
recent years (Tilton et al. 1976; Valiela et al. 1976; Kadlec 1978; Sloey
et al. 1978; Kadlec 1981; Whigham 1982).

The role that wetlands play as wastewater treatment systems is believed
primarily dependent on the following wetland attributes: (1) high rates of
primary productivity (plants take up pollutants from the water and/or
substrate); (2) high rates of sedimentation and accumulation of sediments

11



- - - S e o T e P e . = S D S P e e R e P P . R R P P G e D R e e R AR =

€861 snuepy

086T "AW1 “°ALQ)

*bul Auay -S-nj

LL6T)

*le 39 Uuowo|oS}

8L61}

9JLAUDIS UOLIBA}

1-43su0) (10S °*S°n}
]
]

6L61 °|® 33|

*S9SeD {|P ul poo3saapun! 43U Lp Enyos |

LL3M 30U SL PaA|OAuUL sassadoud dy3!) 6.6T!
40 dunjeu 32exd 3yl °SIUdLJ4INU pue! °le 39 j4adday!
€sdouelsqns JLx03 ‘sjuawLpas JO uoil} 8L61 AqqL)|
-edLjlpow 40/pue UOL3uUddL ybnouys! 8.61 Aemo|(e9!
K3Llenb aaem  abueyd spuel! ¢/61 °|e 39 99(!

-39M eyl S3SLX3 jJudwdaube (esdudn! 8.61 Z3L44!
R L L R T % T P A URp PRI RIS G U S ———————
] 1

i spoyjau |

" Juaissasse “

sy4ewdy ! burysixy |

.kumuPpcw:uza.
Kl4004

pajedjuayane
L1am Kjarey

|
€861 snuepy|
2861 49pAus|
pue a3pAus)

cncccccccaceees |

]

2561 4apAus|

pue uaphus!

0861 d(n) pue|
sno |6oueqoyoy |
8L61 JdLpeX|

pue J3|pej|

861 "o 39 997|
9/6T "B 33 337,

]

2861 weybLym!
1861 23pe);
8L6T d9(pey!
9L6T}

*le 39 e(3L|eA}
8L6T)

unpQ pue —w!u"
0461 ¥oLuied)
pue jueun!

pajestjusyine
| LLOM i

SIUSLLINN"E

saoue3sqns
24X01°2

juswieaq]
433BMIISEM° |

uol3ouny

*f31(enb 433eM - SUOL3OUNS pue|}aM PadI(3S JO 3bBpa|mouly JO SNIL3S JUBAUND 4O Aueuwns

*2 a1qel

12



(pollutants are readily absorbed by mineral and organic sediments which
then become buried in the substrate); (3) anaerobic conditions within the
bottom sediments (permits the conversion of soluble forms of heavy metals
to insoluble forms and the elimination of nitrogen through
denitrification); and (4) high populations of decomposers (which convert
pollutants to harmless forms) (Boto and Patrick 1978; Burton 1981; Snyder
and Snyder 1982). There is also good evidence indicating that the
increased diversity of wetland types may be one of the major factors

dg;e{mining their ability to retain large amounts of-nutrients (Blumer
1978).

Snyder and Snyder (1982) concluded that aquatic plants and animals
bring about little direct treatment of wastewater. These authors indicated
that submerged and emergent vascular plants result in an improved
wastewater treatment capability of a wetland primarily by: (1) supplying
substrates for bacterial growth; (2) providing a media for physical
filtration and absorption; and (3) restricting algal growth and wave
action. In other words, the primary role of plants in the wastewater
treatment process is through their influence on the physical
characteristics of the environment, rather than by their metabolic
activities.

Despite the many examples of successful wastewater treatment by
wetlands, the exact nature of the processes that contribute to water
quality improvement are not well understood. Of particular concern is the
lack of knowledge about the impact on the biota from the introduction of
waste materials into a wetland over an extended period of time
(Guntenspergen and Stearns 1981; Whigham 1982).

