DESCRIPTION OF THE LA PLATA QUADRANGLE.

General Geology by Whitman Cross, assisted by Arthur Coe Spencer. Economic Geology by Chester Wells Purington.

GEOGRAPHY AND PHYSIOGRAPHY.

GENERAL RELATIONS.

Geographic position.—The La Plata quadrangle is situated in southwestern Colorado, near the the title page of this folio. It is bounded by tude and parallels 37° 15' and 37° 30' Extent and drainage. meridians 108° and 108° 15′ west longinorth latitude, embracing 237.22 square miles. Within its borders are the headwaters of the La Plata and Mancos rivers and of Bear Creek, an station within the area for the traffic from the important tributary of the Dolores River. All of this drainage is tributary to the Colorado River.

Relations to San Juan Mountains and the Plateau country.—The quadrangle lies some 20 miles | developed through irrigation, extend down the | La Plata Valley near the mouth of Tirbircio the intermediate space is a heavily timbered, hilly son Park and on the East Mancos are a number all come within an oval area 12 to 15 miles in country occupied by Paleozoic and lower Mesozoic formations. Westward the level expanse of the Dolores Plateau stretches far toward the canyon of the Colorado. On the southwest, and Plata County, when it embraced the whole southrising nearly 2000 feet above that plateau, is the famous Mesa Verde, dissected by the deep canyons of the Mancos River and its tributaries, the favorite fastnesses of the cliff dwellers. The quadrangle is thus situated on the border between the well-watered and forestmountains and plateaus. clad mountain region of the San Juan and the arid mesa, plateau, and canyon country to have names for various peaks and ridges Mexico. These relations are brought out by figs. 1, 2, and 3 of the Illustration sheets, to which some reason undesirable. Since in further reference will be made.

Physical features.—By virtue of its position, already applied in earlier publications described above, the La Plata quadrangle presents | concerning the La Platas, these older terms have varied physical features, typical of the broad, level, canyon-dissected plains to the west, and of the foothills of the San Juan Mountains, but the inences due to the porphyry sheet on the eastern lated groups, rising high above the general plateau level, which are scattered over the adjacent portions of Colorado, ber of isonated groups

Utah, Arizona, and New Mexico. From mountains of analogous origin.

who are acquainted with the masterful Published

sketches by W. H. Holmes presented drawings and sketches of the Hayden the region. in the annual reports of the Hayden Geological Atlas of Colorado. Many of these matchless drawings were reproduced in Part II of the Fourteenth Annual Report of the United States Geological Survey, in an article by the writer upon the igneous problems of these mountain groups (Laccolitic Mountain Groups of Colorado, Utah, and Arizona).

On the western side of the La Plata Mountains there is a rapid descent of 4000 to 5000 feet to the gently sloping plain known as the Rapid descent Dolores Plateau, into which the West from mountains to pla-Mancos River has cut a steep-walled

topographic map. While the intermediate foothills of the mountains occupy the greater space, acter prevailing for many miles to the west.

the general topographic features of the northern border of the Mesa Verde as it changes from the typical level plain to one of Topography gentle southerly inclination, with a pronounced scarp on the north, crossing the quadrangle from Menefee Mountain on the west to

several of its branches have cut into or across the broken mesa, causing much diversity in the topography.

found to contain metalliferous deposits, and in the State line, as is shown by the index map on development of mining operations a small town, named La Plata, has grown up in the heart of the | Mount Moss. mountains. The Rio Grande Southern

Railroad crosses the quadrangle south agricultural lands, and of the mountains. Hesperus, situated

at the crossing of the La Plata River, is the main mountains and the valley below. Coal mining is carried on in the immediate vicinity of Hesperus on either side of the river. Agricultural lands, southwest of the San Juan Mountain front. In La Plata Valley from Hesperus, while in Thomp-

> mountains is Parrott, once the county seat of La west corner of Colorado, but the town is now reduced to a single inhabited house. The present boundary of La Plata and Montezuma counties traverses the quadrangle, following the watershed between the Mancos and La Plata rivers.

Geographic names.—In the course of work in the La Plata Mountains it became desirable which extends far into Utah, Arizona, and New | hitherto nameless. In a few other cases it was found that local usage was conflicting or for these instances there were names Revival of earlier

The name Rampart Hills, applied to the prommost prominent element in the topography is bank of the West Mancos Canyon, needs no the rugged La Plata Mountain group, occupying explanation. As seen from the west these porarea. These peaks form one of a number of iso- | breastwork of the mountains. The long ridge | basins at the heads of these streams. leading north from the La Platas to the Rico | On the west side two forks of the Mancos have the soft sandstones of the La Plata formation. the western summits of the La Platas may be This line of communication appears to have been seen the Rico, El Late, Carriso, Abajo, La Sal, | a favorite one for the Indians of the region, and and, in the far distance, the Henry Mountains, all the name Indian Trail Ridge is applied to the divide followed. The names "Sliderock" and The general characteristics of these plateaus "Owen," applied to basins on either side of Hesand local mountain groups must be familiar to all perus Peak, have been adopted from a local map East Mancos, has been named after one of the earliest prospectors of the district. Two points survey for 1875 and 1876 and in the Hayden upon the crest between the East Mancos and the La Plata have been named, respectively, Gibbs and Burwell peaks, for the well-known surveyors.

The name Diorite Peak speaks for itself. The name Baker Peak has been applied to the summit at the north end of the Silver Mountain porphyry mass on account of its position directly above the well-known "Baker contact."

applied to ridges in the mountains after men who have been prominent in the mining developments | plain. of the region.

Babcock and Spiller are terms used in the canyon several hundred feet deep, as shown by the Hayden survey report for two prominent peaks of the monzonite mass south of Mount Moss. The summit to which the name Spiller is applied the extreme northwest corner of the quadrangle is variably known to prospectors and miners of presents a bit of the Dolores Plateau, of the charlete La Platas as Helmet or Hayden Peak. As the former name belongs to the lesser summit east of The southern third of the quadrangle exhibits the Hogback, and as Hayden is a name which has locally adopted.

Hesperus on the east. The La Plata River and west of Bear Creek, seen in fig. 5.

places by Holmes as an alternative for Hesperus Peak, but as the latter was finally placed upon Culture.—The La Plata Mountains have been | the Hayden map and was generally used throughout the Hayden reports, the other name is applied to the summit of similar character north of

The other names on the map are those of local usage as far as that could be ascertained.

LA PLATA MOUNTAINS.

Size and form of the group.—The La Platas form a compact group of high peaks, all the principal summits lying within a circle 9 miles in diameter, the center of which is situated in the Creek. The lesser summits and outlying ridges diameter. Nearly all the peaks of the inner circle On the La Plata River at the entrance to the are situated within the La Plata quadrangle, but a few lie beyond its eastern border, in the Durango

> Many of the summits rise to more than 12,000 feet above sea level, and the highest, Hesperus Peak, reaches an altitude of 13,225 Height of feet. The general character of the peaks. mountains and of the valleys dissecting them may be seen on the Topographic, Structure Section, and Illustration sheets of this folio.

> Drainage system.—The La Plata Mountains are the result of a domal uplift which has been dissected by erosion. Consequently the drainage system of the mountains bome dissected by radial has a general radiate arrangement. streams.

But the work accomplished by the various streams has not been equal. The master stream is the La Plata, which, flowing south, has cut back at its head almost to the northern rim of the group, dividing the mountains into nearly equal parts. The main northern stream, Bear Creek, has also penetrated the inner circle of peaks, overlapping the main eastern divide of the mountains, there is the greater part of the northeastern section of the phyry cliffs present the aspect of an outlying the La Plata, a narrow divide separating the but a single summit of importance isolated by

> the La Plata drainage. On the east the attack of the radial streams has been less effective, but within the physiographic limits of the by Lightner and Junctio several branches of Lightner and Junction creeks | La Plata Mountains, they have done a head on the slopes of the highest peaks. These streams are tributary to the Animas River.

La Plata Valley.—The character of the La Plata Valley within the mountains is shown by of the mountains. Rush Basin, at the head of the fig. 8, a view looking into the heart of the group from the entrance above Parrott. In fig. 9 is presented the view from the divide at the head of the valley. In both views the broad U-shaped section and the steep slopes on either side are well exhibited.

From the entrance to the mountains for 3 miles | exit from the mountains. up the valley the rise of the stream bed is about 500 feet. For the next 3 miles it amounts to 1200 feet. In the lower 3 miles within the moun-Jackson, Ohlwiler, and Bragdon are names miles below. From about the mouth of Madden Creek downward the La Plata flows on a flood

> From its head to Parrott the La Plata receives nearly twenty lateral tributaries of importance, half of which have a length of from 2 to 3 miles and rise in the amphitheaters of the La plata. under the higher peaks. All of these

streams enter the La Plata with a steep grade, and all of the principal ones have a greater fall in their short courses than has the La Plata itself above their mouths in a much greater distance. been applied to many mountains in Colorado, it | This is due to the fact that the divide at the head seems best to restore the term Spiller, used in the of the main stream is nearly 1000 feet lower than Hayden report, although it has not as yet been | the divides on either side under which the lateral streams have their basin heads. Erosion is natu-Sharkstooth is a name readily suggested by its | rally going on very vigorously in the side gulches form for the sharp point of porphyry on the ridge | and in the upper reaches of the La Plata. In fig. | peaks to the surrounding country are interrupted

Banded Mountain is a term used in one or two | which has been recently cut through a forest covering into brecciated rock, in which erosion is now proceeding at a rapid rate.

> Bear Creek.—The basin head of this stream overlaps the extreme head of the La Plata for 11/2 miles and is excavated in the stocks of Diorite Peak and Mount Moss and of the indurated and metamorphosed strata between them. Polished and striated areas in the upper part of the basin show that this was the source of a local glacier, but no considerable morainal accumulations exist in the lower valley. Bear Creek enters the Dolores River in the Rico quadrangle, 8 miles from the La Plata line, at an elevation of 7900 feet. Fig. 5 represents the Sharkstooth, on the west side of Bear Creek, the most northerly summit of the La Platas.

> Branches of Mancos River.—The entire western slope of the mountains is drained by the three forks of the Mancos River, two of which penetrate at their heads within the inner circle of peaks. Of these branches the West Mancos is the longer, rising in Owen Basin under Mount Moss and Hesperus, Babcock, and Spiller peaks, all of which exceed 13,000 feet in height. The extreme head of the West Mancos is shown in fig. 11.

> The East Mancos heads in Rush Basin, under Spiller Peak, an amphitheater corresponding to that at the source of the west fork of the river. The Middle Mancos is practically a branch of the East Mancos, heading in minor streams on either side of the Hogback.

Eastern drainage.—As shown by the topographic sheet, the two principal branches of Lightner Creek rise on the eastern side of the higher peaks of the La Platas. From Eagle Pass north to Cumberland Peak, which is just beyond the eastern margin of the quadrangle, are a number of small branches of Junction Creek. But while Lightner and Junction creeks have cut back to this erosion from the other high summits of the group. This is Bald Knob (11,600+ feet), situa Mountains was the course of an old Indian trail, cut slightly into the core of the group, leaving ted east of Baker Peak, about one-half mile east of which in several places has been worn deep in but a jagged crest between their headwaters and the quadrangle line. While Lightner and Junction creeks have but short courses

greater amount of work than the forks of the Mancos in carving the La Plata dome. At 5 miles from the mouth of Tirbircio Gulch their stream beds are lower than that of the La Plata at the same distance.

The greater cutting power of these streams is due to the fact that they are branches of the Animas River, a large stream whose valley bottom 9 miles east of the quadrangle line is at 6600 feet, or nearly 2000 feet lower than the La Plata at its

The inner circle of peaks.—The principal summits of the La Platas are nearly all situated upon the narrow divide on either side of the La Plata tains the fall is nearly the same as for the first 3 | River. A few, like Hesperus Peak and Banded Mountain, are upon spurs from this divide and near to it. Since many of the peaks rise above timber line a thousand feet or more, Ruggedness and are carved from hard rocks, they of peaks above timber line. have the characteristics of rugged form

> modified by talus slopes common at this altitude throughout the Rocky Mountains. The western peaks average somewhat higher than the eastern and are of bolder outline, both facts being due to the resistant rock masses from which they have been sculptured.

> In fig. 10 may be seen the forms and relations of the highest peaks of the group, while in fig. 11 are details of Hesperus Peak and Mount Moss. Lewis Mountain, the highest summit east of the river, is shown in fig. 1.

Outlying summits.—The slopes from the inner 6 is shown a ravine at the head of Bedrock Gulch in a few places by lesser summits to be included in the La Plata group. Of these, Helmet Peak and the Hogback are the main ones on the west. On the north Sharkstooth is the only one of note, | La Plata quadrangle. The white pines, and Bald Knob has a similar distinction to the piñons, and cedars, growing sparsely east, while southward there are no outliers. In over portions of the plain near the point all cases these outer peaks are due to large masses | of view, save it from the appearance of utter of igneous rock extending beyond the usual line desolation. Yet, where irrigation is possible, in of their prominent occurrence.

the La Platas causes them to precipitate an abunover the arid plateaus which lie west and south. | the El Late Mountains. Their slopes are thus in general heavily timbered by spruce, fir, and aspens in the zones

usual at these elevations in Colorado. Heavily The Illustration sheets show the char-

acter of the forest-clad slopes and the line, varying between 11,500 and nearly 12,000 feet, at which the forest gives way to a scant vegetation of alpine character. Downward there is a transition to the commonly sparse growth of white pine, piñon pine, scrub oak, and cedar, which covers large areas of the adjacent plateau country, as shown in fig. 3.

yet caused great havoc on the wooded slopes, but forest fires have in places destroyed

much of the natural beauty of the Timber destroyed by mountains. Burnt Timber Gulch is a name bearing melancholy testimony to one of the earlier devastations of this character.

Rock coloration.—The coloration of the mountains in rock exposures varies from the gray tones of the igneous masses and of the La Color varia-Plata sandstone to the brilliant red gray to characteristic of the Dolores formation, into which most of the igneous rocks are intruded. In the center of the group this red color has in most places been destroyed by metamorphism, being replaced by dull brown or green, but on of the Dolores assumes its normal hue. Brilliant discoloration of both igneous and sedimentary formations occurs locally where the pyrite which had been disseminated through the rocks has suffered decomposition.

AREA WEST OF THE MOUNTAINS.

Transition slopes.—Were the La Plata Mountains due to erosion of an uplifted dome of sedimuch more regular than is actually the case and | La Plata and San Juan uplifts. With sides of the mountains intrusive igneous

rocks in the soft shales overlying that Erosion of shales hinsandstone have hindered the uniform dered by igneous removal of the shales by erosion. Where

caused peaks or ridges, like The Hogback, which are outliers of the mountains. The lesser masses the presence of the porphyry bodies, as in the Rampart Hills, or from the protection afforded to underlying shales, as on the divide between Bear Creek and the West Mancos, and in a hill north of The Hogback.

and northwestern slopes of the La Platas would on the southwest, where the dip slope of the Dakota is uninterrupted from an elevation of more inclined plateau at somewhat below 8000 feet.

The Rampart Hills present a cliff to the westward, reaching 400 feet in height in places, making | efee Mountain and the La Plata River is such as a feature which is very prominent in the view from the plateau, but insignificant from the mountains. Since the porphyry line of the quadrangle the mesa level is much sheet causing this rampart has been nearly more prominent, and it becomes still more so denuded of its overlying shales the effect is that | farther south. of an elevated block of the plateau.

cos River and in the area where the Middle and | the gorges cut in the Mesa Verde, and character of East Mancos unite, the very gently sloping surface | so have the eastern branches of Cherry southern may be considered the eastern border of the Dolo- Creek between Spring and Hay gulches. res Plateau, itself the eastern extension of the | The main valley of Cherry Creek also assumes the Great Sage Plain. Fig. 3 gives a better idea of | canyon form near the border of the quadrangle, this fact than could be obtained from a descrip- but the creek has cut back at its head beyond the tion in words, and also brings out the relation to | rim of the mesa and has excavated a broad valley the higher plateau of the Mesa Verde.

erally arid waste lying beyond the borders of the

the vicinity of the main streams, this desert may Forest growth and timber line.—The altitude of | be transformed into valuable farm lands. This has been done on a large scale in the wide Montedant rain from the moisture-laden currents coming | zuma Valley, which is shown in fig. 3, in front of

> The plateau surface in and adjacent to the La Plata quadrangle has a gentle dip, due to the influence of the mountain uplift on the Dakota from its head and the same distance feren sandstone, which is the floor of the plateau over a large area, as shown by the Hayden geological | deeper into the Cretaceous than has the main

Canyons.—While the portion of the Dolores Plateau embraced in the quadrangle is small the gorges of the West Mancos and of Chicken and Turkey creeks are characteristic of the

canyons found in the wide area to the plateau canwest. The smaller canyons that are Mining operations in the La Platas have not cut in the sandstone floor of the plateau have vertical cliffs or very steep slopes. The larger canyon has a similar character, since the Dakota sandstone is of sufficient thickness to maintain the bounding scarp and the lower formations are themselves favorable to the perpetuation of the canyon form.

SOUTHERN PORTION OF QUADRANGLE.

Extension of Mesa Verde.—The southern third of the La Plata quadrangle belongs physiographically to the eastern extension of the

Mesa Verde, a plain normally some 2000 feet above the level of the Dolores Plateau. This high level is maintained

as a plateau by the preservation of massive Cremany of the outer peaks and ridges the red color | taceous sandstones which have been entirely removed over the large area of the Dolores and Great Sage plains. The northern rim of that part of the Mesa Verde lying west of the Mancos tezuma Valley, which is really the plain of the Dolores Plateau as it abuts against the slopes from the higher plain.

Passing eastward from the Mancos River the formations to which these two great plateau mentary rocks only, it may be safely said that the levels owe their existence come more western slope of the mountains would now be and more under the influence of the Plata uplift on the plawould correspond closely to the dip of the Dakota | increasing dip the vertical distance between the | the section displayed in the La Plata Pla sandstone. But on the western and northwestern | rim of the mesa and the level of the Dakota sandstone floor at its northern base naturally decreases, until in Menefee Mountain, on the western border | former because erosion has removed them from of the La Plata quadrangle, it amounts to only | this area, the latter because erosion has not cut about 1200 feet. Between the sandstones forming the porphyry masses are large enough they have the floors of the Dolores and Mesa Verde plains occurs the soft Mancos shale, and a broad transverse depression naturally appears in the zone of cause minor inequalities on the slopes, either from | this shale between the two sandstones, south of the La Platas. The greater part of this depression is occupied by the upper course of Cherry niferous and the Dakota Cretaceous have been

to the north along the front of the mesa proper Were it not for the intrusives the entire western | and in the western part of the La Plata quadrangle, as expressed by the contours of the topohave presented a character much like that seen graphic map. Nearer the La Plata River this scarp is less pronounced, as is clear from the map and fig. 7. But farther east it again becomes than 10,000 feet down to the level of the gently | notable, as may be seen in fig. 2, which shows the more steeply inclined strata near Durango.

While the dissection of the mesa between Mento obscure its character as a plain near its northern border, the map shows that on the southern

Dissection of the mesa.—East Canyon, a branch The Dolores Plateau. Beyond the West Man of the Mancos, has much of the usual character of

in the soft shales. As will be more fully discussed | Holmes distinguished three formations between | layers, but chiefly to a ferritic pigment in minute

In fig. 3 may be seen the monotonous and gen- in a later section, there are grounds for believing the Carboniferous and the horizon of the Dakota that East Canyon was once the course of the East Mancos River.

> The La Plata Valley is a broad, shallow depression from Hesperus downward and scarcely assumes the canyon form, yet according to the Hayden map the stream cuts into the level of the Mesa Verde for 20 miles below the quadrangle line. It never has high walls, however.

It will be seen by the map that all the western tributaries of the La Plata cross the south border of this quadrangle at considerably lower levels than the river itself. This is most striking in the case of Hay Gulch, which at 4 miles west of the La Plata has cut 500 feet

stream. This difference of level is the more remarkable since Cherry Creek is a branch of the La Plata, its mouth lying about 15 miles southwest of Hesperus, according to the Hayden map. The conditions of erosion by which this result has been reached are discussed by Mr. Spencer in the section on "General geologic problems."

SEDIMENTARY ROCKS.

The sedimentary formations of the La Plata quadrangle belong to the Mesozoic group, and the section resembles in detail that of the Plateau country to the westward rather than that of the Rocky Mountain system. As the area is situated in the border zone between these geological provinces, the formation units of the quadrangle are naturally seldom identical with those of distant regions on either side and can not in all cases be closely correlated with them. The formations apparently succeed one another in an unbroken series, but as there are no recognized equivalents of the lower Cretaceous as developed in Texas, it appears either that there is an undiscovered gap in the section or that certain formations have been wrongly assigned to the Juratrias. The formations distinguished on the map are those demand-River is shown in fig. 3 in its relation to the Mon- ing such recognition by their local development, and the age assignments have been made in accordance with the fossils obtained or by comparison with the best established sections of Colorado. All but the two highest Cretaceous formations are identical with the beds of the Telluride quadrangle and have been described in the Telluride folio. So far as the known Mesozoic group of the region is concerned.

quadrangle is nearly complete, only the highest and lowest members being wanting, the

quite deeply enough to reveal them.

JURATRIAS PERIOD.

Subdivision into three formations.—The sedimentary rocks of southwestern Colorado occurring between the uppermost recognizable Carboreferred to three divisions, the Dolores, La Plata, The Mesaverde sandstone presents a bold cliff | and McElmo formations. All of these are developed in the Telluride quadrangle, and the general grounds for this subdivision as well as the individual characteristics of each formation are presented in the Telluride folio (No. 57, Geologic Atlas of the United States, 1899) somewhat more fully than in the following description.

The three divisions of the Juratrias thus far established are founded mainly upon stratigraphic position and lithologic character, with which the scanty fossil evidence is in full accord. The lowest formation, the Dolores, embraces the greater part of the "Red Beds" of this region, and although the known fossils are few in number they furnish better proof of Triassic age than has been obtained in many other localities where reddish strata have been assumed to belong to that period. The other two formations, the La Plata and the McElmo, possess lithologic characters making their correlation with the strata of assumed Jurassic age, else-

were variously designated on the Hayden map of | rated can not always be closely correlated. this portion of Colorado. In the Dolores and San Miguel valleys of the Plateau country W. H. | partly to pink grains of feldspar in the coarser

sandstone as defined in this folio. These three divisions were called Trias, Jura, and Lower Dakota on the Hayden map. Dakota of Hayden map. Their boundaries can not now be closely compared with those of the Dolores, La Plata and McElmo formations. To the east of the Animas Valley F. M. Endlich distinguished no Triassic or Jurassic beds, including the former in the Carboniferous and the latter in the Dakota Cretaceous. The Hayden map of the vicinity of the La Plata Mountains represents a necessary adjustment between the usages of Holmes and Endlich. The apparent dying out of the Trias. Jura, and Lower Dakota shown by the map expresses no fact or theory of distribution. In fact, the continuity of all formations distinguished by Holmes is clear as far eastward beyond the Animas as recent observations have been made.

