Fig. 20, 21.—INOCERAMUS LABIATUS.
A fossil bivalve shell occurring in abundance in certain layers of the Greenhorn limestone. Fig. 20 shows an individual of moderate size; fig. 21 a small individual in which the concentric ridges are unusually strong.

Fig. 17, 18.—INOCERAMUS DEFORMIS.
Single valves of a bivalve shell found fossil in the limestone at the base of the Niobrara formation. Fig. 17 shows the side of a specimen of ordinary size; fig. 18 the edge of a small individual. The mud which once filled the shell was hardened to stone and the shells were afterward broken away, leaving molds of the interior.

Fig. 19.—OYSTER SHELLS ATTACHED TO A LARGER SHELL (INOCERAMUS).
Such groups are found in several formations, but they are peculiarly abundant in the calcareous shales near the bottom of the Niobrara.

Fig. 23, 24.—PLACENTICERAS PLACENTA.
Two views, natural size, of a small individual; specimens often have a diameter several times greater. The fossil shell is found only in the Tepee zone of the Pierre shale. Its nearest relative among living shells is the Nautilus.

Fig. 22.—HETEROCERAS NEBRASCENSE.
A fossil shell occurring in the Tepee zone of the Pierre shale and best preserved in concretions. This specimen, which includes two-thirds of the whole individual, is more nearly complete than the specimens usually found. Fragments 3 or 4 inches in length are comparatively common.

Fig. 25.—THE GREENHORN LIMESTONE.
A characteristic outcrop, showing the alternation of limestone ledges with softer layers of shale.

Fig. 26.—LUCINA OCCIDENTALIS.
This fossil shell is a bivalve occurring in the Tepee zone of the Pierre shale. It is abundant in the limestone cores of the Tepee buttes (fig. 27), and is the most characteristic fossil of these cores.

Fig. 27.—A TEPEE BUTTE.
Part of the limestone core is seen in the crest. These buttes are characteristic of the Tepee zone of the Pierre shale.