TOXIC SUBSTANCES

‘Heavy metals and various kinds of pesticides are examples of toxic
substances that are introduced into wetlands through natural or artificial
means. Through chemical and/or biological processes of various kinds, many
of these substances are changed to a harmless nontoxic state. However,
other substances become temporarily immobile and innocuous because they are
buried in sediments. ‘

Snyder and Snyder (1982) stated that heavy metals are removed from
wastewater by three mechanisms: (1) ion exchange and adsorption to sediment
clays and organic compounds; (2) precipitation as oxides, hydroxides,
carbonates, phosphates, and sulfides; and (3) plant uptake. Although
plants accumulate certain metals in leaves, roots, and stems under certain
condi tions, removal of metals by plants is usually small compared to
removal by ion exchange, adsorption, and precipitation (Lee et al.'1976;
Kadlec and Kadlec 1978; Lee et al. 1978). Plant uptake of metals
represents a potential hazard to organisms in food chains, but there is
insufficient data to evaluate the magnitude of this hazard (Clark and €lark
1979; Snyder and Snyder 1982). Heavy metal removal efficiencies of
wetlands vary from 20 to 100%, depending on the metals involved and the
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physica1 and biological variations in wetland habitats (Tchobanoglous and
Culp 1980).

The fate of pesticides and other toxic substances entering wetlands is
essentially similar to that of heavy metals. Some of them are immobilized
and semipermanently buried in sediments, others are changed by chemical
and/or biological processes into harmless forms, and some may enter the
food chain.

In summary, many investigations have been conducted that deal with the
fate of toxic substances introduced into wetlands. These studies have
revealed that most of these toxic substances are either partially or
totally assimilated by wetlands. The processes are complex, and the
variability in the physical and biological characteristics of wetlands adds
to the complexity. The long range capabilities of wetlands to perform such
functions, and their long term impact on the biota, are largely unknown.

NUTRIENTS

In water quality studies nitrogen and phosphorus are the substances
most commonly identified as pollutants; they are also classified as
nutrients. Excess quantities of these nutrients degrade water quality
directly through their promotion of algal blooms and population explosions
of other undesirable aquatic plants. Nitrogen and phosphorous indirectly
degrade water quality through the effects of these increased aquatic plant
populations on drinking water, recreational activities, and the dissolved
oxygen content of the water. Agricultural and/or urban runoff wastewater
are the primary sources of high concentrations of dissolved nitrogen and
phosphorus entering wetlands (van der Valk et al. 1978). The levels of
these nutrients within a wetland are modified by a variety of processes,
including the form of the nutrient, the wetland type, and the season of the
year.

Snyder and Snyder (1982:107-109) summar1zed some of the modi fication
processes as follows: '

Phosphorus is removed in freshwater wetlands by plant
uptake during the growing season and by several chemical
adsorption and precipitation reactions at the sediment/water
column interface. Chemical adsorption by organic detritus
and precipitation appears to be the most significant
phosphorus removal mechanism.

Plant uptake of phosphorus during spring and early summer
only amounts to about 20% of the total amount available
(Sutherland and Bevis 1979). This storage, however, is
compensated for by the release of phosphorus from plant
tissue decay during the winter. The net removal is rarely
?reater than 5 to 10 percent of the annual total loading

King and Burton 1979). Harvesting of plant tissue is a
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feasible but uneconomical removal technique because only an
average of one gram of phosphorus per square meter of plant
biomass is removed from the marsh (Spangler et al. 1976).
Regular plant harvest would also reduce the waterfowl habitat
value of the wetland.

Wetlands receiving phosphorus 1oaded wastewater usually
demonstrate relatively high removal efficiencies of
phosphorus at first because of direct adsorption by organic
bottom sediments. However, the removal process is finite and
declines with time. When first put into use, ponds will show
excellent phosphorus removal, but once all available
adsorption sites are filled, there is no compensating
mechanism in the system that allows continued phosphorus
removal at the initial high levels.

The settling of metal phosphate precipitates is a removal
mechanism that occurs at a pH greater than 8.0. The major
factors determining how much phosphorus will be stored as
metal -phosphate precipitates in an aquatic system are pH,
redox potential, and the concentration of iron, aluminum,
calcium and clay minerals.

The primary mechanism for nitrogen removal from wastewater
is bacterial metabolism through nitrification/denitrification
processes. Wetlands with standing water areas are typically
very effective at removing the various forms of nitrogen.
Removal efficiencies vary from 40 to 97 percent and of ten
exceed 90 percent. Nitrification and denitrification occur
at the water/substrate interface where bacteria are attached.
This includes bottom sediments and submerged plant parts.

