DESCRIPTION OF THE PIEDMONT SHEET.

GEOGRAPHY.

General relations.—The area included in the Piedmont atlas sheet, in extent one-quarter of a degree square, lies between the parallels 39° and 41° north latitude, and the meridians 79° and 81° west longitude. This area measures approximately 84.65 miles from north to south and 70.85 miles from east to west, or 10,045 square miles, or about 6.5 per cent on account of the earth’s curvature, about 928 square miles. In Maryland it comprises the southern portion of Allegany County; a small area in the southwestern corner of Allegany County, and a small area of Preston County adjacent to Allegany County.

In geographic and geological relations this area forms a part of the Appalachian province, which extends from the Atlantic coastal plain on the south to the Mississippi Basin on the west, and from central Alabama to southern New York. All of the provinces thus defined have a common boundary, recorded in their rocks, their geologic structure, and topographic features.

The Appalachian province as a whole is broadly domed, trending north-northeast, and is cut by a single axis; hence it is necessary to consider the individual sheet in its relations to the entire province.

Subdivisions of the Appalachian province.—The Appalachian province may be subdivided into three well-marked physiographic divisions, through each of which the strata trend at different angles and in narrow belts. The surface bears little resemblance to the original surface. The amount of denudation which has taken place has been so great as to produce similar results in sedimentation, in geologic structure, and in topography. These divisions extend the length of the Appalachian province.

The Appalachian province may be subdivided into three well-marked physiographic divisions, through each of which the strata trend at different angles and in narrow belts. The surface bears little resemblance to the original surface. The amount of denudation which has taken place has been so great as to produce similar results in sedimentation, in geologic structure, and in topography. These divisions extend the length of the Appalachian province.

The Appalachian province as a whole is broadly domed, trending north-northeast, and is cut by a single axis; hence it is necessary to consider the individual sheet in its relations to the entire province.

Subdivisions of the Appalachian province.—The Appalachian province may be subdivided into three well-marked physiographic divisions, through each of which the strata trend at different angles and in narrow belts. The surface bears little resemblance to the original surface. The amount of denudation which has taken place has been so great as to produce similar results in sedimentation, in geologic structure, and in topography. These divisions extend the length of the Appalachian province. a.

Altitude of the Appalachian province.—The Appalachian province as a whole is broadly domed, trending north-northeast, and is cut by a single axis; hence it is necessary to consider the individual sheet in its relations to the entire province.

Each division of the province shows one or more nearly vertical ridges, which rise gradually from less than 1,000 feet in Alabama to about 5,000 feet in western parts of Pennsylvania and New York. These ridges have been produced in the Devonian area about Deer Park, showing the plateau type. The Devonian area about Deer Park, showing the plateau type. The Devonian area about Deer Park, showing the plateau type. The Devonian area about Deer Park, showing the plateau type. The Devonian area about Deer Park, showing the plateau type.
The North Branch of Potomac River, beginning at Fairfax Stone, flows northeastward near the axis of the synclinal basin, and with its tributaries between the Allegheny Front and the Blue Ridge Mountain has cut deep and narrow channels from a few hundred feet to more than 1,500 feet deep. Joining Savage River near the north end of the area of the sheet, the Potomac turns to a southwest, east to a junction with the Great Egg River, and then flows southwesternly and passes the map limits in a deep and narrow channel.

Westward from Hoop Pole Ridge there is an area of Carboniferous rocks forming a small basin. Conglomerate and sandstone of the Blackwater formation continue westward from the surface of sediments-along— that is, they were deposited by water. They consist of sandstone, shale, and limestone, all present in great society and appearance. The materials of which they are composed are originally gravel, sand, and mud. They are the result of the wearing away of rocks now extending far below the surface of the sea. They contain abundant fossils of a mixed Clinton age. The chief materials of which they are composed are sandstone, shale, and limestone. These deposits, together with the muds and sands of the shelf, form the sediments of the sea.

The area of sedimentary rock is the region of the sea where the sediments are being deposited. The sediments consist of materials that have been transported from the land by wind, water, or ice. The sediments are then deposited on the sea floor, where they are subsequently compacted and cemented to form sedimentary rocks.

The strata exposed in the area of the Piedmont sheet are sandstone, shale, and limestone. The strata consist of materials that have been transported from the land by wind, water, or ice. The sediments are then deposited on the sea floor, where they are subsequently compacted and cemented to form sedimentary rocks.
maken, particularly in Patterson Creek Mountain. The intermediate beds consist of soft, shaly and massive limestones aggregating about 250 to 300 feet in thickness. A basal series, which is the same thickness, consists of calcareous shales and thin-bedded, impure limestones. The formation extends along both sides of New Creek Mountain, on the inner side of the ridges which flank that mountain (it gives rise to the series of high ridges) and which constitute the central portion of Patterson Creek Mountain. Heiderberg fossils occur throughout the formation.