The La Plata and McElmo formations are subdivisions of what was called the Gunnison formation by Eldridge in the Anthracite-Crested Butte folio (No. 9, Geologic Atlas of United States, 1894). Their distinction is due entirely to the desirability of recognizing the individual character of the two divisions as developed on the flanks of the San Juan, especially the strongly marked La Plata horizon.

DOLORES FORMATION.

Definition.—The name Dolores formation was first applied in the Telluride folio "to the Triassic strata of southwestern Colorado and of adjacent territory so far as a direct correlation may prove to be practicable." The formation was so called on account of the excellent exposures along the banks of the Dolores River in the Rico quadrangle, which lies next north of the La Plata. The definition is intended to provide for the contingency arising in the event of the discovery of Permian or Permo-Carboniferous fossils in the lower part of the complex of beds referred to the Dolores.

The Dolores formation is now assumed to

embrace a complex of about 2000 feet of predominantly reddish sandstone, grits, conglomerates, and shales, all highly calcareous, limited below by the Rico formation, containing a typical Permo-Carboniferous fauna, and above by the La Plata sandstone, of assumed Jurassic age. The Rico formation is also reddish in color and is otherwise similar to the Dolores in Lower Bo ary of the Dolores. lithologic constitution, and its upper limit has been arbitrarily drawn for the present at the highest horizon observed to contain its characteristic fauna (Geology of the Rico Mountains, Colorado, by Whitman Cross and Arthur Coe Spencer: Twenty-first Ann. Rept. U. S. Geol. Survey, Part II, 1900). It is evident that future

discoveries may not only place the upper boundary of the Rico formation at a higher horizon but may also establish an intermediate Permian formation between the Rico and the Dolores. Until such discoveries have been made it seems best to assume that above the Rico horizon the apparently indivisible section of the "Red Beds" in this geological province belongs to the Dolores. Vertebrate, invertebrate, and plant remains

have been found in the upper half of the complex referred to the Dolores, and although these fossils are as yet few in number they agree in indicating the Triassic age of the beds containing them. General description.—The Dolores formation

has in general the characteristics commonly found in the "Red Beds" of the Rocky Mountain region. It consists of series of Beds". interbedded calcareous sandstones, grits, conglomerates, and sandy shales, the latter often grading into earthy limestones. Individual beds of sandstone or conglomerate of uniform texture are seldom more than 25 or 30 feet in thickness, although fine-grained and thin-bedded sandstones with slight textural variations may exceed 100 feet in thickness. Many strata can be traced laterally for long distances, but local variations where developed in Colorado, a most natural one. in constitution and thickness are so great that The formations here assigned to the Juratrias | detailed sections made at points not widely sepa-

The reddish color of the formation is due

particles. This color is dark or dull red in the lower portion, and a brighter red in the upper part; but gray or pinkish sandstones appear here and there, and efforts to cause and variation

distinguish divisions in the formation by shades of color have been unsuccessful. The red color is, moreover, not strictly limited to the Dolores formation in this region. The Rico beds are dull reddish brown in color, and various brilliant hues of red and orange locally appear in the lower sandstone of the overlying La Plata.

A calcareous cement is present in abundance throughout the Dolores formation, emphasizing the lithologic similarity between the Triassic and the underlying Carboniferous, and contrasting with the purely siliceous sandstones common in the Jurassic and Cretaceous.

Thin limestones, almost free from sand grains, are found locally. These may be white, mottled, or pinkish in color and are quite different in appearance from the common sandy or marly strata of strong reddish color, which are often 10 feet or more in thickness and occur throughout the formation. The latter beds have the habit of fine-grained massive sandstones, break with irregular fracture, and from the wide variation in the ratio between arenaceous and calcareous material they are at times called sandy limestones and again calcareous sandstones.

derived chiefly from granites, gneisses, schists, and the ancient quartzitic sediments of the San Juan, like those now seen in the Animas Canyon and the Needle Mountains. The finer-grained strata are rich in quartz and the coarser ones in feldspar. Limestone pebbles characterize certain conglomerates in the upper part of the complex, but may be found occasionally in lower strata.

While there is no evidence indicating that the series of strata now referred to the Dolores should | broken up by wave or current action. be further subdivided into formations, there is nevertheless a broad litho-

logic distinction which may be drawn between an upper and a lower portion. It is the upper of these two divisions, moreover, which contains all of the fossils thus far obtained, so into different formations it may be predicted that the most feasible one for such a purpose.

that the series of beds referred to the Dolores may be divided into a lower, coarser-grained member, unfossiliferous as far as known, characterized by conglomerate strata containing granite, gneiss, quartzite, and, rarely, limestone pebbles; and an upper, predominantly fine-grained member, characterized by limestone conglomerate, often fossiliferous. This division is plain in the region thus far examined, except in the eastern part of the Telluride quadrangle. On the South Fork of Mineral Creek in that area the conglomeratic layers of the upper part of the formation contain an unusual amount of granitic and schistose material, and limestone pebbles are not uncommon in strata of the lower member. A prevailing coarseness in the beds also tends to obliterate the distinction elsewhere applicable for the subdivision in question and suggests approach to the shore line of the Dolores sea.

The lower member.—The strata comprising the lower member of the Dolores are so metamorphosed in the La Plata Valley that the primary character of the complex can not there be well have not been found. studied, but in the adjacent Rico and Durango quadrangles the formation is perfectly exposed. All but the lowest beds are well shown in Bear Creek and in Lightner Creek near the La Plata quadrangle line.

lower division are on the one hand the heavy grits and conglomerates, and on the other rather crumbling, strong-red, calcareous sandstones, free from pebbles, grading into sandy marls or impure limestones, of conchoidal or irregular fracture. The bedding of these layers is often inconspicuous in small fragments. Other reddish sandstones are thin bedded, with clay or micaceous partings, and exhibit ripple and current markings often appears sporadically in the lower conresembling fucoidal traces. Mud flakes, molded | glomerates of the formation. Observations have

beds reaching a maximum thickness of 40 feet. Their alternation with finer-grained

and softer beds causes a succession of benches and ledges on the longer slopes and ridges made up of this complex. The grits are generally rich in pink

feldspar and white quartz and are either gray in color or have a much lighter pink tone than the average of the formation. Pebbles are scattered sparingly through all grit layers, causing transitions to conglomerate, and a gravel matrix is abundant in the latter strata. Bowlders a foot and more in diameter occur in the coarser conglomerates in some places, but the average size is

only a few inches. The most prominent grit and conglomerate beds are in the lower few hundred feet of the formation, but two very persistent layers occur, one at the summit and the other 100 feet or more below the top of the lower member. These two beds permitted the drawing of a provisional line separating the two members here under discussion throughout bers of the

the La Plata quadrangle. The upper of these conglomerates has an abundant arkose matrix and its pebbles are small. White and pink quartz are the most prominent materials, but quartzite and limestone pebbles were found even The clastic materials of the Dolores beds are in the uppermost layer of this lower division. A dull altered porphyry is one of the constituents. Thin limestones of reddish or gray color, which appear to be homogeneous on freshly fractured planes but look rather like conglomerate on weathered faces, are locally present. In some cases there appears to be a gradation from a massive limestone to a layer with rounded fragments of limestone in a scanty matrix of sand, as though a soft calcareous stratum had been partially

The upper member.—The upper member of the Dolores has within itself a bipartite character. Succeeding the conglomerate noted as the top of the lower division comes an alternation of sandstones, sandy shales, and fine conglomerates, the last characterized by small pebbles of a peculiar that if in future the whole complex is split up | limestone. Following this series is a fine-grained reddish sandstone, more or less shaly, which conthe line to be mentioned will in all probability be | tinues to the La Plata formation above. The limestone conglomerates and the fine-grained sandonly fossils yet found in it and are in general the most distinctive beds in the series.

The limestone conglomerate characterizes several bands, within which it has a variable development. In places a ledge 20 feet thick

may consist chiefly of conglomerate, Bands of limestone conglomerate. with numerous sandy partings, while a few yards away the same beds may be composed mainly of sandstone with numerous thin layers of conglomerate, some of them less than an inch in thickness. Other bands of conglomerate are more persistent, but observations to the present time indicate that possibly no stratum of the limestone conglomerate is continuous throughout the entire area between the Animas and San Miguel rivers. These conglomerates are more common in association with a series of thin-bedded gray sandstones or greenish-gray sandy shales, a complex 50 to 75 feet in thickness, which can be traced for long distances by reason of its contrast in color with the prevalent red of the formation. Plant stems are common in this series, but determinable leaves

The limestone of the pebbles in the conglomerate is usually very fine grained and seldom resembles the strata of the Carboniferous as seen in the Animas Valley. No fossil-bearing pebbles have been found and the material resembles the In this region the two principal features of the thin limestones occasionally developed in this part of the Dolores itself rather than those known from any other formation.

> Commonly the pebbles of limestone are very small, and they are of such uniform shot-like appearance as to suggest that they are pisolitic, but gradations occur to pebbles several inches in diameter and then usually unsymmetrical in form. Similar limestone also Origin of the limestone pebbles.

Owing to the common occurrence of teeth of dinosaurs in the conglomerate, it has been found | before they could be identified. convenient to speak of them as the "Saurian conglomerates," as explained in the Telluride folio.

The distance between the uppermost "Saurian conglomerate" and the base of the La Plata sandstone above varies with the increasing thickness in the area between the San Miguel River and the Animas. This is 30 feet on the San Miguel in some places and nearly 500 feet in Lightner

These upper sandstones and shales are even and fine grained and grade into one another so of Grand River, near Red Dirt Creek, but, so far regularly that the entire thickness from the La Plata to the first limestone conglomerate appears | has not been traced farther north. as one member of the section. There is a variable amount of shale, some localities presenting this complex as a sandstone. The bands of massive sandstone are often 20 feet or more in thickness, the bedding being indistinct in small blocks.

The color of this sandstone is usually a bright | the Carboniferous, Permo-Carboniferbrick red, shading sometimes into purplish above and a darker duller red below. Where the overlying La Plata sandstone is also highly colored the two formations seem sometimes inseparable, but the hue of the higher formation is commonly orange or yellow.

The varying thickness of the beds in question is supposed to be due to an unconformable overlap of the La Plata sandstone, but the friable nature of the Dolores sandstone and the gradual transgression of stone and the gradual transgression of La Probable unconformity between the La Plata and Dolores. the upper formation have thus far prevented a demonstration of the assumed unconformity. No beds of different character have as

The variation in thickness of this uppermost member of the Dolores formation is considerable reaches 500 feet on the northern border of the quadrangle, east of Indian Trail Ridge and in Lightner Creek.

yet been detected between the two sandstones.

fossiliferous portion of the beds referred to angular unconformity is not distinct in the Dolores formation is fairly well proved. The evidence consists of scanty vertebrate, invertebrate, and plant remains found in the limestone brate, and plant remains found in the limestone brate. The studies thus far made on the southern and stones associated with them form the most note-conglomerates or the associated strata in the most sandstones of the Dolores, as western flanks of the San Juan Mountains show | worthy portion of the formation, as they carry the | upper part of the formation. As stated above, | described above. The upper limit of the La the limestone conglomerates are characterized by Plata is drawn at the base of a marked clay the presence of teeth of crocodiles and dinosaurs. F. A. Lucas has determined the former as belonging to the genus Belodon and the latter Vertebrate as belonging to a megalosauroid dino- remains. saur, Palæoctonus. Both of these are Triassic types. The jaw of a crocodile found by H. S. Gane in the Dolores formation at Clay Hill in Utah has been described by Mr. Lucas as belonging to a new genus having decided Triassic affinities, to which he gave the name Heterodontosuchus ganei (Am. Jour. Sci., 4th series, Vol. VI, 1898, p. 399).

A small gasteropod shell, poorly preserved, has been found at localities in both the Rico and La Plata quadrangles. According to T. W. Stanton it belongs to *Viviparus*, or some closely related genus, and it is stated by him Invertebrate fossils. that the earliest previous record of this genus is from the Jurassic. A unio of specifically undeterminable character was found in the highest exposed conglomerate of the Cataract Creek secby Mr. Stanton to be in all probability one of the forms obtained by Cope from the Trias on Gallinas Creek, New Mexico. A single specifically determinable plant has been found in the Rico quadrangle, just below the limestone conglomerate series. This has been determined by David White as resembling Pachyphyllum münsteri, a Triassic plant.

Fossils from the Dolores formation in Colorado were found by R. C. Hills and first announced, with some provisional determinations, in 1880 and 1882 (Am. Jour. Sci., 3d series, Vol. XIX, 1880, p. 490; Vol. XXIII, 1882, p. 243). Vertebrate remains found by Mr. Hills were the teeth of Belodon and the remains of a fish regarded by him as a ganoid, similar to Catopterus gracilis.

The grits and conglomerates occur in massive | ments as to the origin of these limestone pebbles. | or twelve apparently determinable species of plants. Unfortunately these fossils were lost

> The fossils found in the Dolores indicate a general correlation with the Triassic of Gallinas Creek on the western side of the Sierra Madre in New Mexico, from which with the Trias of New Mexico.

E. D. Cope obtained crocodilian and

of the red sandstone which occupies this interval | dinosaurian remains similar to those of the Dolores. Probably the strata of the Abiquiu copper mines of New Mexico, from which J. S. Newberry collected several Triassic plants, belong to the same horizon. The tooth-bearing horizon of the Dolores has been found by R. C. Hills on the north side as the writer is aware, this fossiliferous horizon

While much of what has been called the "Red Beds" in Colorado and adjacent territory is doubtless the equivalent of the Dolores formation, it appears that the continuity must be traced, or fossils found, to establish identity, since

ous, and Jurassic beds are in many localities characterized by a reddish color and may be similar in lithologic character to the Dolores strata.

LA PLATA SANDSTONE.

Name and definition.—This formation was first named in the Telluride folio from its prominence in the La Plata Mountains. It is defined to include a marked lithologic unit consisting principally of two massive sandstones with a variable calcareous member between them, lying at the base of the fresh-water complex thus far assigned to the Jurassic in Colorado. The sandstones are usually white and quartzose and in thickness greatly exceed the calcareous beds between them, which in the Telluride quadrangle were locally even within the La Plata quadrangle. It is not | reduced to a single blue-gray, massive limestone, more 250 feet thick on the East Mancos, but | 6 to 8 feet in thickness. The base of the formation is the well-known plane of unconformity by which the lower sandstone overlaps all older sedimentary rocks to the Archean, as shown north of Age and correlation.—The Triassic age of the the San Juan Mountains and elsewhere. This

shale of green or reddish color, which signalizes the beginning of the alternating shales and sandstones grouped in the McElmo formation. No determinable fossils have been found in the La Plata formation adjacent to the San Juan Moun-

Description.—The total thickness of the La Plata is from 250 to 500 feet in this quadrangle, becoming less northward to a minimum of 100 feet in the Telluride quadrangle, but increasing to the east and west. The limestone occurs here below the middle of the formation and varies from 8 to 30 feet in thickness. The sandstones are very white, massive, fine and even

grained, presenting in some places very white bands 75 feet or more in thickness, forming sheer cliffs. within which stratification is hardly

discernible except in large exposures. Outcrops of such beds often form sheer cliffs or smooth. rounded faces of bare rock. The normal sandstone is rather friable, but in the mountains is tion in the Telluride quadrangle. This is thought | in many places changed to dense quartzite, as at the head of the East Mancos River and on the divide to the east. A very marked cross bedding appears in some of the more massive layers, being brought out by lines of shading rather than by change in the sandy particles. Occasionally an intricate and delicate veining by secondary white quartz appears in the more massive layers.

The two sandstone members are usually of similar character, but the upper one is more likely to be thinly or regularly stratified and to have thin shale partings. The sandstones are nor mally white or light gray, but at some localities north of the mountains, and especially in the western plateau country, the lower member may be in part brilliantly colored in varying shades of orange or yellow. This coloration ordinarily to resemble shells, are found at various horizons. not extended far enough to warrant general state- He also found a small gasteropod shell and eleven extends irregularly from the base upward and it

La Plata.

the underlying Dolores sandstone.

dal fracture, and destitute of fossils. The shales which replace it are also dark, some sandy, others grading into limestones. Adjacent to these shales the sandstones are inclined to become thinly bedded, and so the complex between the more massive sandstones sometimes exceeds 50 feet in thickness. These calcareous strata are not often well exposed, for they naturally weather away more rapidly than the sandstones, and on the bench thus formed the softer strata are more or less concealed by débris from above.

Distribution.—The La Plata formation extends in almost connected outcrops from the northern line of the quadrangle, in Indian Trail Ridge, through the western summits and thence in steeply upturned position across the southern slope of the mountains. It is locally cut through by erosion or interrupted by the monzonite and diorite stocks, as illustrated on the map. In the higher points and ridges it forms cliffs and débris slopes greatly resembling those of the intrusive porphyry sheets which occur in many places throughout the mountains, and a close inspection is necessary to determine the distribution of these two rocks. To this fact is probably due the erroneous representation on the Hayden map of the La Plata Mountains, where porphyry is shown in a considerable area occupied in fact by the sandstone. Fig. 4 shows the light outcrops and talus slopes of the La Plata at the southern end of Indian Trail Ridge.

The domal structure carries the La Plata formation down the valleys of the East and West Mancos, the white bands being very noticeable wherever the contrasting natural red color of the Dolores is preserved.

Age and correlation.—The age of the La Plata formation is more definitely indicated by its stratigraphic position than by any other criterion. The only fossils thus far obtained from it in the region adjacent to the San Juan Moun-

tains were some small fish scales and vertebræ found north of Engineer Plata sand-Mountain, northeast of the La Plata

quadrangle. These were lost before they could be identified. Minute fresh-water shells referred | U. S. Geol. Survey). This resemblance, which has to Limnea, Valvata, and Cypris were discovered | also been noted by the writer, seems to by G. H. Eldridge in the limestone occurring near | him quite sufficient to warrant a gen- of the Mcthe base of the Gunnison formation in the Elk eral correlation of the McElmo divi-Mountains, a horizon probably identical with the | sion of the Gunnison with the complex calcareous zone between the sandstones of the at Morrison, Oil Creek near Canyon, and other La Plata. Certain crocodilian or dinosaurian localities along the Front Range where Atlanteeth found in a local conglomerate at the base of tosaurus and other huge dinosaurs have been the formation in the Telluride quadrangle rest under the suspicion of having been derived from the Dolores "Saurian conglomerate," since this horizon is but a few feet below the La Plata in the San Miguel Valley.

MCELMO FORMATION.

Name and definition.—The alternating series of sandstones and shales described under this heading was called the McElmo formation in the Telluride folio, from an important tributary of the San Juan River heading about 10 miles west of the La Plata quadrangle, on the Dolores Plateau. In the main McElmo Valley and in its side canyons the strata of the formation are well exposed below the Dakota. The formation does

localities, and also in total thickness.

The sandstone beds are much like those the McElmo, of the La Plata and Dakota. They are Dakota sand-stones. fine grained, quartzose, friable, and gray

or yellowish in color. The lateral variation in thickness is marked, as are also the transitions to shaly sandstones by increase of argillaceous matter. A characteristic of many sandstones is the abundance in them of green shale flakes or scales, a diagnostic of value in distinguishing the McElmo from the Dakota or the La Plata where exposures are poor. Few sandstones exceed 20 feet in thickness in this area.

The lithologic similarity between the McElmo | Cretaceous is represented in southand Dakota formations is emphasized by a con- | western Colorado by an important series of for- | Park, Livingston, and other post-Laramie forma- | the Pierre division of the Montana group.

The limestone is often bluish black, of conchoi- frequently at 50 or 60 feet below the basal conglomerate of the Dakota. This lower stratum is | fossils which have been found in the La Plata sometimes 10 or 15 feet thick. The distinctly and adjacent quadrangles show that the faunas of shaly strata of green or red color above this conglomerate make its reference to the McElmo necessary upon the criterion adopted. A similar conglomerate appears more locally at other horizons.

The shales of this series are predominantly green in the La Plata quadrangle. The color is pronounced and has led many prospectors to search for copper ore in green and variegated shales. this formation. Pink, dark-red and

chocolate-brown shales occur, and occasionally the variegated coloring approaches that characteristic of the formation in many other regions. The shales are seldom free from sand, and a gradation to sandstone is more common than are sharp lines of division.

quadrangle is 400 to 500 feet, formed of approximately equal parts of sandstone and shale. The thickness increases northward to a maximum of 900 feet in the Telluride quadrangle, largely through greater thickness of the sandstone members of the series. The highest and lowest beds assigned to the McElmo are shales that are strongly marked and highly colored, contrasting with the Dakota and La Plata sandstones.

Distribution.—The McElmo formation naturally has a distribution similar to that of the La Plata. By its greater thickness and higher position it covers larger areas upon the mountain slopes, and the canyons of the West Mancos and Chicken Creek display it beneath the Dakota. The crumbling beds cause less prominent ledges than do the more massive strata above and below, and on dip slopes the presence of the McElmo is often determinable only by the abundant fragments of sandstone with green shale flakes.

Age and correlation.—The strong lithologic resemblance between the Gunnison beds of the Elk Mountains and the celebrated dinosaurbearing beds of Morrison was evident to Eldridge, who described the Morrison strata in the monograph on the Denver Basin (Monograph XXVII,

found. The name Morrison was given by the writer to the vertebrate-bearing formation of the eastern foothills because it seemed best not to correlate it too closely with the Gunnison beds of the Elk Mountains, in which no fossils were known (Pikes Peak folio, No. 7, U. S. Geol. Survey). No fossil remains have as yet been described from the McElmo beds, as here defined.

The Jurassic age of the Morrison formation has been maintained by Marsh and other vertebrate paleontologists on account of the numerous dinosaurs and other vertebrates contained in it, but, as has already been pointed out, the reference of these strata to the Jurassic involves the assumption of a great stratigraphic break or hiatus between them and the Dakota. No such Holmes's San Juan section, which he tured Cliff Sandstone, San Juan section, which he sandstone, S not appear to be divisible in this region, as the | break is indicated by the stratigraphy, but there individual beds are too thin to be mapped sepa- is, in fact, one of the most extensive unconformities known in the Rocky Mountains occurring Description.—The McElmo varies considerably | between the Triassic and the so-called Jurassic at | out fossil evidence. The present survey has also in the ratio of sandstone to shale in different the horizon represented by the base of the La Plata sandstone. Until the vertebrate remains known to exist in association with invertebrate fauna in the lower Cretaceous of Texas have been compared with the fauna of the Morrison beds, there must remain some doubt in the minds of stratigraphers as to the true position of the latter.

CRETACEOUS PERIOD.

SECTION OF SOUTHWESTERN COLORADO.