Nitrifying bacteria occupy aerobic zones where the
dissolved oxygen is above 0.6 to 1.0 ppm. In aquatic
systems, the rate of nitrification can be extremely variable
and depends primarily on water temperature and the amount of
bacteria support structure (plant stems and leaves) available
in the oxygenated zone. At water temperatures below
approximately 50 F, the rate of nitrification is very slow.

Denitrification is caused by anaerobic bacteria found in
anoxic bottom sediments and detrital layers of the proper pH.
The denitrification rate varies according to the water
‘temperature, pH, organic carbon availability, and available
bottom surface area.

Nitrogen uptake and removal by vascular plants and algae is
comparatively insignificant on an annual basis. Like
phosphorus, nitrogen is seasonally removed during the spring
and then released during the winter by organic decay and
leaching processes. Net annual biomass storage is low and
insignificant. :
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Adamus (1983) did a thorough job of reviewing the nutrient retention
and removal attributes of wetlands. By nutrient retention, he is referring
primarily to the storage of nutrients (nitrogen and phosphorus) within the
substrate or vegetation. By nutrient removal, he is referring to the
elimination of nitrogen nutrients by conversion to gas. As a result of his
extensive review of the literature, he concluded that wetlands valuable for
nutrient retention and removal usually have the following characteristics
(Adamus 1983. Vol. 1:23):

(1) The wetland's vegetation, on a net annual basis,
assimilates and transfers to deep sediments (via the roots)
more nutrients than are subsequently released via leaching
and decay. The wetland's plants are efficent at nutrient
storage during the season (typically the growing season) when
downstream or offshore systems are most sensitive to nutrient
enrichment. (2) The substrate accumulates organic matter on
a net annual basis (rather than most organic matter being
released into the water column with decomposition). (3)
Sediments accumulate (accrete) faster than they are removed,
and once accumulated, the nutrients contained in these
sediments remain intact and are not brought to the surface in

~significant quantities by plants and animals. (4) The rate
of denitrification consistently exceeds that of nitrogen
fixation. '

In summary, wetlands function in varying degrees as "nutrient traps."
In other words, they are capable of improving water quality through the
removal of nutrients from runoff waters. Wetland efficiency in this regard
varies with many factors, including vegetative characteristics, geographic
location (especially latitude), nature of the substrate, size, water
chemistry, temperature, and pH. Considerably more study is necessary to
clarify the exact nature of the role of wetlands in this regard and the
long term effects of nutrient pollutants on the wetland ecosystem.
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FOOD CHAIN SUPPORT/NUTRIENT CYCLING

GENERAL

The food chain support functign of wetlands refers to the direct or
indirect use of nutrient sources derived from wetlands by heterotrophic
organisms. These organisms may be located permanently or temporarily in
the wetland proper or in associated, downcurrent wetland or aquatic areas.
Of primary interest with respect to this function is the cycling of carbon,
phosphorus, and nitrogen in their organic and inorganic forms.

Wetlands, as with all ecosystems, have an inherent functional value in
terms of food chain support. The basis for this value is, of course, the
primary production of wetland autotrophs. Autotrophs provide the 1ink
between heterotrophs and the energy and nutrient sources of the ecosystem
by performing two essential functions. First, plants utilize solar energy
in the process of photosynthesis to fix carbon and store chemical energy in
their tissues. Secondly, autotrophs take up inorganic nutrients from their
environment and incorporate them into organic forms. The energy and
nutrients stored in wetland autotrophs, directly or indirectly, supply the
needs of all heterotrophic organisms in wetland-related food chains.

The production of organic materials by wetland autotrophs does not
guarantee that the material will be incorporated into heterotrophic food
chains. Additional factors, such as decomposition, export, and actual
utilization by consumers, ultimately determine the fate of wetland net
primary productivity (NPP).

The current state of knowledge regarding this function is summarized in

Table 3, along with a 1isting of some assessment systems that address this
function.