The gray sandstones of the Rockwood formation are overlain by alternations of calcareous shale and thin-bedded, impure limestones that constitute the basal series of the Lewistown limestone. They have a thickness of from 250 to 300 feet in Patterson Creek Mountain, but to the beds, are thin-bedded, less cherty, and contain near or extend into the main flanking ridges and it is often more prominent than the sandstone member on the Blackwater River. The beds are about 100 feet are usually obscured. They are overlain by thinner-bedded, highly fossiliferous limestones, in which the intercalated beds of cherty lime- stones are separated by two zones of softer, argilaceous sandstone and sandy shale, containing greenish bands. A few feet of coarse sandstone or conglomerate are included in some localities. The gray sandstone is usually hidden beneath a talus of blocks from the cliffs of Blackwater Mountain, and the rock, which is generally conglomeratic, but in some cases locally is nearly or quite free from pebbles. In the east it is sharply separated from the formation. The series is able to accommodate above, with a sharp and the region, exhibits large numbers of casts and fossils. The sandstone member on the Blackwater River is 125 feet thick, with a maximum of 20 feet of coal. The formation is completely exposed in Blackwater Mountain, and, owing to its softness, is in part, micaceous. Greenish bands occur occasionally in the red sandstone, and the dark carbon and the coal has been seen near the top of the formation.

The Blackwater sandstone - This is the lowest formation of the entire area of the Piedmont sheet. Its thickness varies from nearly 200 feet to 645 feet on Blackwater River below Deer Park. In the Youghiogheny region it is estimated to be 260 feet thick. This sandstone, through its resistance to erosion, has governed the positions of the Allegheny and Canaan, Brown, and Back Mountain. It projects to the surface in its crests in extensive monadnocks and knobs. It is exposed in the valleys of Red Creek and Blackwater River and in hills on the east side of the Youghiogheny River. On the west side of the Youghiogheny basin it overlies the hills and dips eastward. This formation is composed of three divisions of which the lower division is 200 feet thick and nearly entirely conglomerate. The medial sandstone here is 125 feet thick and has a conglomerate band 20 feet thick at its center. The lower bed is 150 feet thick and has a number of variable bands of conglomerate. Much of the sandstone and conglomerate is composed of pure quartz grains and pebbles in a siliceous matrix, and is a beach deposit. Both the sandstone beds and the intervening strata of impure sandstone and shale are in many places strongly cross-bedded. The sequence and extent of strata in the Blackwater Valley between Canaan and Brown Mountains is distinctive with variable shale and thin, unimportant coals are recognized. A coal was located at the base of the lower sandstone, and the middle coal is of inferior quality.

The Greenbrier limestone - This formation rests upon the Pocono sandstone, and varies from less than 200 feet in the northeast corner to more than 400 feet in the southeast corner of the area of the Piedmont sheet. It crops out above the knobs of Hampshire and Pocono rocks in Allegheny Front along its entire course. From Allegheny Front it passes downward beneath the Potomac coal field and rises to the surface in the west side of Backbone Mountain. This limestone is exposed over a series of ridges and the Purcell mass. It is composed of a thin, irregular layers of coal, from 1 to 6 inches thick. The thickness of the Pocahontas sandstone gradually increases southward from 70 feet on the west side of Fairmont to 70 feet along the southern margin of the area.

Hampshire formation - This formation extends along the middle slopes of the Allegheny Front, where it is continuous with the Pocahontas at the top, until the latter preponderates. As this formation extends southward and westward - the rocks vary in character as well as in thickness. In the Potomac gorge east of Piedmont the lower portion is a calcareous sandstone 140 feet thick, while near Red Creek post-office the sandy, lower beds are 100 feet thick, while the upper, purer limestone here is 50 feet thick.

The Omars formation - This formation consists of calcareous sandstone and shale, much thinner than the succeeding beds, and sandstone here has a continued thickness or permanent composition over a wide region of country. The shale beds become shaly, and beds of sand and shale side locally, so that variability rather than permanence of stratification -
The formation of the Potomac Valley. Its formation contains two beds of limestone, occurring in this formation at Coketon, just outside the limit of the sheet, south of Thomas. The upper part of this 5 feet thick, is ferrugineous, and contains calcaneous shale beds. It is 53 feet thick, and is based on the floor of the Potomac basin. The upper part of the limestone is a band of yellow, ferruginous concretions in calcaneous shale which is the floor of a coal bed 46 inches thick. In the Youghiogheny Valley this formation contains two beds of limestone, which represent probably those seen at Coketon.