As has already been stated, no strata of lower Cretaceous age corresponding to the section so well developed in Texas have been recognized in Colorado. The upper lower Creta-ceous strata.

bles as much as an inch in diameter, occurring members of sections in other parts of the State, while others are more provincial in character. The the period were here similar in character and succession to those known in other regions, but the strata in which they occur are not lithologically divisible, for purposes of mapping, into the same formation units which have been adopted elsewhere. In consequence of this unusual character of the upper Cretaceous section it has

been necessary to establish certain new Establishment of new formations. Three of these formations in the Cretaare represented in the La Plata quad-

rangle, and the whole section from the Dakota upward to the post-Laramie, inclusive, is characteristically developed in the adjoining Durango quadrangle on the east. While a thorough discussion of these formations is reserved for the Durango folio, an analysis of the section is here The total thickness of the McElmo in this presented. It is very similar to the generalized section for the San Juan Valley given by Holmes (Ann. Rept. Hayden Survey, 1875, Pl. XXXV).

The lowest Cretaceous formation recognized is the Dakota, which alone, of all the divisions, has the lithologic character common in other parts of the Rocky Mountain region.

Succeeding the Dakota comes a very homogeneous clay-shale formation more than 1000 feet thick, which from the invertebrate fossils found at several horizons must be supposed to represent the Benton, Niobrara, and a part of the Pierre formations as distinguished at the eastern base of the Front Range in Colorado. But the fossilbearing strata are neither sufficiently numerous nor well enough developed to serve as horizons for a satisfactory subdivision of this shale formation, which was named the Mancos shale in the Telluride folio.

The next higher distinguishable series in the Cretaceous section is the variable complex whose more massive sandstones cause the The Mesa principal scarps of the Mesa Verde. Verde formation of Holmes.

Holmes named this series after the Mesa Verde in the Hayden reports and his designation is here accepted. It was not used however, on the Hayden map. The Mesaverde formation consists of alternating sandstones and shales with several seams of excellent coal. The invertebrate fossils, which are not uncommon at several horizons in the shales and sandstones, cange throughout the Montana group, and hence strata to the Fox Hills, as was done on the Hay-

Above the Mesaverde formation occurs another formation of clay shale, reaching an observed thickness of nearly 2000 feet, which is very much like the Mancos shale, but contains fewer fossils. The only identifiable form thus far found in this shale occurs also in the Mancos shale, so that this division is still apparently "Sand Shale Group" of below the true Fox Hills. This for-

mation is called the Lewis shale. Holmes designated it the "Sand Shale Group." Still above the Lewis shale is a second series of

sandstones, shales, and coals, bearing some resemblance to the Mesaverde formation, but differing in detail. The lowest member of this complex placed in the Fox Hills upon the evidence of invertebrate remains. The remainder was referred by Holmes to the Laramie, but withfailed to bring to light valid ground for assigning any of the beds in question to the Laramie, while there is some reason to believe that more than the lower sandstone belongs to the Montana group.

Between the uppermost quartzose sandstones of the Cretaceous and the Puerco marls (Eocene), which are well developed below Durango on the Animas, there occurs a series of beds not recognized by Holmes. These strata are composed mainly of andesitic débris, tuffs, or conglomerates, and it has been proposed Animas formation of andesitic

by the writer to call them the Animas beds or formation. The fossil plants obtained from the tuff layers clearly indicated that the beds may be correlated with the Denver, Middle

is in most places clearly different from that of | glomerate containing white and dark quartz peb- | mations, some of which clearly correspond to | tions, which paleontologists refer to the Mesozoic, although they are stratigraphically shown to be later than the great revolution which terminated the conformable succession of Cretaceous sedi-

DAKOTA SANDSTONE

Description.—The lowest member of the Cretaceous, succeeding the McElmo formation with apparent conformity, is the Dakota formation. It is here, as commonly in Colorado, a series of extremely variable gray or brownish quartzose sandstones, often cross bedded, with a peculiar conglomerate at or near the base and several shale layers at different horizons. Its thickness in this quadrangle ranges

The basal conglomerate, carrying small chert pebbles of white, dark-gray, or reddish colors, which is so persistent over large areas elsewhere in the Rocky Mountains, is here very variable in development, being absent

from less than 100 to 300 feet.

in some places and of unusual thickness or coarseness in others. Conglomerate of this character is not, moreover, strictly confined to the base of the section.

The shale members are strongly developed near the middle and again near the top of the series. These are dark, strongly carbonaceous, with abundant indistinct plant remains, and in many places one or both of the shale seams in the

horizons has a thin coal seam, sufficient to induce prospecting on its outcrops, but nowhere of economic importance in comparison with the neighboring coal measures of the Mesaverde for mation. The upper shale bed has a thickness varying from 25 to 50 feet. Above its coal seam there is sometimes a transition to the great shale series above by alternation of thin sandstone and

The variability of the sandstones in thickness and in purity makes close correlations of sections in different parts of the quadrangles difficult The general character of the formation remains most clearly the same over this entire section of Colorado.

The Dakota sandstone is, as a rule, much more highly indurated than the La Plata or McElmo sandstones, largely owing to its containing hydrous iron oxide as a cementing substance. It therefore resists erosion and becomes very prominent in scarps facing the canyons which cut below it in the plateau country. It is, in fact, the floor of give no ground for a reference of the Mesaverde | the Dolores Plateau over hundreds of square miles, with thin remnants of the Mancos shales resting upon it and producing minor undulations. No determinable fossils have been discovered in the Dakota of this region, but indistinct plant stems and occasional leaves occur in the shale horizons.

MANCOS SHALE.

Name and definition.—The Mancos shale, which lies above the Dakota sandstone, was so named in the Telluride folio on account of its characteristic development in the Mancos Valley, especially about the town of Mancos, which is situated a few miles west of the La Plata quadrangle line. This locality is near the center of the area through which the shale has been traced in the resurvey of the region. The whole formation is well exposed along the north face of the Mesa Verde near Mancos, upon the slope shown in fig. 3, below the scarp of sandstone. The thickness of the Mancos shale within the La Plata quadrangle is about 1200 feet. Throughout this thickness it is an almost homogeneous

body of soft, dark-gray or nearly black, Great thickness of carbonaceous clay shale, varied only by our, soft, our, soft, our, shale. the presence of a few thin bands or concretions of impure limestone. These bands are fossiliferous, but are too few and too discontinuous to serve as practical guides in subdivision of the great shale series in which they occur. The Mancos is therefore a lithologic unit which it is necessary to recognize in the mapping of this region. It is limited below by the Dakota sandstone and above by the lowest sandstone of the Mesaverde formation of alternating sandstones and shales. As explained below, this lithologic unit embraces the Colorado group and a part of

Description.—The Mancos shale is very similar to the most typical clay shales found commonly in the Colorado group elsewhere in the State. It is seldom so highly bituminous as the Benton shale may be along the foothills of the Front than is commonly found in the Pierre shales of the Denver region.

containing fossils occur most frequently near the thickness; the "Middle Coal Group," the middle of the section. The lower fossil-bear-San Juan River. Stanton collected from them Colorado formation: Bull. U. S. Geol. Survey No. Telluride, Rico, La Plata, and Durango quad is particularly appropriate. rangles, and in reconnaissance work in adjoining areas, the various fossiliferous horizons have been seen and, as will appear below, persistent faunas have been found. With increasing experience it has become more and more clear that the fossil mapping.

Areas occupied by the Mancos shale have, naturally, no bold relief except on steep slopes below some more massive protecting formation, as on the slope of the Mesa Verde or the inclined mesas near Durango. In these localities there is a typical bad-land sculpturing at numerous points. Where the overlying formation has been removed, as over the area of the Dolores and thickness, agreeing with the observations of corresponding plateaus, the Mancos shale often forms low ridges or mounds of very gentle out | thinning eastward. The actual base of the line. Valleys cut into the Mancos between the formation in the La Plata quadrangle is a thin La Plata Mountains and the Mesa Verde scarp have broad and simple features, like the valley of | ing the homogeneous Mancos shale. From this Cherry Creek.

Fossils and correlation.—The invertebrate fossils thus far obtained from the Mancos formation | continually increasing in thickness, coarseness, of southwestern Colorado have all been determined by T. W. Stanton, and the following application of that fossil evidence in correlation is in stratum of coarse quartz sand, 100 to "Lower accord with his views.

groups of fossils, the one characteristic of the Benton shale and the other less distinctly so of the Pierre division Mancos frameton. of the Montana. The Benton forms obtained are the following:

Gryphæa newberryi. Ostrea lugubris. Ostrea congesta. Inoceramus labiatus Inoceramus fragilis. Inoceramus dimidius.

Prionocyclus macombi Baculites gracilis. Scaphites warreni. Anatina sp? Plicatula n. sp.

Of these forms Gryphæa newberryi and Ostrea congesta were commonly found in the Telluride quadrangle characterizing layers at about 125 and 225 feet respectively above the Dakota sandstone, but these layers are not so prominent in the La Plata quadrangle. The greater number of the species named occur in association at distances varying from 100 to 300 feet above the Dakota, in the La Plata and Rico quadrangles and near the town of Mancos, where they were obtained by Mr. Stanton. This fauna, according to Mr. Benton shale.

The middle shales of the Mancos carry little | and sandstones may be seen. evidence of fossils, but within the upper few hundred feet of the formation there are various thin discontinuous bands or Pierre fossil from the Mancos. lenses of impure limestone which often carry a few fossils. The following forms have been identified by Mr. Stanton:

Inoceramus cripsii, var. barabini. Inoceramus undabundus. Inoceramus sagensis. Syncyclonema rigida. Scaphites nodosus. Baculites asper.

B. sp?, a large form resembling B. ovatus or B. compressus. Arca sp? Ptychoceras (or Hamites). Turritella sp?

Pierre age. No distinctive fauna of the Niobrara division of the Colorado has yet been found.

La Plata.

MESAVERDE FORMATION.

Group" was applied by W. H. Holmes to the Range, but it has much less sand mixed with it | Verde (U. S. Geol. and Geog. Surv. Terr., 1875, | Pl. XXXVm, facing p. 244). He included in the han is commonly found in the Field Shales of the Denver region.

The calcareous and occasionally sandy layers

Escarpment Sandstone," 120 feet in Mesaverde formation.

Three members of the Mesaverde formation. base of the formation or else well up toward the of sandstone, shale, marl, and coal, 800 to 900 upper part. Below this sandstone is a series of top. Yet sometimes fossils are found nearer feet; and the "Upper Escarpment," massive sand sandy shales and thin sandstones, and above it a stone, 190 feet; a total of about 1200 feet. This ing beds have long been known. They were noted | complex included the variable series, largely of | the Lewis shale. There is little doubt that the by Newberry during the Macomb expedition in sandstones occurring between two strong shale 25-foot bed of sandstone, possible together with 1859 at many places along the Santa Fe trail. | formations — clearly the Mancos and Lewis shales | the sandy strata above and below, cor-Holmes traced them from the La Plata around as here designated. It is probable that the develoresponds to the "Upper Escarpment Sandstone," the west side of the Mesa Verde and across the opment of sandstone and shale varies locally both Sandstone" of Holmes, which has a at the base and at the top of the Mesaverde, but thickness of 200 feet in the Great Hogback, on near the town of Mancos and elsewhere (The the boundaries assigned to the group by Holmes the banks of the San Juan River, south of the are certainly very near those which are natural in Mesa Verde. 106, 1893, p. 32). In the course of mapping the the La Plata quadrangle and vicinity. The name

the Mesaverde formation is but a part of the known at various horizons, though few have thus Pierre division of the Montana group.

layers do not afford practical horizons for the sandstones and shales, with occasional marls or the Mesaverde belongs to the Montana group of subdivision of the Mancos shale for purposes of | thin limestones and a number of coal seams, some | the Cretaceous, and, further, that it is, in all of which are of excellent quality. The greater number of coal beds now worked in southwestern Colorado belong to this formation. The Mesathe La Plata quadrangle the maximum thickness | the La Plata quadrangle. of the formation is about 1000 feet. Westward Mr. Spencer found a somewhat greater Holmes in the Mesa Verde, while there is a quartzose sandstone, 6 inches thick, succeedstratum upward there is a succession of thin sandstone and shale beds for 250 feet, sandstones and amount, relative to the shales. This increase in sandstone culminates in a massive, cross-bedded ccord with his views.

The Mancos shale formation has yielded two to the "Lower Escarpment Sandstone" of Holmes. of Holmes. In this vicinity, and even on the north side of the Mesa Verde, this sandstone fails to cause a distinct lower scarp, as it does in some places in the San Juan Valley. Even there, however, Holmes notes that the greater part of the formation occasionally appears in one contin-

> there is in the La Plata area a complex of about | fore, no ground from this fossil evidence 600 feet of shales, sandstones, and coal beds, corresponding to Holmes's "Middle Coal Group." These beds are not very well exposed along the northern edge of the mesa in the La Plata quadrangle, but are fairly shown in Hay and Alkali gulches and in East sandstone is more conspicuous in the Mesa Verde,

uous cliff nearly 1000 feet in height. In the La

Plata quadrangle the lower heavy sandstone is in

some places divided into two ledges by a thin

fossiliferous shale stratum.

as a rule, and careful prospecting is necessary | Plata quadrangle, but the entire thickness is well to demonstrate the extent of individual beds. exposed in the adjacent Durango quadrangle on were observed by Mr. Spencer in Menefee Mountain eight coal seams, each under a more or less prominent outcrop of sandstone. At several other horizons beds also appear. They were found by Holmes | which he designated as "Sand Shale Group" The forms of this list show that the upper in the Mesa Verde proper, but according to the and assigned a thickness of 400 to 800 feet (U.S. part of the Mancos shale must be considered as of statements of those who have looked into the Geol. and Geog. Surv. Terr., 1875, facing p. 244) matter the quality is poorer and the aggregate as developed south of the Mesa Verde on the San amount of the coal decreases westward from the Juan River.

La Plata River, while the economic importance increases eastward. The greater number of pro-Name and definition.—The name "Mesa Verde | ductive coal mines in the Durango quadrangle, as | sional thin layers of impure limestone, or of conseries of sandstones and shales forming the Mesa of the La Plata River, are in the seams of the As far as examined, it has even less tendency Mesaverde formation.

> in the La Plata region is but 25 feet thick as seen in Hay Gulch and vicinity. It is yellowish and rather massive and often carries fossils in its similar succession forming a rapid transition to

Invertebrate fossils occur at many horizons throughout the Mesaverde formation, in both The fossil evidence to be presented shows that shales and sandstones. Fossil plants are also far been collected in a sufficiently good state of outcrops. Description.—The Mesaverde formation is to preservation to permit of identification. The be characterized as a succession of alternating discussion of the fauna given below shows that probability, but a part of the Pierre division.

General section.—From the partial sections of the formation secured by Mr. Spencer in various verde is thus lithologically quite distinct from the | places the section given below may be considered thick shale formations above and below it. In as a general representation of its development in

Upper massive sandstone, carrying fossils in upper part	art. 25 a thin layers of sandstone 250 b coal at top 45 a from 10 to 20 feet thick 15 ss, carrying two coals 100 15 to 25 feet 20 ng shales, 125 to 200 feet thick 170 ssive sandstone, bipartite in places 125	Upper massive sandstone, carrying fossils in	
Shales with thin layers of sandstone	th thin layers of sandstone 250 h coal at top 45 f from 10 to 20 feet thick 15 ss, carrying two coals 100 15 to 25 feet 20 ng shales, 125 to 200 feet thick 170 ssive sandstone, bipartite in places 125		ı
Shales with coal at top	h coal at top	upper part	. 25
Sandstone, from 10 to 20 feet thick	from 10 to 20 feet thick 15 ss, carrying two coals 100 15 to 25 feet 20 ng shales, 125 to 200 feet thick 170 ssive sandstone, bipartite in places 125	Shales with thin layers of sandstone	. 250
Gray shales, carrying two coals	15 to 25 feet. 20 15 to 25 feet. 170 15 sales, 125 to 200 feet thick. 170 17 sales sales, 125 to 200 feet thick. 125 18 sales, 125 to 200 feet thick. 125	Shales with coal at top	. 45
Sandstone 15 to 25 feet	15 to 25 feet	Sandstone, from 10 to 20 feet thick	. 15
	ng shales, 125 to 200 feet thick 170 sive sandstone, bipartite in places. 125	Gray shales, carrying two coals	. 100
Coal-bearing shales, 125 to 200 feet thick	ssive sandstone, bipartite in places. 125	Sandstone 15 to 25 feet	. 20
		Coal-bearing shales, 125 to 200 feet thick	. 170
Lower massive sandstone, bipartite in places.	g sandstones and shales 250	Lower massive sandstone, bipartite in places	. 125
Alternating sandstones and shales	-	Alternating sandstones and shales	. 250

Fossils and correlation.—Invertebrate fossils are found at many horizons in sandstones or shales, most of the species occurring throughout the formation. The following fossils have been found in the La Plata quadrangle or adjacent districts:

Ostrea pellucida Ostrea inornata. Cardium speciosum. Cardium bellulum. Inoceramus cripsii var. barabini. Mactra alta.

Callista pellucida Corbicula. Baculites anceps var obtusus. Baculites compressus. Placenticeras placenta var. intercalare.

According to T. W. Stanton, these forms range through both the Pierre and Fox Hills formations of the Montana group of the Cretaceous. The list does not contain any exclusive Absence of Above the "Lower Escarpment Sandstone" Fox Hills species and there is, thereFox Hills species are the species and the species and the species and the species are the species are the species are the species and the species are the to assign the Mesaverde formation to the Fox Hills, as was done by the Hayden survey.

LEWIS SHALE.

Name and definition.—The heavy shale formation succeeding the Mesaverde is here named the Canyon. In this vicinity the shales predominate Lewis shale from its occurrence at Fort Lewis, in over sandstones, but they are arenaceous, and the La Plata Valley a few miles south of the quadrangle line. Like the Mancos shale, this for-Stanton, indicates a horizon near the top of the according to Holmes. From the general section mation is distinguished as a lithologic unit of given below the relative development of shales marked character. It occurs as a band between the Mesaverde and Piedra formations as far as Coal beds occur at intervals all through this | these divisions of the Cretaceous have been traced intermediate member of the formation. The in this part of Colorado. Only a few hundred variability of the coal seam is very pronounced | feet of the shale are now preserved within the La Within the lower 150 feet of this complex there either side of the Animas River. There the Lewis shale was found by Mr. Spencer to have a thickness of 2000 feet and to be comparable to the Mancos shale in its purity.

below the "Upper Escarpment Sandstone" coal | Holmes's general section of southwestern Colorado

Description.—The Lewis shale is a body of more or less sandy shales and clays with occawell as the openings near Hesperus on either side | cretionary masses at several different horizons. than the Mancos shale to become sandy. But The upper sandstone member of the Mesaverde | Holmes's designation of it seems to indicate a lesser degree of homogeneity in the San Juan Valley than it possesses in the Durango quadrangle.

> The only fossil of identifiable character as yet obtained from the Lewis shale is Baculites asper, a form which ranges through the Montana group, and was found in the Lewis shale. Mancos shale. There is thus no known ground for placing this shale higher than the Pierre division of the Montana.

> Only the lower 200 to 300 feet of the Lewis shale occurs within the La Plata quadrangle, and exposures of these beds are rare. They appear, as shown by the map, in the southeast corner of the quadrangle and are generally masked by river or terrace gravels. Some exposures were found in ravines, and calcareous concretions carrying baculites are characteristic of some of the observed

SURFICIAL ROCKS.

PLEISTOCENE PERIOD

Some of the events of Pleistocene time are recorded within the La Plata quadrangle by gravel-covered terrace and glacial débris. Terraces are found along all of the more important streams below their mountain canyons, where the valleys broaden. Glacial deposits of a wellmarked character are, however, not common.

Scattered bowlders of small size are found lying upon the surface of the Mesaverde formation in the region north of the Ute coal mine, but they do not form anything like a veneer. They are probably remnants of gravel beds which were once more conspicuous. Whether these gravels record a stage of erosion when the streams had not yet cut their present deep channels, or are evidence of the previous extension of glacial ice, is not apparent. The rounded character of the gravels would indicate that they had suffered attrition by running water, and would therefore favor the first hypothesis. Terrace gravels. — Well-marked deposits of

gravel at a considerable height above the present

drainage are found along the La Plata River in the vicinity of Hesperus and on the divide between East Mancos River and Cherry Creek. Since the deposition of these gravels erosion has taken such directions that they are now High terrace left upon the tops of ridges, but there gravels. can be little doubt that they were formed in the valleys of rather voluminous streams. The gravels in both these localities form a continuous wash over the areas represented on the map. They contain bowlders, always very smoothly rounded, a foot or more in diameter, but the thickness is not considerable, not more than 4 feet having been observed. These two high terraces and their gravels, being about equally elevated above the streams of their neighborhood, presumably represent the same period. Possibly small gravel remnants on the tops of two knolls on the west side of the West Mancos Canyon should also be correlated with these higher terraces.

On the west side of the La Plata River the elongated knoll south of Parrott above 8800 feet elevation has a remnant of gravel, and as a topographic feature can be seen to correspond to the terrace ridge southeast of Hesperus, on the east side of the river.

All these high terrace gravels are supposed to be auriferous, but have not yet been found rich enough to be of economic value.

Between the high terrace and the present flood plain an intermediate bench is usually to be found. This low terrace is especially well marked in the the Mancos shale in its purity.

The Lewis shale corresponds to a division of where the equivalence of the terrace gravels. north of Hesperus on the west side of the river and the low terrace south of Hesperus is very evident. Also on the south side of the East Mancos east of Menefee ranch the low terrace is well marked. In Thompson Park the low terrace is represented by a double bench covered with

scattered gravel, the upper of which is not more | and orthoclase, anorthoclase, and microperthite are variably | Peak was quantitatively analyzed by H. N. Stokes, with the than 25 or 30 feet above the stream.

Glacial débris.—The only deposit of distinctly glacial material which has been recognized is a small terminal moraine that lies partly across the valley of the La Plata at old Parrott City, threequarters of a mile south of Parrott post-office.

Landslide débris.—The principal area in which slipping of large masses of rock has given character to the topography lies between the two forks of the West Mancos. The sliding has taken place, as is usual throughout this region, on the Mancos shale. The materials which now lie in an irregular mixture upon the shale comprise the igneous rock occurring in the ridge above, the Dakota sandstone, and fragments from the McElmo formation. This anomaly is explained by the great fault which crosses the landslide area. The eastern part of the area is characterized by almost complete lack of drainage, little ponds being formed by crescent-shaped dams.

Here large blocks are of infrequent in the landoccurrence. To the west of this there is an area where the whole surface is covered by huge blocks of Dakota in confused relation. On the north side of the ridge west of Mount Hesperus the talus covers the lower part of the Dakota sandstone.

IGNEOUS ROCKS.

The igneous rocks of the La Plata quadrangle have all consolidated at considerable depths below the surface which existed at the time of eruption. No remnant of the San Juan volcanic series now exists in the vicinity, although it must be assumed that some members of that series once extended over the site of the present La Plata Mountains.