PRIMARY PRODUCTION
The underlying factor influencing the functional role wetlands play in

the support of food chains is the quantity of NPP produced within the
wetland and potentially available for incorporation into food chains.
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Wetlands, in general, support high levels of NPP compared to other types of
ecosystems (Westlake 1963; Whittaker and Likens 1975). High levels of NPP
presumably indicate a high potential for food chain support. A number of
studies have estimated the primary production of various coastal and inland
freshwater wetland types (e.g., saltmarshes and cypress swamps),
photosynthetic components (e.g., macrophytes and phytoplankton), and
species (e.g., Typha spp. and Spartina spp.). Publications that
effectively summarized this literature include Spence et al. (1971), Keefe
(1972), Westlake (1975), Dykyjova and Kvet (1976), Turner (1976), Bagur
(1977), Reimold and Linthurst (1977), Good et al. (1978), Richardson
(1979), Brinson et al. (1981), and Adamus (1983). It should be noted that
information gaps exist even though the literature is fairly extensive and
that the quantity and quality of available primary production estimates are
not equivalent for all wetland types and photosynthetic components.

Estimates of NPP for specific wetland types and plant species often
vary widely. Several factors are at least partially responsible. First,
the lack of standardized methods for estimating NPP contributes
significantly to this variation (Linthurst and Reimold 1978; de 1a Cruz
1979; Hardisky 1981; Shew et al. 1981; Brinson et al. 1981). Soil and
water chemistry factors can influence primary production. Productivity
declines where critical inorganic nutrients (phosphorus and nitrogen) are
limited (Broom et al. 1975; Valiela et al. 1975; Patrick and Delaune 1976;
Loucks and Watson 1978; Schindler 1978; Valiela et al. 1978; Farnsworth
et al. 1979; Linthurst and Seneca 1980). Large deviations from a neutral
pH decrease productivity (Heinselman 1970; Small 1972; Darnell et al. 1976;
Richardson 1979). Moderately high levels of alkalinity .enhance freshwater
aquatic plant growth (Moyle 1945; Darnell et al. 1976). Adamus (1983. Vol.
I:71) cited numerous studies that documented decreased production in
wetlands with high salinity. Adamus (1983. Vol. 1:94) also cited a number
of studies where turbidity, through a reduction in light penetration,
decreased productivity in submerged aquatics. Other factors that -influence
productivity are climatic in nature. Latitudinal variation in primary
production has been shown in several studies, to be related to one or more
climatic factors (Bernard 1973; Gorham 1974; Turner 1976; Reader 1978).
Factors related to hydrologic regime, such as tidal amplitude, flow
velocity, and hydroperiod have of ten been cited as influencing primary
production. Steever et al. (1976), Gosselink and Turner (1978), Hern and
Lambou (1978), Brinson et al. (1981), and Adamus (1983. Vol. 1:75,79,80)
reviewed and discussed studies dealing with this relationship. A complex
of factors, including nutrient removal, oxygen levels, and other factors,
presumably account for this relationship between hydrologic regime and
primary production.

Despite the gaps in knowledge and the variation in NPP estimates, the
information available on wetland NPP is believed, by at least some
researchers, to be adequate to establish credible value ranges of NPP for
different wetland types and plant species (Richardson 1979; Adamus 1983).
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DECOMPOSITION

The net primary production is just one of a number of factors that
ultimately determine the functional value of a wetland in the support of
food chains. Plant tissues may need to be chemically and physically
altered through decomposition prior to utilization by consumers.
Decomposition begins with the l1eaching of soluble substances from the
tissues, followed by a gradual mechanical breakdown and biological
oxidation of the tissues to particles of decreasing size and chemical
complexity. These particles provide a substrate for bacteria, fungi, and
other microorganisms, which add to the nutritive value of the so-called
detritus (Odum 1970; Fenchel 1972; Mann 1972; Fell and Master 1973;
Darnell et al. 1976; Gallagher et al. 1976; Adamus 1983). Certain
consumers are thought to strip the attached microorganisms from detritus as
the detritus passes through their digestive tract. The resulting feces
become available for recolonization and ingestion by other microorganisms
(Adams and Angelovic 1970; Odum and Heald 1975). In some studies, a large
number and variety of heterotrophic consumers were found to utilize the
dissolved nutrients and detritus particles produced by the decomposition
process (Odum and Heald 1975; Clark 1979). These consumers, in turn,
supply the nutrient requirements of higher trophic level consumers.

The relationship between decomposition and food chain support is not
clearly understood. Under conditions suitable for rapid decomposition,
nutrients presumably become quickly available for use in detritus food
chains or reuse by wetland autotrophs. Under conditions of slow
decomposition, a greater potential exists for nutrients to accumulate in
organic sediment sinks. Depending on the other factors that control
nutrient availability, the latter situation could 1imit NPP and the
ability of a wetland to support food chains.