The Saugeen formation outcrops along the west slope of the Allegheny Front, near the crest, dip- ping westward at 10° to 15°, and after passing beneath the Potomac basin it rises in the east side of Backbone Mountain at nearly the same angle in the eastward valley. The surface exposure crosses the basin of Red Creek, continues upon the east side of Canaan Mountain to its north end, and thence down Beaver Creek Valley to the border of the quarter-degree at Pendleton. The North Branch of Potomac River has exposed this formation on the ridge from Old Bridge westward to the south of Pendleton. Both Saugeen River and George Creek have cut through its beds. It outcrops in the west, in the south of Youghiogheny Valley, and in the east side of the ridge near the northeast corner of the area.

The lower sandstone member of this formation is composed of three rock divisions: a lower sandstone member, a middle division of shale sandstone, shales, coal, and an upper sandstone member of a thickness of 400 to 475 feet. In the center of the Potomac basin it is thinner. The lower sandstone member in the vicinity of Piedmont consists of upper and lower massive beds, 80 and 45 feet thick, respectively, with intervening sandstones, shales, and thin coal bed; in all, 196 feet. At Thomas the shale is less prominent and the coal is a mere band. Local deposits of conglomerate occur in this sandstone. It is less prominent in the Youghiogheny Valley than in the Potomac Valley. Large blocks of grise and sandstone mark its position in the median slope of the valley region, and, in the central part of the basin, a normal fault separating these formations. The areas in the vicinity of the Franklin and Hampshire mountains, northwest and northeast of the Potomac basin, have a considerable outcrop of sandstone, which is nearly 280 feet thick. Only one small area occurs west of the North Branch of Potomac, where it is derived from Stoney and Elk lick rock. This formation has the smallest area, yet its coal has given great importance to the region, because the coal formation has removed the greater part of this extensive formation.

The Elk garden coal is formed principally of shales, and the surface of the ground is, in general, smooth and gently sloping, though there are several sandstone strata whose fragments occur at the surface. A more prominent sandstone bed occurs in a small area at the top of the hill above Franklin incline on the southwest. It appears here at the surface only as rough borders and stony talus. The color of the bed is generally gray, and on weathering are brown and yellow. They are variously sandy, and the weathering is usually noted at the base above the Elk garden coal. The Elk garden coal varies in thickness from 200 feet below the base to nearly 20 feet thick, which does not occur in the northern end of the basin. Another productive bed is located near the foot of Ridge, and is 140 feet thick at the base above the Potomac basin. In the Elk garden coal this coal has become much thinner or has been separated into two benches by a bed of shale nearly 20 feet thick, which does not occur in the northern end of the basin. Another productive coal occurs 150 feet above the base. Near the top of the Franklin and New Hampshire hills north of Piedmont, in the crest of Old Hampshire hill and the south of the Potomac basin, this coal has been worked out.

The structure of the Elk garden coal has been variously described, as is shown. In some sections the structure is the prevalence of southeast and northwest. In the Appalachian Mountains the southeast and northwest are the most important features of the structure, but the structure may be very long. Faults 300 miles long are common, and the local dip of the strata is often inclined. In most cases the movements have resulted in the warping of the surface, and the greatest uplift has occurred nearly along the line of the Great Valley.

The sections on the structure sheet represent the strata as they would appear in the sides of a deep trench cut across the country. Their position with reference to the map is on the line at the upper edge of the blank space. The vertical and horizontal scales are the same, so that the actual form and slope of the land and the actual dip of the strata are shown. These sections represent the structure as it is inferred from the position of the strata at the surface and from the position of the overthrust mass, the strata at the surface may all be seen. The sections represent distinctive topographic types, and those are governed by structures seen in the sharp vertical folds, while others are governed by structures seen in the sharp vertical folds, while others are governed by structures seen in the sharp vertical folds. The sections on the structure sheet represent the strata as they would appear in the sides of a deep trench cut across the country. Their position with reference to the map is on the line at the upper edge of the blank space. The vertical and horizontal scales are the same, so that the actual form and slope of the land and the actual dip of the strata are shown. These sections represent the structure as it is inferred from the position of the strata at the surface and from the position of the overthrust mass. The strata at the surface may all be seen. The sections represent distinctive topographic types, and those are governed by structures seen in the sharp vertical folds, while others are governed by structures seen in the sharp vertical folds.
crenulations, but rises in a mighty arch, which is
superbly exhibited by the Taconic quartzite in
Greenland, Corner, and Klippe gaps. The great
sheet of quartzite underlies the mountain on the
other side, and then bends over to form a complete
arch, the top of which is about 1,000 feet above
the floor of the valley. As a single arch, it is symmetrical, for the dips on either side are not
the same, and there is considerable local variation
in the form of the arch. The summit region is
steeply dissected and the tectonic flexibility of the
limb is considerably steeper than the eastern,
northeast of Klippe Gap and southward, where the
dip is towards the south. Along the axis of the
Monterey and Lewistown ridges, which flank the
central axis of the mountain, there are occasional
small, low, local crumples in the form of ridges
which those ridges usually represent. They are
frequent on the west side of the mountain. The
most notable one is in the ridge just east of Brown
Tannery, where the Monterey sandstone is thrust
forward in a slight arch, with a small basin of
Romney shales in the syncline and a small exposure
of Lewistown limestones in the arch where it is
crossed by the depression. Just east of the basin
there is a small fault in the Monterey beds, of which
a portion to the eastward lies in a second
shallow basin of very limited extent. These
features die out in the syncline west of the
Monterey outcrop and finally develop a small separate
anticline of Monterey sandstone, which pitches
northward beneath the Lewistown beds over a small area, and the uppermost
Rockwood shales present many contentions along
the stream at the east end of the gap. At the east
end of Corner Gap there is a small anticline in the
lower members of the Lewistown limestones, and
in the gap 3 miles southeast of Antioch an anticline
is exhibited in the sandstone of the Monterey
formation.