The La Plata intrusives are similar in structure and composition to rocks known in many parts of the Rocky Mountains, especially in Colorado. This is particularly true of the La Plata intrusives.

General characteristics of the La Plata intrusives. be typical of the laccolithic and sheet intrusions described from numerous localities within the last twenty years. The stock rocks are in part of somewhat unusual composition, though the types in question are closely related to common facies. The dark rocks of the later periods of eruption embrace a considerable variety, and some of the more basic types are rare, yet as a whole the group comprises rocks similar to those | Mount Moss and Babcock and Spiller often found in Colorado in association about

centers of eruption. The later stocks of the La Plata Mountains are all composed of granular rocks, but the older conduits, through which the magmas ascended to spread out in sheets, are apparently occupied by porphyries. The descriptions will follow under the heads "Granular stock rocks," "Porphyries," and "Basic dikes and sheets."

GRANULAR STOCK ROCKS.

The granular rocks belong to three large divisions, which are only partially connected in this region by transition forms. The most highly feldspathic rock is a syenite, that richest in ferromagnesian silicates a diorite, and between these there is a group to be called monzonite, though more closely related to diorite than to syenite.

AUGITE-SYENITE.

Description.—The two large masses of syenite occurring in the heart of the La Plata Mountains are nearly identical in character and are presumably nearly contemporaneous The large igneous mass at La Plata. intrusions of the same magma. It is evident at a glance that the rocks are strongly feldspathic, although the ferromagnesian constituent is so frequently quite decomposed that its former rôle is not easily estimated.

As now seen the syenite is gray or pinkish, and, while plainly crystalline, the dullness of the feldspars obscures the individual grains. Where augite remains it can be seen on close examination to be dark green. Its irregular prisms are greatly subordinate to the feldspars in amount. In many places ocherous spots or darker-brown limonite represents the augite. A very small amount of biotite or green hornblende may be associated with augite.

As microscopical examination and chemical analysis show, the feldspars of these rocks are very largely alkali feldspars,

developed in the different specimens examined. Albite or soda-rich oligoclase may be present in some cases, but they have not been positively determined. In general anorthoclase tends to a development in large grains and rudely automorphic crystals surrounded by microperthite and orthoclase zones. The latter varieties are usually more abundant, and where a transition to porphyritic structure appears they form the granular groundmass for anorthoclase phenocrysts.

The augite of these rocks is very pale green in thin sections, and the light-brown biotite is occasionally intergrown with it. Titanite (sphene) is present in many minute crystals. Apatite occurs in few clear large prisms, and magnetite is very subordinate. Quartz is present in small amount throughout the masses and assumes a more conspicuous place in certain aplitic modifications.

Variations in composition are frequent and usually orthoclase and microperthite increase at the expense of anorthoclase and the ferromagnesian minerals. Some aplitic facies were found in which quartz, orthoclase, and microperthite constituted nearly the whole mass. But anorthoclase may also become prominent, and in one place, on the ridge between Schurman and Spencer gulches, a porphyry was found with flat anorthoclase crystals, very similar to those of the wellknown "Rhombenporphyr" of the Christiania region in Norway. The aplitic and porphyritic facies seem to occur in dike-like bodies confined to the stocks. They certainly were not observed beyond the limits of the stocks.

Chemical composition — The freshest and most even-grained syenite of the region, from the ridge between Tirbircio and Schurman gulches (No. 3201), was subjected to quantitative analysis by H. N. Stokes of the Survey, with the following

Analysis of augite-syenite.

SiO ₂ 59.79	
Al_2O_3	
$\mathbf{Fe}_{2}\mathbf{O}_{3}$	
FeO 1.59	
MgO 1.24	
CaO 3.77	
Na ₂ O 5.04	
K ₂ O 5.05	
$H_2O (110^\circ +) \dots 39$	
$H_2O (110^{\circ}-) \dots 19$	
TiO ₂	
CO_2	
P_2O_5	
SO_3	
Cltrace.	
MnO	
BaO	
SrO	
$\text{Li}_2\text{O} \dots \text{trace}.$	
100 14	
100.14	

No Cr₂O₃ or NiO. Sp. gr., 2.704 at 25° C.

An accurate calculation of the mineral composition from this analysis is difficult because of the decomposition represented by the calcite present. It appears, however, that nearly 80 per cent of the mass consists of feldspar and that alkali feldspar is strongly preponderant. There must be a or 6 per cent of quartz. The rock is to be characterized as quartz-bearing augite-syenite.

MONZONITE.

Description.—The granular rock of the long and irregular stock within which are located peaks belongs to the group termed monzonite, intermediate in composition between syenite and diorite. In this rock the feldspars predominate over the dark ferromagnesian silicates, but not so strongly as in the augitesyenite. As a consequence it is grayish in tone, often with a pinkish tinge due to the color of the orthoclase, which, as in many granites, derives

this color from minute particles of hydrous iron oxide. Where the pink or flesh tint of the orthoclase is strong it affords a rude means of estilime-soda feldspars, for the latter are white. In the freshest parts of the mass the feldspars are not distinguishable in this way.

As a rule, alkali and lime-soda feldspars are nearly equal in amount. Of the ferromagnesian constituents augite is the most abundant, with hornblende and biotite in variable development and sometimes absent. The usual accessory minerals are present, with titanite relatively abundant and magnetite uncommonly subordinate.

The alkali feldspar is apparently always orthoclase, the lime-soda feldspar mainly labradorite of the composition ab, an, as determined by the Michel Lévy method upon many Carlsbad twins in different specimens. More highly calcic labradorite is occasionally found in the core of some

The augite of these rocks is the common pale-green variety, similar to that of the syenite. It is usually fresh and is developed in imperfect prisms. Hornblende and biotite are of the varieties common in diorite and monzonite. Occasionally they are intergrown with augite in the manner well known in

A small amount of interstitial quartz is of common occurrence, but there is no observed facies of the mass sufficiently rich in this mineral to make it comparable with the quartzmonzonite found in large stocks in the western San Juan Mountains. (See the Telluride folio.)

A medium-fine and even grain prevails in this monzonite mass, but locally there is a marked poikilitic structure, due to the development of orthoclase in grains which may be as much | biotite. as half an inch in diameter, inclosing numerous small grains of the other constituents. The lustrous cleavage faces of these grains are conspicuous on freshly fractured surfaces of the

Chemical composition.—The very fresh rock of Babcock | clase

Analysis of monzonite from Babcock Peak.

SiO ₂	57.42
Al ₂ O ₃	18.48
$\operatorname{Fe}_{2}\operatorname{O}_{3}$	3.74
FeO	2.10
MgO	1.71
CaO	6.84
Na ₂ O	4.52
K ₂ O	3.71
H ₂ O 110°+	.28
H ₂ O 110°—	.08
TiO ₂	.86
P_2O_5	.36
Cl	.03
MnO'	.09
BaO	.15
SrO	.08
Li ₂ O	race.
	00.45
1	00.40

No CO_2 , SO_3 , Cr_2O_3 , or NiO. Sp. gr., 2.767 at 26° C.

Calculations from this analysis show that about threefourths of the rock must be feldspar, and that if the lime soda species be assumed to be labradorite (ab, an,) there is considerable of the albite molecule remaining to combine with the potash molecule in orthoclase. Probably the labradorite slightly exceeds the orthoclase in amount.

Variations in composition.—The mass referred to above certainly monzonitic in very large degree, but at two observed points there is a tendency to grade into a diorite, by increase in lime-soda feldspar and decrease in orthoclase. One of thes is just south of Banded Mountain, the other at the head of the West Mancos, where a wedge-like arm of the stock upturns the strata and intercalated porphyry sheets of Hesperus Peak as seen in fig. 11. Only at the former locality is the even grain maintained with this change. But there too, as elsewhere, a porphyritic structure is more common. Hornblende is more abundant than augite, and quartz becomes more important than in any of the monzonitic rocks of the stock The two places where this dioritic character is seen are on opposite sides of the stock, in apophyses from the main mass Complementary dikes.—At several places aplitic veins or dikes were observed in the monzonite. These are almost wholly composed of orthoclase, microperthite, and quartz, with small amounts of hornblende or biotite. The rock which seems complementary to these was seen only on the slope east from Banded Mountain. Here some narrow dikes of a darkgreen heavy rock were observed. The material of this dark dike is principally green augite and magnetite, with grains o orthoclase and plagioclase quite subordinate.

Drusy veins.—Occasionally the narrow veins traversing the monzonite have irregular cavities lined by crystals of alkal feldspar and quartz, with other minerals, such as epidote magnetite, hematite (specular iron), and apatite, in variable abundance. Apatite was found in one of these drusy veins developed in beautiful transparent green prisms, reaching nearly half an inch in length by 0.2 inch in diameter. Several such crystals were grouped upon a surface 3 inches square.

DIORITE.

Description.—The stock extending from Diorite Peak to Basin Gulch is of very similar appearance to the fine-grained monzonite, but is richer than the latter both in ferromag.

The stock of Diorite Peak. nesian minerals and in lime-soda feldspars. There is in fact within this mass a transition from mon- in a gray, dense-looking groundmass. zonite to diorite bearing some orthoclase, and Occasionally folia of biotite are found, and still from the evidence at hand it appears that diorite strongly predominates. However, the mass as a whole has not been examined in sufficient detail to show accurately the distribution of the two facies. Small stocks of diorite occur in Lewis Peak and near the end of the ridge between Bedrock and Madden Gulches.

. In appearance the diorites are typical of that mating the relative amounts of the alkali and rock. They are somewhat darker gray than the monzonite, because of a slightly larger amount of the ferromagnesian minerals and because they are the diorite bodies agree in having the total of the feldspars much greater than that of the dark minerals. Lime-soda feldspar is considerably but characteristic plagioclase of these rocks. variably in excess of the alkali feldspar, orthoclase. Augite is more abundant than either bio- and quartz. In some cases the hornblende constituent grades tite or hornblende, except very locally, when hornblende may assume a rôle at least equal to that of augite.

> The characteristics of the minerals in the diorite are the | the only prominent one in most of the rocks. same as in the monzonite, and quite agree with those considered as normal to such rocks elsewhere, It is notable that quartz is present in greater abundance than in any monzonite | feldspars and in the amount of hornblende present. As to examined from the mountains.

The accessory minerals magnetite, titanite, and apatite have the common appearance. Titanite is rather more abundant than usual in such rocks, and magnetite less so.

Chemical composition.—A considerable portion of the stock crossing La Plata Valley north of Basin Creek is somewhat | scopical study, because of the great variation in the developricher in orthoclase than the western part about Diorite Peak. Below is given an analysis, by W. F. Hillebrand, of this orthoclase-rich rock from the little canyon of the river not far above the mouth of Basin Creek.

same amount as in the monzonite of Babcock Peak, there is a | green augite replaces the hornblende in large degree, and in notable increase in the magnesia and iron, representing a one case entirely. The latter rock occurs on the ridge between decided increase in the percentage of augite, hornblende, and Shaw and Boren gulches, where it cuts a hornblendic por-

From rough calculations it appears that the feldspars constitute about two-thirds of the rock analyzed, and that labradorite is much more abundant than orthoclase. There must be a considerable amount of the albite molecule in the orthoAnalysis of monzonitic facies of diorite mass.

$SiO_2 \dots 55.53$
Al_2O_3
$\operatorname{Fe}_{3}O_{3}$
FeO 3.35
MgO 3.00
CaO 6.96
Na_2O 4.31
K_2O 3.57
$H_2O 110^{\circ} + \dots$
$H_2O 110^{\circ}$ —
TiO_2
CO_2
P_2O_5
V_2O_3
NiO } trace
MnO
BaO
SrO
Di ₂ O trace
FeS ₂
100.17
Sp. gr., 2.79 at 21° C.

PORPHYRIES.

The porphyries of the intrusive sheets and associated dikes or irregular masses of the La Plata Mountains nearly all belong to one or the other of two groups which are distinguished on the map. One of these groups is the predominant one in all the so-called laccolithic groups of the adjoining plateau country, and is also common in the Rocky Mountains, especially in Colorado. The second group is certainly much less abundant than the first in the districts that have been closely studied, but its distribution is not well known at the present time.

DIORITE-PORPHYRY AND MONZONITE-PORPHYRY.

Introductory.—The map shows distinctly how large a share of the porphyries of the La Plata Mountains has been placed in one group for purposes of mapping. The group includes dioriteporphyry and monzonite-porphyry, no Reason for distinction being made on the map, grouping porphyries on the map. because the rocks are, for the most part, intermediate between these two extremes. They also resemble each other so closely that a distinction would seem to the local student extremely artificial. It is indeed difficult to assign many of these rocks to one or the other of

ment of the constituents, which will be described. Description.—All of the rocks of the group are distinctly porphyritic in structure. They exhibit very plainly many crystals of white Rocks with feldspar and of hornblende embedded

more rarely rounded phenocrysts of quartz may

these types on account of the mode of develop-

From microscopical examination it appears that the rocksconsist of lime-soda feldspar, potash feldspar, hornblende, biotite, and quartz, with magnetite, titanite, and apatite as accessory constituents in their common development. The feldspars together greatly exceed all other minerals in amount. The proportion of the feldspars to the ferromagnesian silicates varies, however, but in no case do the latter equal the feldspars. As to the latter, there is commonly much more plagioclase than orthoclase, and many of the rocks are to be characterized as orthoclase-bearing diorite-porphyries. The fact that the plagioclase is usually developed in distinct phenocrysts, and orthoclase as uniformly confined to the groundfiner-grained in most places. In composition all | mass, gives the rock the appearance of containing the former mineral in great abundance, while the rôle of the latter is disguised. From the optical determination of numerous crystals, it is probable that labradorite of ab, an, is the

> Aside from the accessory elements the groundmass is characteristically composed of a granular mixture of orthoclase uninterruptedly from the larger individuals to smaller grains, corresponding in size to the orthoclase and quartz of the groundmass. But as a rule the hornblende is in distinctly larger individuals, and thus may be said to occur chiefly in phenocrysts. Of the ferromagnesian minerals, hornblende is

Variations in composition.—The chief variations in composition among these rocks are in the relative abundance of the the feldspathic constituent, the variation is from rocks in which the soda-lime species and the alkali feldspar (orthoclase) are about equal in amount—monzonitic—to those in which the former strongly predominates—dioritic. The amount of amphibole in the rock is not easily estimated from a megament of this mineral. Where it appears in a great many small needles the rock is much darker and gives the impression of a greater amount of amphibole than is really present, while the same amount of amphibole concentrated in a few crystals While the alkalies are present in this rock in nearly the causes the rock to have a lighter shade. In a few cases palephyry. The rocks containing augite are not different in general appearance from the hornblendic forms.

Variations in texture.—While the porphyritic structure is so common through these masses, there is great variation in texture. This variation is not distinctly connected with the size of the sheets or the horizon of their intrusion. In certain

cases the porphyritic structure is so fine grained that there is an apparent transition to the granular structure. Microscopical study, however, clearly shows that in these cases the pink or reddish color, strong predominance of very finephenocrysts, though small, are distinctly different from the groundmass grains, even where the latter are comparatively structure, parallel to the dike walls. These narrower dikes of coarse. The most prominent phenocryst is plagioclase. In some rocks these crystals are nearly all of approximately the same size. At other times there is a gradation from unusually large crystals to very small phenocrysts. Certain masses, like that of Baldy Peak, are characterized by a few plagioclase phenocrysts of unusual size without a distinct gradation to the average. The hornblende also varies in its development. In the thin sheet on the west side of the La Plata between Snowslide and Bay City gulches, this constituent is so uniformly developed in rather large prisms that the groundmass of the rock is unusually distinct. This rock exhibits the typical development of the porphyritic structure. Orthoclase is almost never present in phenocrysts, and quartz but very

Chemical composition.—The chemical composition of rocks varying as described can be readily comprehended from the basis of an analysis of one of the most typical diorite-porphyries of the mountains; namely, one occurring in dike form on the western slope of Deadwood Gulch. This analysis, which follows, was made by W. F. Hillebrand;

Analysis of diorite-porphyry.

SiO ₂	60.44
Al_2O_3	16.67
Fe ₂ O ₃	2.31
FeO	3.09
MgO	2.18
CaO	4.22
Na ₂ O	5.18
K ₂ O	2.7
$\mathbf{H_2O} \dots \dots$	1.48
TiO ₂	. 60
CO ₂	.48
P ₂ O ₅	.29
MnO	.18
BaO	.12
SrO	.13
Li ₂ O	trace
•	99. 96

SYENITE-PORPHYRY AND ALLIED ROCKS.

Sp. gr., 2.677 at 24° C.

General description.—There occurs in the La Plata Mountains a series of rocks ranging from syenite-porphyry to monzonite-porphyry which floor upon which the sedimentary secdeserves to be distinguished from the monzonitediorite-porphyry series above described. The rocks in question belong to a later period of eruption than those of the larger group and have certain mineralogical peculiarities, though in general terms the monzonitic extremes of the two series | characteristic of dioritic masses almost everywhere are not far apart. This later series has been designated syenite-porphyry in the legend.

The rocks referred to are plainly porphyries, but as a rule the groundmass greatly predominates over the phenocrysts, and they are more strongly feldspathic rocks with predominant than the diorite-monzonite-porphyry groundmas series. It is a singular fact that, although these types are similar in composition to the principal porphyries of the mountains, they usually have a more decomposed appearance. This is largely due to ferritic and other indistinct dusty particles in the feldspars. But the ferromagnesian silicate is also almost wholly decomposed.

The phenocrysts of feldspar are mainly plagioclase, similar to those of the diorite-porphyries; a pink orthoclase in tabular form is not rare in many instances. The plagioclase crystals frequently have an oriented orthoclase rim about them. The phenocrysts of plagioclase are seldom determinable as to composition, but are presumably rather rich in the albite molecule. In all of these rocks pyroxene is more common than amphibole; biotite is rare. Several of the occurrences are characterized by titanite in honey-yellow tablets which are very distinct to the naked eve.

The groundmass of these rocks was found, on microscopical study, to be trachytic in structure, composed of laminæ or microlites, and in the narrower dikes the groundmass laminæ are arranged so nearly parallel to the walls that a notable structure is produced in the rock. The groundmass feldspar is usually impregnated by pyritic dust to a degree which obscures its character. It is presumably an orthoclase rich in soda, or possibly in part anorthoclase. The assumption that soda is abundant in feldspars is supported by the character of the pyroxene in these rocks. It is usually very strongly green in color, and distinctly pleochroic, but has in all cases a large extinction angle, and is hence to be called ægiriteaugite. The amphibole associated with this pyroxene is generally olive green in color and exhibits resorption rims.

If plagioclase is restricted to the development in phenocrysts, as appears to be the case, the rocks are, as a rule, much richer in alkali feldspar than in plagioclase. None of these porphyries were obtained in sufficiently fresh condition to warrant complete quantitative analysis.

Occurrences.—The small laccolithic body of syenite-porphyry in the McElmo formation on the southwest slope of Parrott Peak is almost identical with the dike shown crossing the ridge northeast of Helmet Peak. These rocks are ashen gray in color and have a strongly predominant feldspathic groundmass. The pyroxene in these two occurrences is very well developed in prismatic crystals and is a typical ægiriteaugite. There are a few large, dark hornblende phenocrysts. According to determinations by W. F. Hillebrand this rock contains 6.13 per cent Na₂O and 4.68 per cent K₂O. Both the soda percentage and that of the two alkalies is higher than in any other type analyzed.

The rock of the sheet on Jackson Ridge is much nearer to a monzonite-porphyry, as it has more abundant plagioclase phenocrysts. Its occurrence so near Igneous sheet on Jackson the dike rock suggests that they represent the Ridge. same magma. But the Jackson Ridge sheet is

so much decomposed that close comparison is impossible. La Plata.

There are several small dikes of syenite-porphyry not represented on the map. These are usually characterized by grained groundmass, and they possess a pronounced lamellar syenite-porphyry were seen on Helmet Peak, crossing Tirbircio Gulch near its mouth, in Deadwood Gulch, and cutting the large porphyry body of Silver Mountain. Other dikes related to these were noted in the adjacent portions of the Rico and Durango quadrangles, which undoubtedly belong to the La Plata center of eruption.

INCLUSIONS IN PORPHYRY.

characterized by numerous inclusions of apparently foreign rocks, these inclusions varying the contrast with the diorite- and monzonitegreatly in abundance. In some cases the sheets are spotted with inclusions quite uniformly. The small sheet in the northwestern branch of Cumberland Basin contains the largest number of to the feldspars the great importance of the lamprophyric diskess difficult. inclusions. These range in character from granitic assigned them in modern systems, in the following section, and there is no observ- | both present and may be nearly equal. As yet rocks of the same types which occur most commonly in the diorite and monzonite porphyries. Considering the great number of fissures traversremarkable that fragments of these formations are so rare in the intrusive bodies. Apparently the granitic rocks, at least, represent

tion of this region rests. From what is known of the Archean complex in the Animas Valley, it must be considered that the amphibolic inclusions may also be derived from this fundamental formation. At the same time, it is so that they should contain inclusions very rich in hornblende that it is natural to infer that the fragments and the rock containing them are genetically related. Until a large number of these inclusions have been collected and carefully Plata Mountains. The amphibolic fragments text. The rocks observed vary so greatly that no vary considerably in appearance. They are sometimes rather dense and schistose, but in certain dikes and sheets upon the southwest face of Hesperus Peak a number of fragments were observed which, although several inches in diameter, consisted mainly of a single individual of hornblende, as shown by the continuous cleavage. Pyroxenic masses occur in some of the sheets containing numerous inclusions, but they are nowhere so abundant as those characterized by hornblende.

BASIC DIKES AND SHEETS.

In and about the La Plata Mountains occurs a series of dark and usually fine-grained aphanitic rocks, most of which appear in dikes, though some are sheets and one has a laccolithic form. These rocks have been designated basic dikes and sheets in the legend of the geologic map. The classification and naming of these rocks is difficult in the present stage of systematic petrography. Genetically considered, they may be grouped plausibly under the unsystematic term "Lampro-"lamprophyre" to indicate their supposed origin and relationship as differentiation products of the La Plata magmas, erupted in the later stages of igneous activity at this center. In this view they belong in the melanocratic division of diaschistic rocks proposed by W. C. Brögger. The corresponding or complementary magmas, the leucocratic division of Brögger, may be considered as represented in the La Platas by the rocks already described as augite-syenite and syeniteporphyry. One of the masses to be described exhibits such clear evidence of further differentiation in situ that this genetic problem becomes one of the most important developed in the study of these mountains. The further discussion of this question is, however, reserved for the section on "General geologic problems."

minerals as the more abundant rocks already described but possessing the dark silicates in more or less decided preponderance. The feldspars are, however, less markedly subordinate than one may infer from megascopical examination. Many of these rocks are fine grained throughout, and then both the minute size of the dark constituents and the dissemination of decomposition products tend to obscure the feldspar. Many of the porphyry sheets and dikes are | Where a porphyritic structure is prominent it is hornblende which assumes the leading rôle and porphyries is strong.