The decomposition rate of wetland plant materials is influenced by a
number of species-specific and environmental factors. Physical and
chemical characteristics of plants, such as total fiber content (Godshalk
and Wetzel 1978), surface to volume ratio (Seliskar et al. 1977; Chamie and
Richardson 1978), and component proteins (Handley 1961) influence the rate
of decomposition. Decomposition rates for a number of freshwater and
saltwater plant species have been documented (Visser 1964; Boyd 1970;
Odum et al. 1972; Mason and Bryant 1975; Chamie and Richardson 1978;
Davis and van der Valk 1978a,b; Godshalk and Wetzel 1978; Odum and
Heywood 1978; de la Cruz 1979). In general, decomposition rates are
greatest in algae and decrease through submerged aquatics to emergent and
woody macrophytes (Gallagher 1978; Tilton and Schwegler 1979).

Several authors have suggested that temperature is the most important
environmental factor affecting decomposition rates (Godshalk and Wetzel
1978; Montagna and Ruber 1980; Brinson et al. 1981). Decomposition rates
of cellulose were shown to correlate with maximum and minimum water
temperatures in at least one study (Brinson 1977). Moisture and oxygen
levels also influence decomposition rates. The hydrologic regime of a
wetland has a large measure of control over both these factors. Wetlands
may contain a wide range of conditions from stagnant, oxygen-depleted
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sediments and water column to fluctuating water levels with alternating
anaerobic and aerobic conditions to exposed sediments with continually
aerobic conditions. Adamus (1983) cited numerous studies that documented
high decomposition rates under the aerobic conditions, often associated
~with temporary flooding, moving water, and exposed sediments. Periodic
wet/dry cycles also enhance decomposition (Stevenson 1956; Birch 1958; Van .
Schreven 1967; Sorenson 1974). Decomposition is likely to be greatest
under aerobic conditions, coupled with some optimal wet/dry cycle (Brinson
et al. 1981). Factors that decrease decomposition rates include salinity
~+ (0dum and Heywood 1978; Odum et al. 1979) and acidi ty- (Heinselman 1970;

~ Chamie and Richardson 1978).

There is strong evidence that the process of decomposition is an
important factor in determining the functional value of wetlands in the
support of food chains. However, although the literature identifies the

. factors controlling the decomposition process, few attempts have been made

to directly link decomposition to the food chain support function of
wetlands.

NUTRIENT EXPORT

The export capability of a wetland is an important factor that needs to
be included when considering the food chain support function of wetlands.
Presumably, nutrient export increases the food chain support function by
allowing a greater number and variety of heterotrophic organisms to make
use of wetland-derived nutrients (de 1a Cruz 1979). Nixon (1980) indicated
~ that, while the range of primary production in wetlands varies by a factor
. of approximately 10, the range of flushing capacity is much greater. Thus,
in terms of food chain support, the capability of a wetland to export
nutrients is potentially of greater importance than the level of NPP.

Nutrient export from wetlands has been studied most extensively in the
Atlantic and Gulf coastal wetlands. Early studies of particulate organic
carbon export in the salt marshes of Georgia provided a basis for the
hypothesis that detritus from coastal marshes was important in the
maintenance of secondary productivity in adjacent estuaries and coastal
waters. Studies also have been conducted on nutrient export in Florida
mangrove swamps (Heald 1969; Odum 1971; Odum and Heald 1975) and salt
marshes in Louisiana (Day et al. 1973), Georgia (Reimold et al. 1975), and
New England (Nixon and Oviatt 1973; Valiela et al. 1978). However, there
is also documentation in the literature of coastal wetlands where no net
expart and, in some cases, a net import of nutrients occurred (Nadeau 1972;
Heinle and Flemer 1976; Hackney 1977; Woodwell and Whitney 1977;
Woodwell et al. 1977).