Lying east of the anticline of New Creek Mount-
in in a synclinal trough containing a
considerable thickness of Jennings formation in
its center. It is quite uniform in general width,
pitch, and dips, but some of the beds which it
contains present many minor crumples of local
type. These are more frequent on the eastern
side of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or lesser degree along all the roads
and streams. Near the southern margin of the
area of the New Creek formation are exhibited in the beds of the Devonian area, and they are exhibited in beds to a
greater or less...
Along the Allegheny Front the Jennings formation crops out in steep slopes, so that the soils are thin and usually overlain by sandstone talus from higher strata. The shales of the Greenbrier formation crop out in the steep escarpment of the Allegheny Front and Backbone Mountain. The soil from this shale is in a large measure overlain by sandstone and conglomerate talus from the Blackwater formation. In the outer margin of the valley of Blackwater River between Cavan and Brown mountains and in the valley west of Hoop Pole Ridge, the soil is favored by gentle slopes and is well adapted to cultivation. The soils of the Fairfax formation belong to this class, and they form the largest part of the farming area of the plateau. The surface is usually rolling and smooth; it affords fair meadow land, and is well adapted to the production of buckwheat.

Limestone soils.—The principal limestone areas are in the central portion of Patterson Creek Mountain and along the inner sides of ridges which flank New Creek Mountain. In these areas the soils, although thin, are fertile, but they usually lie on such steep slopes that they are available for pastureage only. Much of the land is rocky, owing to the hardness of the lower, shaly layers and the top, cherty beds of the Lewistown limestone. The top, cherty limestone often gives rise to an extensive talus of loose chert fragments, which cover large portions of these limestone soils. The limestone of the Greenbrier formation has fertile soil, but it generally lies in a steep slope and is overlain by sand and fragments from the overlying sandstones. In the upper Blackwater region it crops out over a wide, level region in which the soils are rich and well adapted to farming.

Sandstone soils.—The narrow belts of sandstone and quartzite in New Creek Mountain, and the Monterey sandstone and chert ridge, have sandy soils which are generally too thin and barren for agriculture. Much of the land is steep and rocky, and it is not possible to cultivate it profitably. The Hampshire formation in the east side of Hoop Pole Ridge and the west side of Backbone Mountain produces ridges and knobs with thin sandy soils which are in part more fertile. Along the eastern side of the Allegheny Front it lies in the steep rocky slope below the Pocono Knobs, and is not farmable. Sandstones predominate over shales in the Blackwater sandstone and the Savage and Bayard formations, and their soils are sandy. The soils of the Blackwater sandstone are entirely sandy, and to a great extent very stony, so that they are entirely unfit for agriculture. Where the strata of the Savage and Bayard formations crop out in the ridges extending from the Allegheny Front and Backbone Mountain, and in the region of the Youghiogheny River, large areas of thin soils are tillable, and many farms are located upon them. Along belts where the more massive sandstone beds are exposed the soil is rocky. In the valleys and escarpments which border them talus and stone-crops prohibit cultivation of the soil.

Alluvial soils.—The South Branch of Potomac River, Lanes Creek, Patterson Creek, New Creek, and the larger streams in the valley between Backbone Mountain and Hoop Pole Ridge, also Blackwater River between Cavan and Brown mountains, have alluvial valleys of considerable area and fair fertility. These soils are derived largely from the waste of shale and calcareous rocks. The alluvial valleys of other streams in the region are of no importance. The North Branch of Potomac River and its tributaries have deposited along their courses very little except sand and gravel.

N. H. DARTON,
JOSEPH A. TUFF,
Geologist in Charge.
August, 1895.

BAILEY WILLIS,