The difficulty in classifying these rocks under

rocks, or rocks of granitic composition and gneissic | the lamprophyric rocks fall in two series: the structure, to dark granular amphibole masses, or orthoclastic and the plagioclastic, related respecto schistose rocks consisting very largely of horn- | tively to syenite and diorite. But most of these blende. Inclusions of the same character are rocks are related in this respect to monzonite; found also in the more basic porphyries described | that is, the alkali and lime-soda feldspars are able relation between the size of the porphyry no set of terms for monzonitic lamprophyres has body and the size or number of inclusions which | been proposed. That there has been hesitation may be contained in it. Thus, some of the narrow | in doing so seems natural and is amply justified lamprophyric dikes of Snowstorm Peak contain a | by such a series as the rocks under discussion. great many inclusions of granite, or of amphibolic | In this series the larger number possess the feldspars in an amount not far below that of the ferromagnesian silicates. With respect to the character of the feldspars these rocks logically ing the sedimentary formations, it is somewhat | fall into three groups: the syenitic, the monzonitic, and the dioritic lamprophyres. No purely orthoclastic or plagioclastic rocks have been found, and the majority are monzonitic lamprophyres, for which special names are wanting.

> Some of the rocks are rich in amphibole and pyroxene, and in these the classifactory value of the feldspars plainly decreases. Rocks so basic that the feldspar is negligible do not occur in the La Plata Mountains, and yet those richest in amphibole and pyroxene clearly belong together, whatever the character of the feldspar.

The problem in classification presented by the lamprophyric rocks of the La Plata Mountains is that of expressing in system the quantitative importance of the chemically and physically contrasting mineral groups, the feldspars and the studied it will be impossible to affirm or deny ferromagnesian silicates. Further discussion of two seem quite alike in composition. Their description will therefore proceed by localities, specific names being in most cases avoided.

> Occurrence on Indian Trail Ridge.—The sheet or thin lac colith occurring in the McElmo formation in one of the knolls on Indian Trail Ridge, as shown by the map, is the largest mass of lamprophyric character in this quadrangle. It lies in nearly horizontal position, conformable with the strata inclosing it, and has a thickness of about 150 feet. The mass is not homogeneous in character, but exhibits important differences in composition in zones parallel to the upper and lower con-

> The inner portion of this body is a rather fine-grained and evenly granular, grayish-green rock in which the feldspars nearly equal the ferromagnesian constituents in amount. These two classes of minerals are so distinct in the rock that the rôle of each is very clear. Of the dark silicates, augite is far more important than hornblende, which occurs only in a few short prisms. Biotite was also formerly present in subordinate quantity. The augite throughout the mass is very pale green or colorless in thin sections. There is but very little magnetite present in the rock. The feldspars are so much sericitized and obscured that their character is not perfectly certain. While some soda-lime feldspar is undoubtedly present, orthoclase is apparently greatly predominant. The transitions toward the contact zone are very gradual. The feldspar decreases and both augite and hornblende increase in amount, but variably. Hornblende tends to appear in larger crystals of prismatic form, and augite ranges down to minute grains that mingle with the feldspar to form a groundmass which is much more distinct as seen under the microscope than it appears to the naked eye. Chlorite, epidote, and calcite as decomposition products obscure the feldspars and make the contact facies appear much more basic than is actually the case. As the amount of augite and hornblende increases the feldspar becomes more and more predominantly orthoclase. In the contact zone, several feet in width, feldspar has become much subordinate and is difficult of specific determination, for it is greatly obscured by the finer particles of augite and the alteration products of the dark silicates. A part of the rock is characterized by hornblende phenocrysts, which may exceed 1 centimeter in length, but the adjoining zones are very apt to be almost entirely augitic rocks. The rocks of this mass seem more nearly related to vogesite than to any other recognized type of the lamprophyres.

On the ridge north of the mass just described is a small irregular dike of a very dark porphyry crowded with hornblende and augite phenocrysts, the former being much the more conspicuous. From its situation this dike might be suspected to represent the channel through which the magma of the adjacent laccolith ascended. But the rock is much richer in dark silicates than is the laccolith. Its feldspars are con-General character.—The rocks in question may fined to the subordinate groundmass, and a plagioclase in faulty.

be broadly characterized as made up of the same i microlites is more abundant than the presumable orthoclase of the irregular interstitial grains. The decomposition of augite and feldspar is considerable. An analysis of this rock was made by W. F. Hillebrand, with the result given below

Analysis of basic dike rock.

$\operatorname{SiO}_2 \dots \dots$	٠.	43.98
Al ₂ O ₃		13.30
$\operatorname{Fe_2O_3}$		3.67
FeO		6.92
MgO		7.03
CaO		10.66
Na ₂ O		2.15
K ₂ O		1.64
H ₂ O		1.94
TiO ₂		1.18
CO ₂		6.46
P_2O_5		.32
NiO and CoO		.03
MnO		.22
BaO		.06
SrO		.05
FeS_2		.54
		100.15

The presence of nearly 15 per cent of calcite and the partially decomposed state of the dark silicates prevent any satisfactory calculation of the mineral components of this rock. The K₂O found represents 9 45 per cent of orthoclase, and there is probably twice as much plagioclase present.

Sp. gr., 2.912 at 19.5° C.

Thin sheet on North Fork West Mancos River.—The thin sheet intruded above the Dakota sandstone north of Hesperus Peak is a greenish-gray, aphanitic rock, with numerous small biotite leaves megascopically present and showing parallel streaks of the feldspathic constituents. The microscope shows augite and orthoclase to be the chief constituents, the former predominating. There is no hornblende in this rock, and the biotite is present only in the leaves which are visible to the naked eye. The augite appears in small rounded prisms of very pale green color. This rock is considerably altered. chlorite, calcite, and muscovite being the chief products.

Dike on divide at head of La Plata River.—The dike cutting the western part of the prominent knoll on this divide is much richer in amphibole and pyroxene than the rocks above described. Hornblende decidedly predominates over augite. It is, indeed, the only prominent megascopic constituent occurring in prisms which reach 1 centimeter in length, most of them rather slender, but a few short and stout. Augite is also quantitatively important in the rock, as shown by the microscope, but occurs uniformly in very small grains. No biotite was observed. The matrix for the larger hornblende prisms is composed mainly of feldspar with minute grains of augite and magnetite. Feldspar appears to be chiefly orthoclase, in irregular grains. Decomposition products of augite, chlorite, calcite, etc., greatly obscure the feldspathic constituent. But there is a little magnetite in the rock, and some of it is titaniferous. This rock appears to be a hornblendic vogesite considerably more basic in chemical composition than the preceding rocks.

Dikes of Snowstorm Peak.—Near the summit there are several small dikes of a strongly marked porphyry with many hornblende phenocrysts in a dark or greenish aphanitic groundmass. The hornblende crystals vary from 1 centimeter in length downward, but most of them are megascopically visible. Augite is also present, but in much smaller grains than hornblende. Possibly it is nearly equal to the hornblende in amount. The rock is megascopically very similar to the type described from the Indian Trail Ridge, but its feldspar is chiefly a soda-lime species in microlitic form with such a connection for the inclusions of the La so broad a question is clearly out of place in this subordinate granular orthoclase. The following quantitative analysis of the freshest rock obtained, from the dike just south of the summit, was made by W. F. Hillebrand

Analysis of lamprophyre from Snowstorm Peak SiO₂ 47.25 CO₂ 1.87

This rock is plainly richer in feldspar than the one from Indian Trail Ridge the analysis of which was given above. The potash corresponds to about 15.5 per cent of orthoclase, and nearly one-half of the rock is feldspar.

100.46

Rocks similar to this type from Snowstorm Peak occur on the southwest slope of Lewis Peak and in the saddle between Snowstorm and Cumberland peaks. Certain zones of the laccolithic mass of Indian Trail Ridge are also of this type.

Aphanitic rock in West Mancos Canyon.—The dark aphantic rock intruded as a sheet above the Dakota sandstone and below the larger porphyry mass on the north side of this canyon is somewhat different from the preceding in composition. Augite, biotite, and plagioclase are the chief constituents. Orthoclase is very subordinate. The augite is pale green and the biotite dark reddish brown. There are a few phenocrysts of biotite. The rock is now far from fresh. This type seems nearly related to augite-kersantite.

A very similar rock occurs as a dike of small dimensions on the west side of Deadwood Gulch.

DESCRIPTIVE GEOLOGY.

OUTLINE SKETCH.

The La Plata quadrangle lies where the geologic structures of the San Juan Mountains and of the Great Plateau country meet and blend. The position of the area may be easily understood by a glance at the Hayden atlas of Colorado, the general structure there represented being in the main correct, though many of its details are

The broader structures of the region, controlling the distribution of the sedimentary formations, may also be comprehended by the aid of figs. 2 and 3. In the former is shown the gentle southerly dip of the Cretaceous formations

about Durango, an attitude prevailing Southerly dip for many miles along the southern the san Juar front of the San Juan, with steeper

of this view are isolated portions of a sloping already been given. From the section displayed mesa, the floor of which is the Mesaverde sandstone. The same formation, which traverses the can assume the presence of other sedi-La Plata quadrangle and connects directly with | mentary formations below the Dolores roks in the La Plata dome. the Mesa Verde, is seen in fig. 3.

the Dakota sandstones—the plain which is rep- apparent structural conformity. resented in the northern part of the western borstructure of the southwestern slopes of the San | Archean complex of gneiss or schists Juan Mountains, including the area of the La with granite intrusives, or a great series and possib Plata quadrangle, has been more fully discussed of Algonkian quartzites. The east-Algonkian quartzites. in the Telluride folio, and in a report on the Survey, Pt. II).

are prominent in the La Plata quadrangle, an the porphyry masses of the La Platas also indielement of far more local importance is the domal | cate the presence of schist and granite below. uplift of the La Plata Mountains. This movement and other phenomena of the same center geologist.

the lower Mesozoic formations, which would otherwise have remained buried on the Domal uplift site now occupied by the mountains. of the La, Plata Moun-

Simultaneously with the uplift, and to an unknown extent causing it, numerous masses many horizons, and these are now visible as sheets light the Dolores formation, in nearly of the group.

The igneous intrusions of the La Platas, and pears. especially the stock eruptions, were accompanied heart of the group exhibits such extensive alteration of the by agents of metamorphism, and the sive alteration of the more or less calca-

reous sediments that the geologists of the Hayden points on the divide between the La Distribution of La Plata Survey, in their necessarily hurried observations, | Plata and Mancos rivers from Madden distinguished by them.

extensive deposition of ores of the heavy metals, iron, copper, lead, and eposition. zinc, with variable accompaniment of silver and | it becomes a hard quartzite causing jagged pinnagold. The ore deposits are of several types and cles or cliff exposures. will be described in the section on "Economic | geology," by Mr. Purington.

The later geologic history of the region is | mountains, dipping away from the main involved in that of an extended area of almost circle of peaks. The only notable of McElmo, continental dimensions within which there was orogenic uplift succeeded by Late uplift enormous erosion beginning early in

facts bearing on this period of denudation the the map in a generalized way. study of a larger area is necessary, especially of

of the Mesa Verde.

LA PLATA MOUNTAINS.

STRATIGRAPHY AND STRUCTURE.

inits which enter into the make up of the mountains, as now exhibited, are the Dolores (Triassic); and Mancos (Cretaceous). The character of these dips nearer the mountains. The prominent hills | formations and many facts of distribution have in the Animas Valley and at Rico, we

in the La Plata dome. These embrace In fig. 3 may also be seen the comparatively | the Rico and Hermosa (Carboniferous), the Ouray level floor of the Dolores Plateau, underlain by (Devonian), and the Ignacio (Cambrian), all in

The floor upon which the Cambrian quartzites der of the La Plata quadrangle. The general rest beneath the La Plata Mountains is either an

west strike exhibited by the steeply geology of the Rico Mountains, to which the upturned Algonkian quartzites of the Needle reader is referred ("Geology of the Rico Moun | Mountains and their appearance at Rico in the tains, Colorado," by Whitman Cross and Arthur | line of that strike make it probable that the zone Coe Spencer: Twenty-first Ann. Rept. U. S. Geol. of their westward extension passes to the north of the La Plata Mountains. The inclusions of dip signs of the map show many irregularities in While the San Juan and Plateau structures granite and of several kinds of schist in some of

The upper formations which originally took part in the La Plata dome doubtless included the have led to the formation of the rugged mountain | remainder of the Cretaceous section, the Animas | group containing many features of interest to the or post-Laramie beds, the Puerco (Eocene), and The domal uplift of the La Platas has elevated | probable that some, at least, of the surface volcanics of the San Juan complex were present at the time of the La Plata uplift.

dependent upon structure and erosion and is represented by the geologic map. The of molten magma were injected between strata at many horizons and these are now visible as sheets light the Dolores formation in nearly or small laccoliths of porphyry, which have been its entire thickness at the heart of the mountains. described in a preceding section. Later intrusions | It is shown in most normal development in Bear of igneous material forced their way more directly | Creek and the Hermosa drainage to the east of across the sedimentary beds and the intercalated | Indian Trail Ridge. Throughout the mountains sheets of porphyry, forming stocks, within the proper the formation is generally metamorphosed mass of which are several of the highest peaks or bleached, but at many places remote from the stocks of granular rocks the reddish color reap-

which has been given to it by reason of its prominence in the peaks of the mountains. It is present at or near the summits of all the failed to trace out the structure of the inner Peak northward and on Indian Trail Ridge. It portions of the mountains and grouped as "Meta- is thought that a small remnant caps Deadwood | morphic Paleozoic" several formations elsewhere | Mountain, but with this exception it has been removed by erosion from the eastern peaks of At a period later than any igneous intrusion of the group. The La Plata sandstone is massive this region the La Plata uplift became the seat of enough to form prominent outcrops, even where not especially indurated, but wherever it has

The La Plata sandstone deserves the name

The McElmo, Dakota, and Mancos formations appear principally upon the outer slopes of the irregularity in their distribution appears mations.

been metamorphosed in the center of the group

in Hesperus Peak, where the naturally soft Mancos shales have been greatly indurated Cenozoic time and continuing to the present. Of | in the metamorphic zone about the monzonite this great erosion the La Plata quadrangle stock of Mount Moss. Their preservation has exhibits little evidence aside from the local dis- also been aided by the presence of numerous thin section and sculpturing of the dome. For broader intrusive sheets of porphyry, as represented by

Structural features of the mountains.—The the San Juan Mountains and the adjacent slopes. | most notable structural feature of the mountains | Certain gravel terraces of the La Plata quad- is the local uplift of sedimentary beds which may rangle undoubtedly belong to epochs in which in general be characterized as a domal uplift. fractures were not represented on the map, it mations of different character are intruded by similar deposits were formed over large areas, but | With this local structure the more general dips | being impossible to trace them for any considertheir close correlation has not yet been made out. of the same strata away from the San Juan center From the concise outline above given it is clear have blended on the northern and eastern slopes that a detailed description of the quadrangle can of the mountains. The quantitative relation of nearer the center of the dome, but sugally on side nearer dome. best be carried through by considering separately the two structures is difficult to determine, and instances are not lacking of the reverse the mountain area, the slopes toward the Plateau, | will be discussed in some detail in a later section. | movement, as shown in profile sections A A and and the southern portion of the dissected section | Faulting has modified in some degree the simple | BB. structure of the domal uplift, but is confined to a

structure appears in the profiles of the Structure Section sheet.

perfectly exhibit a domal structure because on the north and east all the formations above the Dolores have been removed by erosion, and on these sides the blending with the broader San Juan structure takes place. The actual distribution of formations north and east of the mountains miles directly east of Lewis Mountain.

details of structure which are often due to the igneous intrusions. The faults, which will be referred to below, the influence of the San Juan structure, and the apparently elliptical form of the uplift, all modify the regular ity of dome structure.

the regularity of the structure. The profile sections illustrate the fact that the dome stone remnant at the summit of Diorite Peak is now about 5000 feet above the level of the same horizon at a point some 6 miles westward, as same formation on the summit of Deadwood zon it occupies on the line of section CC, where an amount of doming in which visible eruptives have had little share.

The apex of the original dome would appear to have been a little west of Lewis Peak, but at this point there is apparently a local steepness of dip in various directions, which may possibly be interpreted as due to a buried laccolith of porphyry.

intrusive beds are very numerous below the horizon of the La Plata sandstone, and hence must have increased the uplift creased by intrusive of the latter to a considerable amount above the elevation of 5000 feet indicated in Deadwood Mountain and Diorite Peak.

Section BB shows a steep dip on the east side of the dome, which quickly brings the sedimentaries down to the general level found on the western and southern slopes. This is a more or less local irregularity and is possibly due entirely to a buried laccolith, mentioned above.

La Plata sandstone may be estimated at approxi-San Juan structure on the north and east makes any close estimate impossible.

are neither numerous nor important. The principal ones were traced out and mapped across the northwest slopes of the mountains from the West | ideal laccolith in shape. There is great cross fractures. The other more important fractures are an east-west fault near the Menefee able distance. The dislocation of the

few localities, as represented by the map. There exhibited upon the ground, since they affect has also been much disturbance of the sedimen- strongly marked formations, such as the Dakota tary beds by a large number of intrusions of sandstone and the intrusive porphyry sheet above Formations represented. — The stratigraphic molten magma. The geologic map shows the it. Their effect and the amount of their dislocalocal dome structure by the areal distribution of | tion are so clearly expressed by the map and the the sedimentary formations and of the intercalated | sections AA, BB, that little description is necesthe La Plata and McElmo (Jurassic); the Dakota | porphyry sheets. The strike and dip signs indi- | sary. To the southwest these faults can not be cate the same structure as determined in definite | traced in the shale area, and they seem to die out localities. Further illustration of the domal before reaching the Dakota exposures of the lower course of the West Mancos. To the northeast they are also lost on the shale slopes and beneath La Plata dome.—The geologic map does not | landslide débris, but may reasonably be assumed to connect, at least in some cases, with similar faults observed to cross Bear Creek and the ridges on either side.

> The fault crossing the saddle south of the Sharkstooth is very distinctly marked by its effect upon sandstone horizons and a thick porbeyond the present quadrangle limits brings out | phyry sheet. Its curving course, as represented the domal structure somewhat more plainly. The | by the map, is due to a change in direction and La Plata sandstone extends northward on the east | not to dip. Whether the fault passing north of as far as Sandstone Mountain, a hill on the divide the Sharkstooth is, as represented on the map, between Junction and Hermosa creeks situated 5 | the same as that crossing Indian Trail Ridge north of the porphyry sheet in the McElmo for-On the north the Dakota sandstone comes mation was not definitely determined. If they almost to the crest of Indian Trail Ridge at a are the same, there is a change in the throw, since point a little north of the quadrangle line. The the displacement is in different directions on the two ridges.

The fault between Madden and Parrott peaks is very noticeable, since it cuts off the porphyry sheet of the latter and lifts the La Plata sandstone to the summit of the former peak. The dislocation of this fault on the line CC

is represented on the section as about Fault at Peak 1000 feet. This is so considerable that possibly other Tertiary formations. It is also at its maximum was very flat. The La Plata sand-it might be expected that this fracture could be traced eastward across the La Plata River. A careful search failed to discover any trace of it on the eastern bank of the stream. It also appears The present distribution of formations is represented in section BB. The remnant of the to die out in a westerly direction very rapidly, for it was not identified in the canyon of the East Mountain is also about 5000 feet above the hori- Mancos. Yet nearly in the line of its projected course westward is the Menefee fault, which was the steeper dips die out, some 4 miles to the south- at first supposed to be its direct continuation. west of the mountain. These instances represent | The Menefee fault is clearly exhibited in two places where crossed by the railroad on the south

> IGNEOUS INTRUSIONS. LACCOLITHS AND SHEETS.

bank of the East Mancos.

The number of intrusive porphyry bodies in the La Plata Mountains which may be designated sheets or laccoliths is rather large, as may be seen In all the central part of the mountains the by the geologic map. A number of these masses are also exposed in the adjacent portion of the Durango quadrangle, especially in the valleys of Lightner and Junction creeks. Intrusions of this character are practically confined to the area of the domal uplift. They are most numerous in the La Plata and Lightner valleys.

> The sheets exposed at the present time range through the geologic section from the lowest horizon seen in Lightner Creek—the top Igneous sheets throughout geologic section. in the Mancos shales which is repre-

sented at the summit of Hesperus Peak. We The diameter of the domal dislocation of the may assume that magmas penetrated into higher strata, now entirely removed, and that they were mately 10 to 15 miles. The blending with the also forced between the concealed Paleozoic strata in the same manner.

In form the porphyry bodies vary from regular Faults.—The faults of the La Plata Mountains | sheets, traceable with approximately the same thickness for a mile or more, to thick Porphyry bodies assume bodies more nearly approaching the b Mancos to Indian Trail Ridge. These approxi- variation also in the degree of regularity of intrumately parallel fissures are connected by several sion. There are all degrees of transition from sheets which do not visibly depart from a certain horizon to directly cross-cutting dikes. So many ranch and one crossing the saddle between Parrott | centers of similar intrusions have now been and Madden peaks. There are many smaller described that it seems needless to discuss at fractures, as on Ohlwiler Ridge and in the divide | length the conditions of such a center of eruption. at the head of the La Plata River. The latter It is evident that where many sedimentary fornumerous porphyry bodies there must be a great amount of variation in form and size.

The variation in thickness in the La Platas ranges from that of thin sheets, or dikes, which it is difficult to represent on a map of this scale, to the larger masses like those of Silver Mountain, the thick lateral arm forming The Hogback, and The faults crossing the West Mancos are clearly the adjacent sheet or laccolith of the Rampart

Hills. From experience in other localities, as | present time. It has therefore been assumed, as | points of view to be a huge laccolith, and the | the fact that it extends from the bed of Bedwell as from the developments here, it may be a basis for interpreting the eruptive geology of observed contacts seem in places to confirm this rock Creek to the base of the La Plata sandstone supposed that still larger bodies than any now | this locality, that many of these cross-cutting | idea; but at other points marked cross-cutting | on Gibbs Peak, yet the southern and western observed once existed in the Cretaceous shales of | arms and dikes must have united at no very great | contacts are exposed. Direct connection with | extensions are more like a sheet intruded at or higher horizon. As shown by the map and | depth and that we have here displayed the normal | the complex of Deadwood Gulch is plain, but the | near the base of the La Plata. Several conditions pointed out in the description of rocks, the diorite- and monzonite-porphyries greatly predominate and were also the first ones intruded. They were followed by a number of syenite-porphyry injections, and still later by a few lamprophyric porphyries.

CENTERS OF PORPHYRY ERUPTION.