Nixon (1980) reviewed the literature relating to this subject and
concluded that, while the amount of export varies significantly, the
majority of coastal marshes export dissolved and particulate organic
nutrients to adjacent estuaries and coastal. waters. However, the
_importance of this exported material in the support of food chains is not
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totally clear. There is recent evidence suggesting that detritus, exported
from coastal wetlands, might not be the most important source of nutrients
for estuarine and coastal heterotrophs, as has often been assumed. Several
authors (Correll 1978; Haines 1979; Haines and Montagna 1979) reported
that, in estuaries at least, the most important sources of nutrients are
phytoplankton, submerged vasculars, and benthic or epiphytic algae, rather
than detritus exported from tidal marshes. Nixon (1980) concluded that, at
least- in the case of Atlantic coastal marshes, there is no convincing
evidence as yet to support the belief that these marshes play a significant
role in the support of estuarine secondary productivity through detritus
export. On the basis of the limited data available, it appears that
nutrient export in Pacific coastal marshes is not significant in the
support of secondary productivity (Onuf et al. 1979).

The export of nutrients from inland freshwater wetlands has not
received the extensive study given coastal wetlands and, consequently, the
subject is poorly documented. Several authors have suggested that
floodplains are important to the productivity of rivers and streams
(Marlier 1973; Hynes 1975; Sioli 1975, cited in Merritt and Lawson 1979).
Brinson et al. (1981) shed light on this subject in an indirect manner. In
reviewing the literature, these authors found that rivers that drain
watersheds with a significant wetland component have higher dissolved
organic carbon (DOC) and total organic carbon (TOC) concentrations' than do
rivers that drain watersheds with neglible wetlands. Levels of particulate
organic carbon (POC) were not reported and were presumed to show no
consistent pattern. .

The export of nutrients from a wetland is influenced by a number of
factors. Of primary importance is the flow.of water through the wetland.
Wetlands with water flow in the form of tides (Mason and Bryant 1975; Odum
and Heald 1975; Gosselink and Turner 1978) and seasonal floodwater
(Darnell et al. 1976; Brown et al. 1979; Frederickson 1979) have
increased levels of nutrient export. Adamus (1983) cited a number of
studies where nutrient export increased with an increase in the velocity of
waterflow. Factors that increase water circulation in a wetland help keep
the amount of nutrients available for export high. These factors include
vertical mixing (Gallagher 1978; Gosselink and Turner 1978; Peterson and
Peterson 1979), sediment disturbance by scouring (Adamus 1983), and
activities of invertebrates and waterfowl (Lynch et al. 1947). The form of
the nutrients also helps determine their likelihood to be exported;
materials that are dissolved or suspended are more easily moved by water
than heavy, sinking materials (Zieman et al. 1979).

Several authors have suggested that the variability in nutrient export
exhibited by coastal marshes is due to factors such as the geomorphology of
the wetland basin, tidal amplitude, freshwater input, and possibly other
biological and chemical factors (Correll 1978; Odumet al. 1979; Odum
1980). In addition, Odum et al. (1979) stated that, if the "pulsed nature
of particulates" and all forms of particulate transport (floating,
suspended, and bed) are taken into consideration, the prediction of
2utr1ent flux should be possible based on geomorphological and hydrotegic

actors.
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The longstanding consensus that wetlands (particularly tidal wetlands)
support aquatic food chains through the export of nutrients is now being
questioned. While it appears that many coastal wetlands export nutrients,
it is not clear how significant the export is in terms of total energy and
nutrient budgets. It appears that the question of food chain support
through the export of nutrients must be answered on a site-specific basis
for different wetland types in different geographic locations. Information
concerning nutrient export in freshwater wetlands is scarce and deals
mainly with wetlands associated with rivers. A considerable research
effort, in a variety of wetland types, is necessary to evaluate the overall
importance of wetland nutrient export to heterotrophic food chains.

NUTRIENT UTILIZATION

If the food chain support function is to be realized, wetland-derived
nutrients must actually be consumed by heterotrophs in wetlands or
associated aquatic areas. Nutrients are incorporated into these food
chains via one of two pathways. In the first pathway, often called the
grazing pathway, living plant materials are consumed directly by
herbivores. The other alternative, often called the detritus pathway and
presumed by many researchers to be quantitatively more important, involves
the consumption of dead plant materials in various stages of decomposition.
by Tow trophic level heterotrophs. These Tow trophic level consumers, in
turn, become an indirect source of wetland-derived nutrients to higher
trophic level consumers. The greatest number of studies concerning the
utilization of wetland-derived nutrients have been conducted on higher
trophic level species with commercial and/or recreational importance. Very
few trophic relationships of heterotrophs in the detritus pathway have been
studied; consequently, their role in food chain support, while of ten
believed to be great, is. largely undocumented and hypothetical (Crow and
MacDonald 1979; Tilton and Schwegler 1979; Saunders et al. 1980). Crow
and MacDonald (1979) and Weller (1979) recently published overviews of the
important role wetlands play in the support of grazing and detritus food
chains.