The deep dissection of the La Plata dome has exposed a most complicated system of cross-cutting porphyry bodies in the southeastern part of the mountains. Apparently these centers represent eruptive channel is that shown at the head of Bedrock Creek.

map, that the large masses of Baldy Peak and Silver Mountain are represented as con-

nected with a very intricate system of dikes, including many in Deadwood Gulch, Burnt Timber Gulch, the ridge

between them, and the ganglionic center situated to the north of Silver Peak at the head of Lightner Creek. This expression of relations is throughout more or less generalized. The entire area concerned is vastly more complex than represented, but defies satisfactory analysis on account of the large amount of grass or timber-covered ground and the slide masses, which are locally very prominent. The accurate representation of the relations here would require good rock exposures and a detailed map of large scale; hence the map of this folio must be accepted as expressing an interpretation of a large number of observed facts rather than a delineation of masses traced out. Deferring details to a later section, it may be stated here that the map is intended to express wood Gulch there must be a large stock-like conduit of porphyry, above which sedimentary formations have been crushed and fractured in the most complicated manner. This theory has been developed from the conditions observed on the present surface west of Deadwood Gulch.

broken up, from the bed of Deadwood Gulch to by many small tongues or fingers of porphyry, the crest of the ridge on the west. The McElmo is entirely omitted on a part of the west

slope of Baldy Peak. The Dakota Absence of McElmo forsandstone above is traceable almost west slope of Baldy Peak. continuously, and the Dolores forma-

not the horizons within it. The western slope of Deadwood Gulch is largely grassed over in the portion concerned, but the La Plata sandstone was found in small exposures, apparently sur-The McElmo formation likewise can not be phyry indicated by the map are correct, but the complicated than represented.

might explain the absence or the diminished development of the La Plata and McElmo. The faults of Ohlwiler Ridge particularly suggested that the complications might be due to other faults, but no evidence of purely mechanical fracturing could be discovered where necessary to explain the situation.

The presence of large and irregular porphyry masses at any point in the sedimentary complex involves the shattering and dislocation of the rocks immediately above them. rocks above large intru-Especially, when the area between Baldy Peak on the south and Deadwood Moun- eruption not far away to the north than with the steep divide at the head of the gulch to the north of débris which are creeping down the southwesttain and Burnt Timber Gulch on the north is considered, it is readily seen that a large amount | in various places are almost unaltered. of dislocation must have occurred in the strata of horizons slightly above those exposed at the phyry mass of Silver Mountain appears from some mass as a cross-cutting body seems determined by soft shales below, and the slide is thus gradually

La Plata.

the channels through which a considerable part | immediate source of the Baldy Peak mass. On | of the Silver Peak mass seems more like the base | and form slide masses, concealing most of the conof the magma injected in sheet form must have the theory outlined above, erosion has removed of a laccolith than of a cross-cutting body, yet tacts. As the surrounding sediments and the ascended. Another mass apparently filling an the McElmo débris that was naturally above the much of this line is concealed by great talus syenite which borders the porphyry on one side that inclusions of sedimentary rocks in It will be seen, on reference to the geologic the porphyry bodies now exposed are Removal of shattered rare; small fragments of sandstone or sandstone or entry tive. shale were observed in some places,

into higher horizons, carrying with them the Peak the contact of the large body is

mass.

hypothesis that a buried porphyry body of large size exists beneath the ridge west of Buried por-Deadwood Gulch. This consists of a phyry body west of Dead nearly horizontal attitude or a slight northerly dip of the sediments in Deadwood | through the group. No doubt the Hayden map | the Dakota in the soft Mancos shales there are Mountain from the summit down the south and originally gave rise to this idea. southeast slopes, and in an easterly dip to the strata of Paine Ridge on the east.

Porphyry masses of Deadwood Gulch and strata of Paine Ridge belong to the upper part of an intrusion which, being developed in greatly the ridge indications of the former shale covering Baldy Peak.—On the geologic map the La Plata of the formation, as shown by numerous exposures and McElmo formations are represented as much of "Saurian conglomerate." They are traversed only a portion of which are shown by the map. | the Baldy Peak mass. That this area of intense fracturing containing so many practically contemporaneous igneous masses the head of "General geologic problems."

gulch on the southwest slope of Deadwood Moun- out. The mass is geologically a unit. tain well deserves the name given it. Once rounded by porphyry, and the formation certainly covered by a heavy forest of fir and spruce, its The porphyry mass crossed by Waterfall Gulch, can not be present in its whole development. steep slopes are now a mass of tangled timber, a small branch of Lightner Gulch, is a complex of with a new growth of aspens springing up in intersecting fissures between which are wedges or present in its normal thickness at this locality. many places. Under these conditions an accurate | blocks of angular cross section, as now exposed. Probably not all of the connections of the por- outlining of the extremely irregular porphyry These are often too small for mapping and on the mass there present is well nigh impossible, but accompanying topographic map the expression of complex branching and intersecting character the representation on the map is certainly not far such relations is necessarily almost diagrammatic. shown is certainly present, and is probably more from correct. This porphyry cuts across the While Waterfall Gulch exposes a good section strata in general, but at several points has arms | through the heart of this porphyry ganglion, the A careful search was made for faults which which wedge open the adjacent beds on stratifi-dikes are often obscured at points of intersection. cation planes. No actual connection of a well- | Several small dikes and irregular outcrops | and is injected upon one of the shaly division developed sheet was found. The contact along observed to the west and north have been omitted the south bank of the gulch, near the bed of the from the map because it was thought best not to this mass is connected with The Hogback. creek, seems parallel to the stratification, but at complicate the representation too much. A conthe point represented a sharp contact in vertical position crosses the gulch and runs up the north | rently effected along at least one dike, which was | crest of the ridge bordering Bear Creek, are the side. The complexities in form of the mass are not however, actually traced for the entire disactually much greater than those shown.

There is locally much bleaching and metamor-Burnt Timber Gulch. But this condition is more | a large porphyry body, which begins at an elevaappropriately connected with the syenite stock | tion of about 9900 feet and extends across the | by weathering, broken into slowly moving masses porphyry intrusion, for the strata near the latter of Gibbs Peak into the head of the East Mancos ern slopes and in some places almost reach to the

Waterfall Gulch, a branch of Lightner Gulch.

and the connecting arm toward Deadwood Gulch | The northern part of this mass still contains so however. Yet it is only necessary to assume that clearly cuts obliquely across the sediconsiderable quantities of magma were forced ments. On the northeast side of Baker arms between large intrustrations. greater part of the débris, to explain the rarity of markedly cross cutting, while along the western fragments. The sandstone on the summit of face of the same summit the porphyry is very Baldy Peak may well be such a fragment, rather | nearly conformable to the stratification for half a than the base of formations above the porphyry | mile. This latter locality seems to have given some of the early explorers of the La Plata Moun-There is a structural element favoring the tains the idea of a regular contact between the

porphyry and sediments, which, by an effort of porphyry and sediments, which, by an effort of injected into the strata below the the imagination, they extended throughout the Dakota sandstone have a general above the magnetic than the injected into the strata below the Dakota sandstone have a general above the magnetic than the injected into the strata below the the imagination, they extended throughout the magnetic than the injected into the strata below the magnetic than the injected into the strata below the magnetic than the injected into the strata below the injected into the strata below the magnetic than the injected into the strata below the magnetic than the injected into the strata below the magnetic than the injected into the strata below the injected into the strata below the magnetic than the injected into the strata below the injected injected into the strata below the injected injected injected into the strata below the injected i group. The "Baker contact" was long regarded resemblance in their lateral developas the best exposure of the contact running ment and extension; but above the horizon of

shattered rocks, has of course many irregular conthan to the stock form. It thus closely resembles

There is more than one type of texture in the Silver Mountain mass, with but little variation in does not exhibit considerable metamorphism of mineral composition. It was not found practicathe sedimentary beds is a fact which will be | ble to follow the observed boundaries between exposures, but it does not seem probable that dis-

Eruptive center at head of Lightner Creek. nection with the Silver Mountain mass is appatance, owing to areas of slide or vegetation.

Large porphyry body in Bedrock Gulch. phism of strata, especially on the north side of Toward the head of Bedrock Gulch there occurs Valley. A branch also crosses into the head of | North Fork of the West Mancos. This movement The Silver Mountain mass.—The large por | Madden Gulch. Although the character of the appears to go on through the washing out of the

complications in the sedimentary formations, connection with the eruptive center at the head subject the representation of this mass on the which must exist above a huge cross-cutting mass of Lightner Creek is less distinct. As observed map to possible future correction. One of these of intrusive rock. It is supposed that the ascend- from the trail on the eastern side of Lightner conditions is the extensive decomposition of the ing magmas have torn loose and carried upward | Gulch, the base of the mass appears in approxi- | porphyry itself, all the dark silicates having been the missing portions of the La Plata and McElmo | mate conformity with the sediments for a long | removed and the feldspars kaolinized. Further, formations, and doubtless portions of the Dolores | distance, but there are many visible irregularities. | the mass was once thoroughly impregnated with also. The porphyry mass of Baldy Peak clearly | From the contact on the eastern slope of the pyrite, and this has in much of the mass been cuts obliquely upward from the Dolores to the mountain at about the level of 9500 feet to the dissolved, leaving the usual reddish or yellowbase of the Dakota. The connection with dikes summit at nearly 12,500 feet all is porphyry of ish iron stain. Moreover, the mass occurs in an west of Deadwood Gulch is shown in several arms, | light-gray tone. From the ravine on the eastern | area where all rocks are intensely fractured into and the great development of unusually large | side, where the syenite-porphyry dike cuts both | minute irregular fragments, and through the proplagioclase phenocrysts in these rocks shows the porphyry and underlying sediments, the contact cesses of weathering exposures rapidly crumble porphyry mass now seen. It must be confessed | slopes. At the northeastern extremity is the | are similarly decomposed and stained, the tracing apparent connection with the eruptive center in out of the porphyry contacts is extremely difficult. Indeed, the line between the porphyry and the On the south the contact is by no means regular | syenite was not accurately located at any point. much pyrite that Mr. Purington has represented

> it on the Economic Geology sheet as practically a pyritiferous ore body. It seems possible that the conduit of Bedimportant
> intrusives. rock Gulch was the one through which

the magma of the important porphyry sheets and arms to the west ascended.

Outlying porphyry masses.—It will be noted by reference to the map that most of the sheets injected into the strata below the

fewer and larger masses. The long ridge called As a matter of fact, the "Baker contact" can | The Hogback is caused by a thick arm of porbe easily traced to the point where, as shown by | phyry which is distinctly limited, as represented The large porphyry arms near the head of Dead- | the map, the wall of the porphyry mass suddenly | by the map, although its contacts are seldom seen, wood Gulch, connecting in one direction with changes to a nearly vertical position and runs owing to talus slopes. From the southern base of the idea that beneath the western slope of Dead- | Silver Mountain and in another with the por- | abruptly down the slope to the west, crosses the | the mass to the crest it is in some places more phyry of Burnt Timber Gulch, are thoroughly gulch, and runs up high on the other side. So than 1000 feet thick. The character of this arm well determined. They constantly exhibit a much of the boundary of the Silver Peak mass is as a lateral injection rather than a cross-cutting tendency to lateral intrusion on stratification concealed that the outline given it can plausibly body is shown by two remnants of shale which planes, and many contacts seem on first sight to be considered as due rather to vertical than to were found upon the crest of the ridge. As indicate the usual sheet form for the bodies con-approximately horizontal and conformable con-these lie upon the northern side they have a dip cerned. The soft, unmetamorphosed Dolores | tacts. Probably this body is a local thickening | to the north. At other places along the crest of were also observed, either in the form of shale tacts, though related more closely to the laccolith | fragments included in the porphyry or in the peculiar corrugated surfaces of the porphyry which it characteristically assumes when in contact with shale. Although the base of the mass is not sharply exposed as a rule, it is clear at the western end that its base corresponds very closely to the general stratification of the shales. The tion below is recognizable throughout, though especially commented upon in discussions under varying textures on account of débris and cliff projection to the northwest across the branch of the Middle Mancos is partially cross cutting. Irregular mass in Burnt Timber Gulch.—The tinctly different periods of eruption can be made This arm evidently ended very abruptly and is represented on the west side of the Middle Mancos by a small outcrop, the base of which is at the same general level as the base of the porphyry at the end of the main Hogback.

The porphyry mass which extends from the Rampart Hills northward across the West Mancos Canyon is practically a rather flat laccolith. As shown by the map, it does of the Ram-

not occupy the same stratigraphic plane throughout, but descends northward to the upper surface of the Dakota and in the region of Deep Canyon cuts a little below the top of the Dakota planes in the Dakota itself. It is possible that

The intrusions of porphyry in the Mancos shales, from the Sharkstooth northwest along the only other important outliers within the La Plata quadrangle. These masses are doubtless irregularly connected, but the outline exhibited was in a measure conjectural, especially on the southwestern side. Here these porphyry sheets have,

let down until it appears to occupy a horizon | northeast of Diorite Peak is undoubtedly but an | Hesperus, but banks have been worked at many | considerably below that of its original injection. arm of the stock just described. That the débris masses are actually

moving down the slope is seen in some debris masses places, where they have penetrated into

the forest and partially killed off the growth of trees, some of the stumps being seen projecting through the slide mass. The outlying bodies to the east of the La Plata Mountains are mainly in the Dolores formation and are comparable with the bodies of the La Plata Valley.

STOCK ERUPTIONS.

The map shows stocks of three different kinds of granular rock, which penetrate all formations in their path. It is shown in many places that they are distinctly later than the porphyries of the laccolithic type. The rocks filling these large conduits are of three kinds, which have been described in the preceding section. No doubt the three rocks belong to somewhat different epochs of eruption, but as they do not come in contact their relative age is unknown.

From the phenomena here and at other laccolithic centers, as the Rico Mountains, it is inferred that the stock eruptions are of a type quite different from those of the laccolithic intrusions. This subject is discussed somewhat more in detail in the section on "General geology." Metamorphism of the calcareous strata about the stocks is common.

Monzonite stocks.—The stock within which are situated several of the highest and most rugged peaks of the mountains, including Mount Moss and Babcock and Spiller peaks, is composed chiefly of monzonite. The rugged topography within the eroded stock is but imperfectly represented in figs. 10 and 11. The extremely jagged crest of Mount Moss shown in fig. 11 and the divide connecting it with Babcock Peak are entirely due to the monzonite. As stated in the description of this view, there is a lateral wedgelike arm from this stock which tilts the strata and intercalated porphyry sheets, as may be seen from a study of the illustration. The phenomena at the head of the West Mancos gave Holmes the idea, which he has expressed in the Hayden reports, that the principal eruptive conduit of the La Plata Mountains was situated at this point. Without distinguishing the difference between is a scarp caused by the Dakota sandthe granular stock rock and the porphyries of the intruded sheets in Hesperus Peak, Holmes natu- nating series of sandstones and shales below the natural nating series of sandstones and shales below the paketa sandstone.

Dolores Plateau determined by the Dakota the altermined by the Dakota sandstones. rally assumed that all the intrusions were offshoots | belonging to the McElmo formation from the cross-cutting body. As a matter of fact, | produce a succession of benches and small scarp there are but two sheets injected laterally into the | corresponding to those which may be found in | strata for any considerable distance which seem any valley of considerable depth carved below to be directly connected with the stock in origin. | the Dakota horizon. The La Plata sandstone These are shown on the map as cutting through | is apparently exposed at the mouth of Deep Can-Banded Mountain, and one extends for several miles northward along the west bank of Bear | supposed to represent the La Plata is in fact one Creek. Even this connection is open to some of the lowest sandstones of the McElmo. The doubt, however, because outcrops are not perfectly continuous in the region of Banded Mountain, and it is possible that these sheets are also cut by the stock. In character, however, the rock of these sheets is more nearly like the monzonite than is the rock of adjacent sheets.

There is much metamorphism adjacent to this monzonite stock. All through the strata of the Dolores near it there is a considerable development of silicates of iron, lime, and magnesia, such as pyroxenes, garmonzonite stock. net, and probably vesuvianite, and small

fissure planes through both sedimentary and igneous rocks are frequently coated by scales of brilliant specular iron. Some of the impure limestones of the Dolores have been transformed into granular masses of coarsely crystalline calcite,

garnet, and pyroxene.

Diorite stocks.—The principal diorite stock is that extending from Diorite Peak southward to the valley of Basin Creek. It is irregular in shape, as shown by the map, some porphyry sheets. and distinctly cuts across a number of typical porphyry sheets. As explained above in | Mesa Verde, as it changes in character from the describing the rock, it is closely allied to the monzonite, and indeed grades in places within the mass into a facies which must be called monzo- rangle, seen in fig. 2. The principal geological nite. The metamorphism about this stock is of interest of this portion of the quadrangle lies in the same character as that adjacent to the monzo- the presence of the coal-bearing formation, the nite stock to the west. Several smaller centers | Mesaverde. The development of the coal hori- | but a part of the general San Juan disturbance of of diorite eruption occur in the mountains. Of zons has thus far not been extensive within the a particular period, the local intensity being due examination of the section B-B of the Structure

The irregular cross cutting body of Lewis vicinity. Peak is of a rock very similar to that of Diorite Peak, and the metamorphism of the strata about it is of the character already described. This smaller stock is connected with a series of diorite dikes which extend to the northeast, crossing the boundary of the quadrangle and appearing very prominently in a ridge which has been termed "Dike Ridge." Another small diorite stock occurs near the end of the ridge between Madden and Bedrock gulches. It exhibits no features requiring special mention.

Syenite stocks.—Two elongated stocks of syenite are shown on the map. The one on the eastern side of the La Plata, crossing the ridges between Tirbircio Gulch and the western spur of Deadwood Mountain, is formed of a very distinct type of syenite, rich in alkali feldspar, as described above. It is a much more highly alkali rock than any of the intrusive sheets. The mass crossing the La Plata River and extending far up the ridge north of Bedrock Gulch is of the same rock type as the one just referred to; but the mass is very much more obscured by decomposition, and in its upper portion by the shattering and staining of iron oxide, which renders its distinction from the porphyry mass of Beckrock Gulch difficult. This mass cuts across several of the largest porphyry sheets in the mountains. It is assumed from analogy in other localities that the syenite eruptions are later in date than either the monzonite or diorite intrusions.

DOLORES PLATEAU.

In the first section of this text the physiographic relations of the La Plata Mountains to the Dolores Plateau were fully described. It is clear from the geologic map that if the porphyry bodies of the Rampart Hills and the Hogback were not present in the Mancos shales, this latter soft formation would have been almost completely eroded from the western slopes of the La Plata Mountains. From the zone of faulting to its junction with the East Fork, the West Mancos flows in a canyon which is typical of the Plateau country to the westward. The rim of the canyon

yon, but it is possible that the white stratum smaller canyons of Turkey and Chicken creeks any considerable thickness of the McElmo. Where the Mancos shale has been entirely removed from the surface of the plateau, it is almost invariably covered by a scattered growth of white pine, and angular fragments of the Dakota sandstone are scattered more or less thickly over the entire surface. Remnants of the Mancos shale occur at many points on the divides between the principal water courses. They cause knolls like those shown by this map upon the narrow ridge between the West Mancos and Chicken Creek.

THE SOUTHERN THIRD OF THE AREA.

From the point where the steep dips of the sedimentary formations change to gentler dips at the base of the La Plata Mountains proper, the structure is that of a large area extending southward into New Mexico. As has been pointed out, this area is in fact the eastward extension of the nearly level surface of the mesa proper to the more highly inclined mesas of the Durango quadthese a small tongue upon the crest of the ridge | La Plata quadrangle, except in the vicinity of | to hidden causes.

there is evidence that the East Mancos River formerly discharged through what is now known as East Canyon. This is conclusively shown by the gravel terrace on the divide at the very head of the latter canyon, by the presence of remains of this terrace farther down the stream, and by the existence of porphyry pebbles in or near the stream bed. These could only have come from feature of the present drainage is the relation of the La Plata Valley to the canyons of minor streams on either side. Hay Gulch, whose headwaters are within the surface covered by the Plata River now flows. This can be explained only as due to the fact that Hay Gulch is of very recent origin, while the La Plata, a much older (Anthracite-Crested Butte folio, No. 9). stream, had at this distance from its source become choked with débris from the mountains | The cause of the vertical upthrust to which local at a period before the active erosion in Hay Gulch began. The grade of the river was thus long ago established, while that of Hay Gulch in its upper | measure a matter of hypothesis. As is well reaches is still changing.

Some further discussion of these episodes in the erosional history of the region will be given by Mr. Spencer in the following section.

GENERAL GEOLOGIC PROBLEMS.

The oldest formation displayed in the La Plata quadrangle being the Dolores (Triassic), there is no evidence from the region itself as to pre-Mesozoic history; and even for the events of Mesozoic time no special clues, not already indicated in the descriptions of the formations, have been found in the area. The description of the Durango quadrangle will necessitate a review of the geological history of the entire region from the Archean to the post-Cretaceous, and for this rea-Mesozoic time will not be further discussed in this place. Special consideration of the phenomena here exhibited will begin with the igneous intrusions and the uplift of the La Plata dome.

ORIGIN OF THE LA PLATA DOME.

southerly dip of the strata from the base of the eruptions which can be plausibly mountains proper and the gentle westerly dip of hypothecated. The nature of the upward movethe Dakota sandstones and underlying strata of ment in the Rico Mountains seems also to indithe Dolores Plateau are in the main independ-cate a force distinct from that of the upward ent of the La Plata uplift. This is shown by the movement of magmas, since it was manifested at fore appears that the La Plata dome was uplifted the large San Juan center swing rather quickly to a westerly dip. At this angle, so to speak, the local elevation of the La Platas took place, and it is difficult to estimate the influence of the local uplift in modify.

La Plata uplift at an angle in the influence of the local uplift in modify.

La Plata uplift at an angle in the influence of the local uplift in modify.

ing the broader structure at a distance of more than 8 to 10 miles from the center of the

mountains.

The San Juan structure of this vicinity affects Paleozoic to the post-Laramie Animas beds. But San Juan Mountains that all Cretaceous formations were uplifted and extensively eroded before report that the broad "doming of the San Juan region has been the result of successive deformaadjacent regions." Hence it is impossible to ascertain what phase of development of the San Juan structure may have existed on the site of the La Plata Mountains at the time of the domal uplift. It may be that the local movement was

Age of the uplift.—The age of the La Plata localities for the use of ranchmen in the immediate | dome can not be accurately shown by any evidence to be found in the region at present. From As was mentioned in the physiographic sketch, the data accumulated in the Telluride quadrangle and adjoining localities, where intrusive masses similar to and believed to be contemporaneous with those of the La Platas have either penetrated or uplifted the volcanics of the San Juan, it is certain that at least a portion of this great volcanic series had been erupted at the period of porphyry intrusions. This question has been discussed at some length in the Telluride folio the La Plata Mountains. Another interesting (No. 57) and in the report upon the Rico Mountains (Twenty first Annual Report, Part II). The age of the La Plata uplift is unquestionably Tertiary, and presumably

early Tertiary. From corresponding Mesaverde formation, has eroded its canyon to a data it has been shown that the laccoliths of the much deeper level than that upon which the La | West Elk Mountains are of Tertiary age, since they uplifted post-Laramie beds which are probably to be correlated with the Animas formation

> Connection of porphyry intrusion and uplift. dome-like elevations, like those of the La Plata and Rico Mountains, are due must remain in large known, the group of the Henry Mountains has become celebrated through tains an the work of G. K. Gilbert, as the of uplift by

original illustration of the laccolithic hypothesis. So far as descriptions of the Henry Mountains go, they are comparable with the La Plata and Rico mountains only in the presence of great masses of porphyry of the same type. As already pointed out by Gilbert and others, the mountain groups of the Plateau country are undoubtedly contemporaneous, or nearly so, in their origin, and it was at first the most natural deduction to assume from the abundance of the porphyry masses of the same type in all of them that their origin might be throughout similar to that of the Henry Mountains. But there is this important difference: in the Henry Mountains son the history of the La Plata quadrangle during the structure of the sedimentary rocks appears to be directly traceable to laccoliths of porphyry, and Gilbert has not described any structures in the heart of the mountains which are not evidently due to the intrusions themselves; in the La Plata and Rico mountains, on the

contrary, there is evidence of uplift Plata and Rico mountains, on the contrary, there is evidence of uplift Plata and Rico mountains the latter below visible porphyries, in the latter wholly Relation of dome to San Juan structure.—The | affecting horizons below any laccolithic visible of

continuation of these structures respectively east | a period later than any of the igneous intrusions and north from the La Plata quadrangle. It there- represented by visible rocks. It therefore seems necessary to conclude that, if the local uplifts of have cut through the Dakota, but do not reveal | at the point where the southerly dips away from | these centers are due entirely to the upward pressure of molten magma, the force was applied to rocks at great depth and not at the horizons of intrusion for the comparatively small laccoliths and sheets of which there is direct evidence.

> Displacement by visible intrusives.—It is clear that the porphyry masses shown by the map have displaced the sedimentary formations above them in an amount equal to their total mass. This displacement is clearly confined to horizons above all sedimentary formations from the base of the base of the Dolores formation. It is now impossible to estimate closely the amount of that it is abundantly proved in the western part of the displacement because so much of the porphyry mass has been entirely removed by erosion. If the porphyry mass thus removed was considerthe beginning of the San Juan volcanic eruptions, ably greater than that indicated by present expothe probable source of the materials forming the sures, the displacement by porphyry is perhaps Animas beds. From these facts and other evi- comparable to the total deformation above the dence the conclusion has been drawn in the Rico | base of the Dolores. From the doming of the lowest stratum exposed, which belongs nearly at the base of the Dolores, it is necessary to assume tions in the same direction, repeated at each either the presence of intrusive porphyry bodies period of continental uplift affecting this and of great size not revealed by the dissection of the mountains at this time, or a vertical upthrust of some other origin.

Buried laccoliths.—The assumption that other porphyry masses similar to those exposed in the La Plata Valley occur beneath the lowest horizon now exposed is certainly a very plausible one. An Section sheet shows that the somewhat irregular

doming of the structure from the La Plata Valley noticeable tendency to force its way by lateral marked. In character it corresponds to many upon the dip slopes produced. These streams toward Snowstorm Peak might be very easily intrusion. caused by a laccolith situated at or near the base of the Dolores formation. This local disturbance, which produced a very steep dip on the eastern | between the strata as sheets and lacside of the dome, is the most pronounced irregularity in the structure of the mountains; but porphyritic structure, even in their there are several other localities where there are conduits as far as seen nor that the there are several other localities where there are abnormal dips which may in a similar manner be due to local porphyry bodies not far below the present surface.

domes is of value.

dome is approximately of the same size as the La Plata; perhaps somewhat larger. Its dissection by the Dolores River reveals its internal structure, however, to a much lower horizon. While was undoubtedly the same as that at the La Plata center, erosion has revealed the very base of the Paleozoic section, and there are also certain small exposures of Algonkian quartzite and schist. The Rico Mountains are like the La Platas in exhibiting an extensive series of intrusive diorite- and monzonite-porphyries and in the existence of later stocks of monzonite. The distribution of the intrusive porphyries there is seen to extend throughout the sedimentary section, although they are most numerous in the Dolores formation; but the presence of the underlying Algonkian quartzites, whose attitude is certainly unconformable to that of the Paleozoic sediments, shows that some deeper-seated force

zoic or Mesozoic sediments is necessary to explain the uplift. There is a notable amount of faulting in the center of the Rico dome, resulting in the upthrust of certain blocks which are immediately responsible for the presence of the Algonkian quartzites. But this faulting does not do away with the necessity for assuming an uplift of domal character independently of the porphyries. The faulted blocks demonstrate the absence of porphyry masses capable of producing the full domal structure at the center of uplift, unless | face volcanics, and it seems almost they are beneath the base of the Paleozoic in impossible that these intrusions can have taken eruption. While, therefore, the La Plata dome might be hypothetically explained as

than laccolithic intrusion in the Paleo-

largely due to laccolithic intrusion at as to the origin of Rico dome horizons not exposed by erosion, the facts of the Rico Mountains have led to the conviction expressed in the Rico report—that in that case "the structural features are not chiefly due to igneous intrusion, and the intrusions may even be regarded as due to the earth stresses which have produced the principal structure. This conclusion rests upon the insufficiency of the exposed igneous masses to produce the struchidden masses of importance, and the abundant evidence of fault blocks thrust up in the heart of the dome since the porphyry intrusions."

IGNEOUS PHENOMENA.

Comparison of stock and laccolithic intrusions.—The association of stock and laccolithic indicate that the stock eruptions were the result of the La Plata dome may have been, or how long intrusions at two decidedly local centers like the Rico and La Plata mountains gives an opportunity for instituting certain comparisons between the phenomena of these two types of intrusion. It is to be noted that they contrast in age, form, rock structure, and associated metamorphism. It is coliths are distinctly earlier in time of eruption than the cross-cutting stocks

Sheets and laccoliths older than the stocks. clear that the intrusive sheets and laceruption than the cross-cutting stocks that have been considered. No instance was observed in adjacent regions of porphyry sheets later than stocks. While the magma of the por- former lateral extent of this body is phyry masses undoubtedly must have risen through conduits cutting across the strata of of the mass to have been fairly regular in form. lower horizons, it constantly showed a tendency | It has been described in the section on the igneous upon favorable planes of stratification. The in composition and structure. This zonal variamagma of the stocks of granular rocks, on the tion is repeated toward the center from the upper other hand, often cut directly across rather and lower contacts respectively. While the variasteeply inclined sedimentary beds without any tion in composition is not very great, it is still La Plata

magmas which tend to force themselves laterally coliths have consolidated with the laccoliths conduits as far as seen, nor that the contents of the stock are almost always a distinctly granular rock. As was particularly pointed out in the Telluride folio, the develop-The domal uplift of the base of the Dolores ment of the granular structure is connected with La Plata magmas, in the presence of requires the assumption of a great quantity of the stock form or with the period of eruption. intrusive matter, if the whole of the domal uplift | It is developed as well at the highest levels now | is to be explained in this manner, and at this point | preserved in the San Juan — over 14,000 feet in | a comparison between the La Plata and the Rico | Mount Sneffels and Mount Wilson—as at the | lowest elevations. Similarly the porphyritic Comparison with the Rico dome.—The Rico structure is characteristic of the earlier magmas known in many centers where diorite and horizon it may have occurred. In the report on the Rico Mountains, to which the reader is referred for a fuller discussion of this question, the series of sediments affected by that uplift it was suggested that the essential difference between two types of eruption appeared to be in the intensity of the force by which the magmas have been brought of intrusive force.

to their position; or perhaps, rather, the suddenness of the application of the force. of the stock eruptions the force appears to have sheets as melanocratic differentiation been applied so suddenly that vertical fissures products,* the complementary leucopenetrating the sedimentary rocks for long dis- cratic rocks may be represented by the the channels extended to the surface at the time Telluride and adjacent quadrangles penetrate several thousand feet of sur stocks probably reached the surface.

rocks not favorable for the laccolithic type of place to levels so near the surface, as in these rocks become of the lesser volume. cases, without the fractures extending to the surface, permitting the magmas to ascend and issue as lava streams.

> A notable distinction between stocks and laccolithic intrusions lies in the almost uniform presence of extensive zones of contact metamorphism about the stocks and their almost total absence from the vicinity not with laccoliths. of porphyry laccoliths, even when the

latter are of great size. It therefore appears that the magmas ascending in stocks were accompanied by certain mineralizing agents not associated with ture seen, the improbability of the existence of the magmas of the porphyry bodies. The minerals of the contact zones are such as have been formed synthetically by the aid of the so-called mineralizing agents, fluorine, chlorine, and superstances with the magmas ascending in stocks may of an explosive eruption, while the porphyry magmas containing at least a relatively small amount of water vapor had much less of this element of force.

magmatic differentiation found in the igneous rocks of the La Plata Mountains are of two kinds. The most directly significant fact is the variation of composition exhibited by the rather basic intrusive sheet or laccolith of Indian Trail Ridge. Although the Ridge laccolith of Indian Trail Ridge by the rather Zonal variation in composition of Indian Trail Ridge laccolith. unknown, it appears from the remaining portion to lateral extension by forcing open the strata rocks as exhibiting a very marked zonal variation

other instances of zonal variation interpreted as rapidly cut their way through the Tertiary It can hardly be a matter of accident that the differentiation in place, in that the center of the covering into the Cretaceous formamass is comparatively rich in silica and the alkalies and the contact zones are much more basic. the former from the dome and from kind interpreted by G. F. Becker as due to convection currents (Am. Jour. Sci., 4th series, Vol.) IV, 1897, p. 257).

> In another direction there is evidence in favor of magmatic differentiation at the source of the a considerable number of basic dikes magmatic differentiaand thin sheets which, wherever they

come in contact with the normal porphyries, are found to be of later age. These rocks are directly comparable with the basic types which are now with a tendency to lateral intrusion, at whatever monzonite-porphyries have been erupted in large quantities. The constant association of such frequent occurrence in regions where the task of later magmas in comparatively small volume at centers of eruption can not be regarded as other than significant.

Upon the modern hypothesis of differentiation it is to be expected that the later magmas at any eruptive center will be either more basic or more acid than the earlier products. Unfortunately the sequence of eruption of the La Plata magmas The porphyries appear to have been injected can not be ascertained in all details. Thus, while of Tertiary time—that is to say, that it corresunder the influence of a great force steadily the stocks are all later than the diorite or monzoapplied — applied so slowly that planes of weak- nite-porphyries, no fact was observed tending to ness between the adjacent strata became fissures | show the relative ages of the augite-syenite and into which the magma was injected. In the case | diorite stocks. Viewing the basic dikes and

tances were formed. Since there is but slight augite syenite of the two stocks or by the dikes displacement of strata it is necessary to assume described as syenite-porphyry. Since there can that the rapidly ascending magmas cleared their | not well be any connection between degree of channels by carrying upward the rock of the differentiation and the eruptive acts, it is not to space now occupied by the stocks, for there is be wondered at if the two complementary magmas absolutely no indication of the assimilation of the of theory are not always in evidence in correspondrocks passed through. It is not known whether | ing amounts. As a matter of fact, the melanocratic forms have been much more commonly of eruption or not, but in some instances in the observed than the leucocratic types in many local San Juan Mountains proper such would appear ities. In the La Platas a few highly feldspathic to have been the case. Some of the stocks of the dikes were noted in the vicinity of Snowstorm Peak, but the volume of these dikes is almost insignificant. But if the augite-syenite be taken as representing the leucocratic differentiation product of the La Plata magma, the melanocratic

Indian Trail Ridge corresponds closely in its rocks. As that occurrence clearly shows that these magmas are capable of further differentiation, it furnishes in itself an element of evidence in favor of a similar origin for the melanocratic rocks of the small dikes and sheets.

EROSIONAL HISTORY OF THE LA PLATA QUADRANGLE.†

Tertiary erosion of the La Plata dome.—The fact has been brought out in the preceding discussion that the structure of the La Plata Mounthan that during which the San Juan tuffs were heated steam. It is therefore a natural suggestion formed; that is to say, after the lapse of a portion of the San Miguel River, and along the Uncomthat the presence of steam and other gaseous sub- of Tertiary time. Just what the date of the earth movement which resulted in the production | Green River in Utah. its uplift and intrusion by igneous rocks, which form so important a part of its present make-up, may have been in progress, can not be determined from any data now at hand. As has been pointed River and the abandoned course of the East Magnatic differentiation.—The evidences of out in the case of the Rico dome, it may be that Mancos to the drainage on either side. During erosion was active in the La Plata region before the accumulation of volcanic materials ceased. East Mancos must have flowed through Mancos Mancos must have flowed through Man Whether this was so or not, the effect of the La Plata uplift was the formation of a dome affecting whatever Tertiary rocks previously covered issues from the mountains. Evidence of this old the La Plata and adjacent quadrangles.

streams were developed which were consequent

*Die Eruptivgesteine des Kristianiagebietes; III, Das Ganggefolge des Laurdalits, by W. C. Brögger, Kristiania, 1898,

The proposition of Brögger to designate those diaschistic rocks rich in dark-colored constituents melanocratic and the complementary ones of lighter color leucocratic seems much more practical than any other proposed expression of the theoretical genetic relationships under discussion.

tions, and finally completely removed

The differentiation of this mass has been of the a large area about it, and eroded practically all of the Cretaceous from the central region. During this epoch of erosion the lower Mesozoic formations and the resistant intrusive rocks which are now exposed were discovered; the streams ate their courses by headwater erosion into the heart of the dome (in the case of La Plata River almost through the most resistant portion of the mountains); the sandstone scarps of the upper Cretaceous reached practically their present position, and the streams of the outlying country attained very nearly their present adjustments. No records remain to us of the stages and incidents of this epoch of erosion such as are of denudation has been less arduous than in this portion of the Rocky Mountain province. Since the beginning of the existing physiographic record the amount of erosion accomplished has been unimportant, and is almost negligible in comparison with that which antedates the record It may be tentatively suggested that all this early erosion was accomplished in the latter part ponds in general with the Pliocene—while the later stages discussed in the following paragraphs belong to the Pleistocene.

Pleistocene erosion.—Evidence has been preserved of a former higher position of the valley floors in the region surrounding the La Platas. All the way from the western edge of the Mesa Verde to well within the La Plata quadrangle a strongly marked shoulder is visible in the soft Mancos shales a short distance below the sandstone scarp. This shoulder is part of an old land surface which is further represented by Remnants of

the gravel-covered mesa between the pleistocene land surface. East Mancos and Cherry Creek, by the knoll at 8100 feet just east of Dix, by the gravel topped ridge just east of Cima, and by the divide below 8500 feet on the opposite side of the La Plata. Remnants of it are also found south of Hesperus in the highest gravel-covered terraces on both sides of the river. Still farther eastward it has been identified as far as the Florida River in the Durango quadrangle. From these remnants it is possible to reconstruct in imagination a wide, It is noteworthy that the intrusive mass of shallow valley running from the vicinity of the Ute Mountains, some 40 miles west of the La outer zones to the more pronounced melanocratic | Plata River, along a line to the north of the Mesa Verde scarp, crossing the La Plata quadrangle, and extending at least 30 miles toward the east. This valley followed the belt of Mancos shale and was produced by side tributaries of the main drainage features, which were, in general, as at present, transverse to the zone of soft shales. This old valley floor represents an epoch in the history of erosion which left its general record in southwestern Colorado and the adjacent portion of Utah. Terraces and gravels of corresponding position in reference to the present drainage have tains probably had its origin at a period later been observed along the Dolores River in the vicinity of the great bend, along the lower portion pahgre and Grand rivers in Colorado and the

> Stream adjustments.—A peculiar condition of stream adjustment, which is to be explained by the conditions existing during the high-terrace epoch, is seen in the relations of the La Plata the high-terrace stage of erosion the East Canyon, which is directly in line

with the gorge of the former stream where it drainage is found in the gravel covering of the With the uplift of the La Plata dome radial sloping mesa which lies at the head of the abandoned waterway, and its continuance into the canyon as a well-marked shoulder or terrace which has been cut into since the valley was abandoned by the East Mancos. The gravels are largely of igneous bowlders and were brought from the mountains by way of the river which has since found a new course farther to the west.

The conditions under which this diversion was

accomplished, and under which the La Plata River has been left in a channel several hundred feet higher than adjacent valleys, seem to have been as follows: During the high-terrace epoch precipitation was probably much greater conditions than at present, so that the small which produced the streams which flowed over the southstreams which flowed over the southern slopes of the La Plata Mountains between the East Mancos and the La Plata, and on the surface of the Mesa Verde were actively eroding, and, not reaching back into the mountains, were | served along the northern border. In Bear Creek | not heavily loaded with materials derived at a distance, so that their energies could be devoted to corrading their channels. On the other hand, the long streams which had succeeded in cutting back into the heart of the mountains by headthe materials derived from their upper courses, and upon emerging from the mountainous region not only had little power to corrade their beds, but filled their channels. In the gravels of the high terraces we have evidence that this condition actually prevailed. It is under these conditions that one of the eastern tributaries of the Middle Mancos River, working character of the La Plata

in the soft shales of the Mancos formation, was able to divert the East Mancos, and Cherry Creek was able to cut and widen its valley and extend its eastern fork to within a mile of the La Plata River, where the divide has a height of less than 200 feet above the river. Also the headwaters of Alkali and Hay gulches, which are tributary to the La Plata River, have cut their channels to so great a depth in the massive sandstones of the Mesaverde formation that their beds are several hundred feet below the adjacent portion of the La Plata Valley, and their drainage actually reaches to the gravels which mark the former position of the river upon the high-terrace flood plain. In like manner, the drainage to the east of the La Plata River has eaten well back into the terrace.

In view of the hypothesis that precipitation was at a maximum during the high-terrace epoch, it is important to note that the climate is now more arid than formerly, as is shown by the fact that the small streams, once so active, are not now deepening their channels, because they carry no flowing water, while the La Plata is working as low as 9000 feet. They all seem to have been upon bed rock, since the material supplied from above does not consume all of its energy.

the high-terrace epoch doubtless continued after the diversion of the East Mancos, and much of the erosion of the encroaching streams has been accomplished since that event, as may be seen from the extension of Cherry Creek into the La Plata terrace gravels at a level several hundred feet below that of the high terrace, and therefore at a later date than the high-terrace epoch.

Interpretation of lower terraces.—Below the high terrace already described there are two others marking stages by which the rivers have reached their present beds, and terraces similar to these are present along Cherry Creek, as well as adjacent to the Mancos drainage and the La Plata River. It is thought that they represent variations in climatic conditions rather than changes in level, though the latter hypothesis is possibly applicable. No criteria for determining the truth of one or the other of these suggestions have been

recognized. It may be reasonably supposed that the present dry period began after the completion of the third terrace, and that previous to this Cherry Creek had excavated the wide amphitheater of not until the year 1878 that prospect. The first mines dev Thompson Park, and the Mancos drainage had | ing for gold and silver was begun in Montezuma Valley to the west by a low shale ridge corresponding with the second terrace. in the central portion of the picture; above it and sloping toward the south is the second terrace, while the uppermost or first terrace is represented sky line formed by the sandstone of the Mesathe distance in the sloping timber-covered plain which seems to block the valley.

nized in the northern part of the quadrangle, except the possible indication of the high terrace in some bowlder beds upon the shale knolls between the West Mancos and Chicken Creek. If this identification be correct it may be argued that at the time of their deposition the Mancos shale must have covered the area of Dakota sandstone now found in the northwest corner of the quadrangle, joining with the shales still preno terraces were noted.

Glaciation of the La Plata Mountains.—The former existence of glaciers in the La Plata Mountains is attested by the almost universal presence at the heads of the more important by a bromination process. The mines of the water erosion were probably heavily loaded with streams of the characteristic amphitheaters which district which were working during are known as cirques. These cirques, or high the month of August, 1896, were the operation in 1896. basins, frequently contain small lakes in rock Durango Girl and Jenny Lind in Wall basins excavated by the moving ice, and their Gulch, the Small Hopes in Williams Gulch, the rock floors are frequently scratched and scored in Little Kate in Basin Gulch, the Shoofly in Tirthe manner common to surfaces which have been | bircio Gulch, and the Mountain Lily in the gulch scoured by ice action. Fine examples of circues of the same name. The district had produced ticularly in several gulches at the head of the La | in silver. Plata. In addition to these signs there are in several places accumulations of débris so located ley, and the region is easily accessible. As in all and of such character that they are judged to mining regions of rugged topographic forms, of country rock. The deposit then becomes a have been deposited as moraines at the side or the transfer of ore from mines situated high in front of an ice stream. Several of these moraines | the mountains to the valleys, where wagon and | nized, the term "vein" will be used in its more are found within the Durango quadrangle, adjacent to the northeastern moraines.

water. None of the other glaciers were as important as that which filled the La Plata Valley. Its lower limit was marked by the present 8600-foot contour, and it is doubtful whether any of the other ice streams descended to a position central mountainous area.

Post-glacial erosion.—The wasting of the La Plata glacier is supposed to have marked the introduction of arid conditions in the region surrounding the La Plata Mountains. With the there was a corresponding diminution in erosion and in the load of the streams; consequently, they began locally to corrade their channels. This is the present condition of the La Plata River outside of the mountains, and in its upper part also some cutting has been done in the solid rock below the scoured floor of the glaciated valley.

ECONOMIC GEOLOGY.*

GOLD AND SILVER.

General statement.—The metalliferous deposits of the La Plata quadrangle are naturally confined to the mountainous portion. It was produced its extended basin, separated from the this vicinity. In that year the mine called the Comstock was opened, and work was begun on the Cumberland or Snowstorm vein, near the These last features are illustrated in fig. 3. Fig. | head of the La Plata Valley. A stamp mill was | direction of the rupturing force. 7, looking down La Plata Valley, shows the three | erected at an early date to treat the ore of this terraces. The present valley of the river may be | mine, but its operation was not successful. By the | distinguished on the left, with the third terrace close of the year 1881 many locations had been

Tippecanoe, the Belle Hamilton, and the Ashland. The mining region was sometimes known as the California district.

For several years after the year 1883 there appears to have been little activity in the district. Three small stamp mills have lately been erected in the basin of the La Plata River, and one at the head of the West Mancos. A small mill for the treatment of telluride ores by the cyanide in the La Plata Valley Messrs. Pret, Trachsler and Co. for a time treated telluride gold ores

Water power is abundant in the La Plata Valrail transportation is available, or where the ore may be profitably milled, is attended with diffipart of the La Plata area. Another morainal culty. Wire-rope and bucket tramways worked deposit is seen in a line of low gravel hills by gravity appear to afford the most economical transverse to the main La Plata Valley, at the means for such transportation. No obstacle of a old settlement of Parrott City, south of the place | topographic nature exists to prevent the building marked "Parrott" on the map. This moraine of a railroad to the base of the mountains. The divided, according to their mode of occurrence, marks the probable maximum advance of the track of the Rio Grande Southern Railroad, glacier of the La Plata River, the existence and which crosses the southern portion of the quadthe V-shaped valleys eroded entirely by running greater part of the ore has until recently been shipped crude to Durango for smelting.