The role wetlands play in supplying nutrient resources is best
documented for the grazing food chain, and the most extensive body of
literature deals withwildlife species directly important to man. This
literature is too voluminous to be discussed in detail in this report.-
Waterfowl use wetland plant (seeds, foliage, roots, and tubers) and animal
“(macroinvertebrates and fish) food sources extensively (Martin and Uhler
1939; McAtee 1939; Bellrose 1941; Moyle and Hotchkiss 1945; Collias
and Collias 1963; McRoy 1966). Furbearers, such as muskrat, nutria,
beaver, and raccoon, depend on certain types of wetlands for a large
portion of their food requirements (Bellrose and Brown 1941; Baumgartner
1942; Harris and Webert 1962; Errington 1963; Shanholzer 1974). Big
game species, such as moose, caribou, and bear, graze on wetland vegetation
(Peterson 1955; U.S. Army Corps of Engineers 1978, cited in Crow and
MacDonald 1979; Aho and Jordon 1979). Wetlands are also a source of food
for nongame birds (Kahl 1964; Wharton et al. 1977; Ohmart and Anderson
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1979) and small mammals (Toll et al. 1960; Birkenholz 1963; Crow and
MacDonald 1979).

A few studies have dealt with the use of wetland food resources by
insects. Marsh grasshoppers and planthoppers graze directly on saltmarsh
cordgrass, Spartina alterniflora (Odum and Smalley 1959; Smalley 1960;
Davis and Gray 1966; Marples 1966). Foster and Treherne (1976) concluded
that insects consume less than 5% of the annual saltmarsh cordgrass NPP.
Brinson et al. (1981) cited several investigations where insects consumed
significant amounts of wetland NPP under certain conditions, such as frost
damage (Haslam 1970), logging disturbance (Conner and Day 1976), and
nutrient enrichment (Onuf et al. 1977).

Because of the complexity of detritus food chains, it is difficult to
1ink the wetland-derived nutrients that follow this pathway to their actual
utilization at higher trophic levels. The literature on this topic is less
extensive and convincing than the literature available for the grazing food
chain. There is documentary evidence that supports the longstanding belief
that detritus is an important element in the food chains of coastal and
freshwater wetland and aquatic ecosystems (Odum 1970; Melchiorro-Santolini
and Hopton 1972; Odum and Heald 1975; Thayer et al. 1975; Kirby-Smith
1976). -A number of studies have shown that wetland-derived detritus and/or
detritivores serve as a source of food for coastal and freshwater finfish
(McHugh 1966; Odum 1970; Jefferies 1972; Wiley et al. 1973; St. Amant
1973; Adams 1976; Marzolf 1978; Peters and Schaffe 1981), shellfish, and
crustaceans (Mock 1967; Welsh 1975; Turner 1977).

The functional value of wetlands in terms of food chain support is not
well understood at this time. This is due, in part, to the large number of
factors and processes (e.g., NPP, decomposition, export, and utilization)
that influence this function and, in part, to the lack of good information
as to how these factors and processes are related to the support of food
chains (especially the detritus food chain). More information is needed
concerning the breakdown and movement of energy and nutrients through
wetland and aquatic food chains before this function of wetlands can be
properly understood and evaluated.
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HABITAT

GENERAL

Wetlands provide habitat for a variety of plants and animals. Some
animals are completely dependent on wetlands for food, protection from
weather and/or predators, resting areas, reproductive materials or sites,
molting grounds, and other life requisites. Other animal species use
wetlands for only part of their life functions. Some species spend their
entire Tife within a particular wetland; other species are resident only
during a particular period in their 1ife cycle or during the year or travel
from wetland to wetland. Some animals use wetland habitat throughout their
lives, but reside primarily in deepwater or upland habitats (Chabrek 1971;
Shanholtzer 1974; Clark and Clark 1979; Weller 1981; Zinn and Copeland
1982). Wetlands also provide necessary habitat for many rare and
endangered plant and animal species. More than half the areas identified
as critical habitat under provisions of the Endangered Species Act involve
wetland areas (Zinn and Copeland 1982).