THE VEINS.

Fissuring.—From the nature of the deformation to which the rocks of this region have been subjected it is reasonable to suppose that they short glaciers which never reached as far as the have been more or less broken up in the process. foothills. Above the snow fields, which were the Heavy sandstone beds, tilted and separated by exhibit great variation. These veins, almost with The heavy precipitation which is indicated for | collecting grounds of the ice streams, the moun- | injected sheets, dikes, and stocks of igneous rock, | out exception, include fragments of the wall tain crags were always bare of ice, as shown by would be unable to sustain, unbroken, the rocks, whether these be igneous or sedimentary. their present rugged appearance, and there could immense pressure which they must have experi- The two classes are distinguished only by the never have been any true ice cap covering the enced. The unequal distribution of fissures and difference in size and amount of the fragments, so joints in the La Plata Mountains, the varied there is really a gradation between them and no amount of their development, and the lack of sharp line can be drawn. The included fragregularity in their occurrence, make it probable ments in every case that has been observed are that the regional deformation of the rocks is in sharply angular, with no rounding off of the corpart directly the cause of the breaking up. | ners. The fragments vary in size from those reduction in rainfall and the retreat of the ice This irregular fissuring has, however, been supplemented by another sort, of much more definite character. There are, to classify them in a general way, three well-defined sets of fissures whose development is fairly defined sets of fissures. well marked in all parts of the area under consideration. One set strikes approxi-

mately east and west, and, from the evidence collected, it appears to have been formed by outside source previous to the intrusion of some systems run approximately northwest and northeast, and appear to have been the latest formed. All evidence as to their cause points to a force the field. Slickensided and grooved faces on the walls of veins, and the orientation of prism angles in cases of double jointing have been the principal criteria employed in considering the probable

fissuring along a northeast direction, there are a large number of zones of crushed rock, made, and the nature of the richest ores, tellurides of all widths from 1 foot to several zones along northeast fissures.

hundred feet. These crushed zones, which, as will be described below, are now cemented by ore, occur in both sandstones and igneous rocks, although their most pronounced district. It is possible that some such relation development appears to be in the porphyries. | might be worked out here by detailed study, as The crushed zones seem to be more abundant there certainly are many isolated fissures which along the western side of the La Plata Valley, show no sign of mineralization, but whose strike

None of these stages of erosion have been recog- of gold and silver, was well known. Among the but their development is by no means limited to mines first developed, besides those above men- that side. It seems entirely reasonable to refer tioned, were the Century, in Bear Creek, the the crushing of the rock along the northeast lines to the force acting from the north previously referred to. The resistance to a force which tends to shove one portion of a rock formation over another by overthrust faulting would result in crushed zones such as are now seen. Moreover, detailed evidence collected in several portions of the field appears to lend weight to this suggestion.

Relation of veins to fissures.—The fissures have process was erected on Junction Creek, and been filled in part by dikes of dioritic type and in part by mineral, so that now they are represented by veins. The word "fissure" must be distinguished from the word "vein," for which it is often wrongly used. "Fissure" means merely "crack," with or without an appreciable amount of open space. "Vein," in a strict sense, means a fissure which has been filled with gangue or ore minerals. Where a series of such spaces has been developed between the parallel strips of rock in a fissured zone and these spaces have become thus are present at the head of the East Mancos, both | at that time in all about \$300,000, of which it is | filled the resulting phenomenon is properly forks of the West Mancos, Bear Creek, and pare estimated that one-half was in gold and one-half referred to as a zone or belt of veins. There are all gradations between the single vein and the zone, as for instance where the separate stringers unite in places, and include lens-shaped fragments linked vein. The distinctions being thus recoggeneral sense as applying to the space between two well-defined walls which has been wholly or in part filled with ore or gangue minerals, there being usually within this vein more or less of the country rock in the form of included fragments.

Characteristics of the veins.—The veins may be

into two classes. Those belonging to the first class have the physical appearance of a solid importance of which are otherwise indicated by tangle, runs within 4 miles of the town of La filling between two walls and average the broad U-shaped valley, quite distinct from Plata, in the center of the mining district. The 3 feet in width, although in the case of of veins. the Columbus vein such a filling has a width of 10 feet. In the Cumberland mine a vein consisting mostly of white quartz, which has been worked to a considerable extent, averages 5 feet in width. To the second class belong the veins which have the character of a filled fissure zone, as explained above. These are the more prevalent, and they average 2 feet in width, although they which are visible only under the microscope to those having a length of many feet. The influence which the country rock has had on the fissuring, in a purely mechanical way, is, in some instances, especially well marked. When the walls of a vein are in one place sandstone and in another porphyry, as in cases where veins cut sandstones with intercalated sheets of porphyry, it is generally noted that the vein is strongest and less split up pressure acting on the area as a whole from an in the igneous rock. This feature is well shown in the Bessie G mine, on Junction Creek; in the of the latest laccoliths. The two other prominent | Lalla Rookh, on Burnt Timber Creek; and at the Comstock mine, in the La Plata Valley. In the diorite, in general, the lodes have the linkedvein character; and although the "pay streak" poracting from the north from without the limits of | tion is usually firm, there lies on each side of this, next to the foot and hanging walls, a decomposed selvage of ground-up clayey material, the gouge. This should be considered a rather advantageous circumstance, as the diorite is intensely hard in its fresh state. The Small Hopes, in Williams It is worthy of note that, connected with the Gulch, and the Mountain Lily and Tip Top mines, on the west side of La Plata Valley, are of the linked-vein type, in diorite. The alternation of widely and narrowly spaced zones of fissuring and the direct relation which the veins bear to these zones, which have been noted in the Telluride region, are not so apparent in the La Plata

^{*}This account of the economic geology of the La Plata quadrangle is based upon field work done by Mr. Purington by the rounded knob upon the right below the in 1896. It was prepared by him in the following winter, and soon after its completion he left the corps of the Survey. Recent developments in the La Plata mines have not warverde formation. The first terrace is also seen in | rented a reexamination. The value of the product of gold, silver, lead, and copper for La Plata County in 1900 is given at \$20,100.37 by Harry A. Lee, the State inspector of metalliferous mines.—Whitman Cross.

also been observed that when the veins have a solid filling they are usually accompanied by small parallel stringers in veins to zones of fissuring. the walls, a few on each side. Cases of faulting of the veins occur, but the throw is never of great magnitude. Usually a crosscut of a few feet in one or the other direction is sufficient to enable the miner to "pick up the lode." It has not been possible to establish a correlation between the various dislocations observed, since there seems to exist no coincidence in the directions of throw.

The direction pursued by the strongest veins is along the northeast-southwest and the east-west fissure systems, but some veins, especially those in Lewis and Wall gulches, strike a few degrees to the north of west. Although little appears to have been done in tracing veins across country, there can not be much doubt that some of them, especially those whose strike lies between the north and east, are continuous for long distances, their outcrops being plainly marked by sharp gaps in the divides and by the red, white, and yellow streaks caused by the hydrothermal alteration of the rock that accompanied the deposition of the ore.

Crushed zones.—As these remarkable occurrences have not generally been found to be of little attention. A short description of them | and films in the quartz. should, however, be given. In Basin Gulch they Boren and Bedrock gulches they are of considerable magnitude in connection with the zones of impregnation which will be later described. In Basin Gulch occur zones 200 feet wide, in which rock are cemented together by quartz and by able that these ore breccias have been formed in of the tellurides is uncertain. a manner similar to that of the veins, and it is appropriate that their description should be given here. On the other hand, for reasons which will be explained later, the description of the ore beds and of the impregnations will be given as subordinate to the account of the ores themselves.

Minerals of the ore deposits.—The metalliferous greater or less amounts of the precious metals, and probably, calaverite and other telluride compounds which have not been determined), hedrite), tennantite, stephanite (and other sulphantimonides and sulph-arsenides of silver), pyrite, marcasite, chalcopyrite, galena, zinc blende, realgar, hematite, and magnetite. The gangue minerals are quartz, hydrous silica, calcite, rhodochrosite, dolomite, barite, fluorite, chlorite, asbestos, garnet, sericite, kaolinite, and zeolites whose specific character has not been determined. Some of the minerals occur in very small quantity and

eral of two kinds—telluride ores, and gold either free or associated with pyrite.

are tellurides of gold and silver with accompanying iron pyrite in exceedingly minute Telluride crystals. The metallic constituents ores occur in a gangue of dark fine-grained quartz. Microscopic examination of these ores shows the chlorite, and occasionally secondary epidote. | 50 per cent of it was caught on the plates when | them, has the least significance. La Plata.

is the same as that of neighboring veins. It has Kaolinite also occurs in these veins, perhaps as a the ore was milled. The ore was then worked at decomposition product from the feldspars, which | the mine by means of a 20-stamp mill. were probably of acid character. A partial analysis of the ore of the Columbus vein, by H. N. Stokes, gave 82.7 per cent of silica, .12 per cent | grade, from \$3 to \$8 to the ton. of lime and 1.48 per cent of potash. Quartz veins of small size are found in the large veins or dikes and have an irregular arrangement like that in the crushed zones. Indeed, it seems probable that certain of the dikes of the region have suffered crushing, whereby sufficient open space was developed along them for the percolation of the solutions bearing the ore. The tellurides and sulphides are found in association with the white quartz crystals of the little veinlets and as small flakes and crystals in the dark-blue quartz of the main mass.

Besides iron pyrite, galena and zinc blende are found in the veins carrying the tellurides, but in small quantity. The iron pyrite, which sometimes occurs in these veins in considerable quantity, is, according to all reports, nearly barren of values. The tellurides, sylvanite, petzite, and a bronze-colored mineral which is probably calav- all the rocks included within the crushed zones. erite, occur in the Jenny Lind mine in association | Microscopic examination has revealed the fact with tabular crystals of barite. At the Durango that almost inseparably connected with the pro-Girl mine the telluride sylvanite is said to occur | cess of impregnation in the igneous rocks is partial | deposits not different from these in physical form in masses of kaolinite. These larger masses were not seen by the writer; all the tellurides from economic value they have received comparatively the district that were seen were in small flakes

have the most pronounced development, and in elsewhere in Colorado appears to offer some anal- other cases silicification is most manifest. ogies to that of the La Plata district, but it is not In this region the sedimentary rocks likely that complete replacement of the dikes, or | have been most subject to carbonatization, the of the country rock which forms their walls, has igneous rocks to silicification with accompanying occurred here. The lodes are accompanied by angular fragments of porphyry and sedimentary impregnations of iron pyrite in the wall rocks, the dikes which now form the telluride lodes is, which are said to contain small quantities of the most probably, to be regarded as an intensified sulphides and oxides of the metals. It is prob- precious metals. Whether the walls contain traces form of this impregnation accompanied by partial

> character of linked veins, and such specimens of impregnation. A typical illustration of these the metallic constituents as have been seen are processes may be seen at the Jenny Lind mine. included in stringers about one inch in width, of glassy quartz, showing comb structure. In the about 18 inches in width.

minerals of the La Plata district, which have is sorted, averages \$40 in gold and 40 ounces in work failed to show quantities of the precious erals of the veins. Evidence points to ascending been found to contain and to be associated with silver to the ton. In several of the veins which metals sufficient to render the deposits economichave been worked, however, gold forms almost are tellurides of gold and silver (sylvanite, petzite, | the entire product. Occasional small pockets, and even car-load lots, run very high, sometimes several thousand dollars to the ton. The distrinative amalgam, freibergite (argentiferous tetra- | bution of the telluride ores is irregular in the district, but may be said to be greatest along the places been thoroughly impregnated with iron rocks, make it reasonable to suppose that the ore

eastern side of the valley. pyrite carrying gold values, have been worked to | Calcite, garnet, epidote, and asbestos are associasome extent and occur mostly in linked veins and narrow stringers in the rock. The Saxon mine, in Burnt Timber Gulch, appears to have been worked on such an auriferous pyrite deposits. pyrite deposit. Marcasite occurs also have been determined only with the aid of the at this mine in considerable quantity and is said is penetrated by a network of quartz stringers to be auriferous. In the Cumberland mine a Classification of the ores.—The ores are in gen- | wide vein containing white quartz, largely crystalline, barite, calcite, and clayey material which may be kaolinite, and carrying silver sulphides The most important ores at present developed and tellurides, was explored to the aggregate apparently given a purplish color to the quartz tical or nearly vertical fissures, veins have been amount of about 5000 feet of workings. The grains of the sandstone. vein is also known as the Snowstorm, and has an average width of 5 feet. Its operation has never been successful, and it appears to contain very small amounts of metallic constituents. Veins presence of varying amounts of calcite, sericite consisting of white quartz with vug (white mica), and hydrous silica. It is very character and containing gold in the quartz. probable in several cases that the veins them- free state, without the accompaniment of any selves are dikes of porphyry which, through the great amount of metallic sulphides, have been aid of crushing subsequent to their intrusion have | worked in various parts of the area. Of such undergone impregnation and partial replacement | character is the Century mine in Bear Creek. by the ore-bearing solution. This is undoubtedly | The deposit at the Little Kate mine in Basin the case in the Columbus, Durango Girl, Jenny | Gulch appears to be in one of the crushed zones Lind, and Shoofly lodes. The phenocrysts of of the district in which the fragments of country feldspar have been largely changed to sericite, rock, here a diorite-porphyry, have been cemented while in the majority of cases the groundmass has | by vein quartz containing metallic sulphides, | been silicified. The ferromagnesian silicates have | largely iron pyrite. According to information | disappeared and their places are occupied by received at the mine in 1896, the gold is associa- They are generally referred to as "contacts," but unsuccessful attempts at placer mining have been minute bunches of iron-pyrite crystals with | ted with the pyrite, and at that time only about | it can not be said that this term, as applied to | made. In the West Mancos Valley considerable

which are not in the form of tellurides are low

Impregnations.—As the word impregnation is size, and the impregnated bodies of rock which siliceous grains. accompany them may be of any extent. The The stringers are small and have a reticulated or net-like structure. The impregnation has affected replacement of the original minerals by iron pyrite, sericite (white mica), calcite, silica, and chlorite. The processes of replacement are of various kinds, sometimes the carbonatization and seri-

The manner of occurrence of the telluride ores citization are the most developed, in Replacement of the country

development of sericite. The mineralization of siliceous replacement. On the other hand, in the The Small Hopes and Mountain Lily veins are | walls of these lodes, when the walls are sandstone, examples of the telluride lodes which have the a carbonatization of the rock has accompanied its

The crushed-zone impregnations are of wide extent, occasionally several hundred feet in width lodes of this character the pay streak averages and more than a thousand in length. They have been reported to carry values in gold, but all The yield of the telluride veins, when the ore tests made on the material in the course of this ally valuable.

Ore beds.—Some of the most remarkable illus nection everywhere existing between depth by saveters. trations of the processes of impregnation to be masses of igneous rock and the veins, seen in the district are the ore beds. The sandstone layers of the sedimentary beds have in as soon as the veins leave the vicinity of igneous pyrite, galena, and zinc blende, accompanied by Ores of the second class, which consist of iron | smaller amounts of hematite and magnetite. | sition of ore was a close follower on the igneous ted with the metallic minerals. In some of the beds magnetite is the most prominent constituent. The largest development of the impregnated beds is at the head of Bedrock Gulch, where a series of sandstone layers nearly 1000 feet in thickness carrying pyrite, and is impregnated throughout by metalliferous sulphides. Connected with the mineralization of this mass there has been some development of a deep-purple fluorite which has

Where the impregnation has affected the intercalated sheets of porphyry the result has been the | sandstone beds, impregnations and ore beds have production of a siliceous honeycomb which apparently represents the original groundmass. The cavities, which usually are empty but occasionally | that the basic constituents of igneous rocks conare filled with bunches of iron pyrite, evidently | tain more or less metallic elements. Very minute represent the former phenocrysts of quartz and ferromagnesian silicates. There are cases in suffice to account for the ore. which the impregnated beds have proved profitably auriferous, as on the northwest side of the East Mancos Valley and in the Gold Bug and Mammoth claims in the La Plata Valley. In these cases beds of sandstone are heavily impregnated | doubtless considerable quantities might be profitwith iron pyrite, with small amounts of hematite, | ably extracted. The La Plata Valley has so far and white quartz. The ore beds average 3 feet in | produced very little placer gold. In Bedrock and width and carry from \$4 to \$12 to the ton in gold. | Boren gulches, as well as in the main valley,

Whether complete replacement of any part of the rock in the impregnated tracts has occurred The larger part of the gold ores of the district | can be determined only by further investigation. All the red sandstones of the district contain carbonates in greater or less amount, and it is probable that some molecular replacement of now used, its application is restricted to those these carbonates by sulphides has occurred. occurrences where separate crystals, usually of No evidence of replacement of the sandstone metallic sulphides, fill spaces, however small, | grains has yet been obtained, however, even with which have previously existed in the zones of the aid of the microscope. Even in the heaviest rock forming the walls of and laterally bounding | beds of magnetite and pyrite the microscope metalliferous veins. These veins may be of any | shows the presence of numerous original clastic

As an accompaniment of the widespread rock in the crushed zone and tracts above spoken impregnation a vast amount of decomposition, of in Basin, Bedrock, and Boren gulches has been | due to hydrothermal action, has affected the heavily impregnated with fine crystals of iron rocks. Besides rendering the mass friable and pyrite which is in some cases accompanied by small | easily subject to disintegration, the most brilliant amounts of galena and zinc blende. Stringers of coloring has resulted. Many shades of red, brown, quartz carrying sulphides now form the cement- and yellow, besides dazzling white, are displayed ing material of the fragments of the country rock. | on the sides of the mountains, and the decomposed areas are thus visible for many miles.

> Although it does not seem likely that the impregnated masses of the La Platas will prove of economic importance except in the localities mentioned, yet it should be borne in mind that or in genesis are worked at the present day as low-grade gold ores. They should not, therefore, be omitted in the consideration of the possible economic resources of the region.

> Origin of the ore.—The limited amount of investigation which has been possible in this interesting region makes the writer reluctant to enter upon this subject. But it is felt that some theoretical discussion is desirable, and therefore the following hypothesis is advanced with much hesitation.

> The ore of the La Plata district was probably derived from the basic constituents of igneous rocks. It is highly improbable that any such process as secretion of the ore from the rock now forming the walls of the veins has taken place. The phenomena observed along the walls of the veins exclude this hypothesis. Such a vast body of igneous rock as is manifested by the dikes. sheets, and laccoliths of dioritic composition, and of which the amount now visible represents but a small portion of the whole, seems amply sufficient to account for the metalliferous and gangue minsolutions as the means by which the

ore was deposited; but the intimate con-

and the almost immediate loss of value experienced was derived from no great depth. That the depointrusions seems also likely, since abundant heat would have been supplied if water had penetrated to the uncooled portion of the igneous rock mass. The water, having become gradually charged with alkaline sulphides and carbonic acid, would act as a solvent for silica, lime, and any of the metals with which it might come in contact. Ascending along fissures and zones of crushing, it would, through a change in the governing conditions, deposit its contents along the paths pursued. Where the space to be filled existed in open verformed. Where it existed in the porous parts of igneous rocks and in the interstitial spaces of resulted. It has been shown in several cases in the investigation of various ore-bearing districts quantities so contained would, in the present case,

PLACER DEPOSITS.

Alluvial gold is very widely distributed in the La Plata district, and were it more concentrated, work has been done, but, as the workings are now

pay. In the valley of the East Mancos for a dis- auriferous bog iron ore which is still tance along the river of about 3 miles below Rush being deposited. It is now one-half Auriferous deposit. Basin, placer mining appears to have been the mile in length, and its lower limit lies most successful. Here the gold is coarse, and at 11,300 feet elevation. It reaches up the sides nuggets of small size are not infrequently found. of the valley 200 yards on either side, and is in beds of coal in its typical development; the upper It is reported that considerable gold has been places 10 feet thick. It consists of laminated eral the gold is exceedingly fine, though not flaky. remains, and specks of iron pyrite can be discerned Its distribution is not confined to the area of the in it. The writer has seen gold panned from the thick and is known as the Porter bed. The same quadrangle, being found for many miles down the deposit, and it is said that every pan will give a seams have been worked as far eastward as the La Plata River, and down the Mancos to its junc- color. Surface waters charged with carbonic town of Florida, on the Denver and Rio Grande in gravels above the level of the present streams, bonate from the sulphide-bearing beds above, and less importance, so that at a distance of 10 miles such as the area north of Hesperus called "Gold deposit the iron as ferric oxide. An old shaft, from the La Plata River there is said to be no Bar" and a small tract on the East Mancos River | which was sunk in the deposit, is constantly full | workable coal at this horizon. The coal is not of about 2 miles northeast of Menefee Mountain. The finely divided state of the gold and the difficulty of getting sufficient water to the deposits appear to be the principal impediments in connection with placer mining in this region.

abandoned, it is to be inferred that they did not | the head of the East Mancos River, is a bed of | at Hesperus, and even more at Porter, 8 miles | The quality of the coal improves toward the taken at a profit from the East Mancos. In gen- | scales of limonite inclosing many vegetable | feet thick, while the lower bed, separated from tion with the San Juan. The gold is found also acid bear iron in the form of sulphate and car-Railroad, but toward the west they become of of water and forms a mineral spring.

COAL.

tion of the quadrangle contains workable coal. lower of the two beds is the only one worked at

interbedded with a white sandstone, the beds of of Denver: which dip about 5° to the south. There are two bed, locally known as the Peacock bed, is 51 the upper by 70 feet of white sandstone, is 3 feet uniform thickness, but is developed in a succession of lenses or "basins."

The coal outcrops within the La Plata quad- supply for the San Juan mines. The Mesaverde formation in the southern por- rangle for a distance of about 25 miles. The A rather unusual occurrence in Rush Basin, at | This coal has been mined to a considerable extent | Hesperus, although both are worked at Porter.

southeast of Hesperus, on the line of the Rio south. The following analysis of the lower bed Grande Southern Railroad. The coal occurs at Porter was kindly furnished by J. A. Porter,

Analysis of coal from lower bed at Porter.

Volatile combustible matter	
Fixed carbon	57.21
Ash	4.95
Sulphur	0.65
Total	00 49

The coal at Hesperus is lower in fixed carbon but does not vary greatly from the above. At Porter the coal has fairly good coking qualities, while at Hesperus it is non-coking, but burns more freely. The weight of the Porter coal is about one ton to the cubic yard. The coal mined at this horizon furnishes the greater part of the

General Geology, March, 1901. Economic Geology, May, 1897.