Many factors are of importance in determining the value of wetlands as
habitat for animals, including the structure and species diversity of the
vegetation, surrounding land uses, spatial patterns within and between
wetlands, vertical and horizontal zonation, size, and water chemistry
(Golet 1973; Schitoskey and Linder 1978; Clark and Clark 1979; Zinn and
Copeland 1982). Knowledge of habitat values for all forms of wildlife
associated with southwestern wetlands is reported to be 1little beyond the
general survey stage (Ohmart and Anderson 1978) and, with the notable
exception of pheasants (Gates and Hale 1974; Sather-Blair and Linder 1980;
Linder and Hubbard 1982) and white-tailed deer (Sparrowe 1966; Rongstad
and Tester 1969), there has been surprisingly little documentation of the
use of wetlands by upland game species.

We have attempted to summarize the current status of knowledge of this

function in Table 4. A listing of some assessment systems that address
this function is also included in Table 4.
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INVERTEBRATES AND POIKILOTHERMAL VERTEBRATES

It is generally agreed that the study of wetlands as habitat for
invertebrates (particularly those making up the microfauna) and
poikilothermal vertebrates has been 1argely ignored (Thayer et al. 1978;
Tilton and Schweger 1978; Clark and Clark 1979). A tremendous variety of
these types of organisms occur in wetlands, and there is great variation in
the kinds and numbers of invertebrates and poikilothermal vertebrates that
different types of wetlands will support. Some of the southern wetlands
closely associated with riverine habitats support a rich variety of these
organisms; whereas, acid bog 1akes in northern areas may have reduced
species diversity and density of invertebrates and poikilothermal
vertebrates (Clark 1978; Frederickson 1978; Wharton et al. 1981).

Weller (1978) indicated that most studies of invertebrates inhabiting
wetlands have been taxonomic and descriptive in nature and that little is
known about habitat selection, niche segregation, factors influencing
taxonomic diversity, indicator species for habitat conditions, and
community structure. Weller also stated that a considerable amount of work
remains to be done on niche segregation in wetland amphibian populations
and that invertebrates are very important in the food chain function
bﬁcguse of their role in the conversion of plant energy into animal food
chains.

Clark (1978) presented an excellent review of current knowledge about
freshwater wetlands as habitat for aquatic invertebrates, fishes
(especially forage species, but also game species), amphibians, and
reptiles. She concluded that the number of taxonomic groups associated
with freshwater wetlands is large and that there apparently is no typical
wetlands fauna. She stated that, for most wetland types, there are
insufficient data to allow generalizations about the richness or poverty of
the entire invertebrate and cold blooded vertebrate fauna. For a
comprehensive review of invertebrates and vertebrates associated with
bottomland hardwood habitats, see Wharton et al. (1981).

Krull (1970) reviewed some of the literature on aquatic invertebrates
and found that many investigators commented on the general relationship
between the abundance of aquatic invertebrates and the presence of
hydrophytes. However, few studies focused specifically on the quantitative
aspects of plant invertebrate associations in aquatic environments. Krull
also observed that there 1is practically no differentiation in the
literature between bottom fauna abundance in plant-free areas and in areas
exhibiting a growth of submerged hydrophytes. His own studies revealed:
that each plant species generally has several kinds of animals associated
with it throughout its entire 1ife, that the abundance of these animals
reaches a peak soon after the plant appears, that their weight and numbers
tend to decline as the season progresses, and that the number of organisms
increases with an increase in plant surface area. Tilton and Schweger
(1978) pointed out that studies of Great Lakes wetland ecosystems indicated
that vegetated areas generally have higher densities of invertebrates than
nearshore areas without vegetation, and emergent areas generally have
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hi gher densit1es of invertebrates than submerged or floating-leaved aquatic
plant habitats.

Clark (1978) singled out the following factors as important wetland
features that control the abundance and diversity of wetland invertebrates
and poikilothermal vertebrates: wetland size and 1ocation relative to
other wetlands; wetland setting (relationship of the wetland to other
aquatic and terrestrial systems %, subs trate<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>