By Marius R. Campbell.

GEOGRAPHY.

LOCATION OF THE QUADRANGLES.

By reference to the key map on the cover of the folio, it will be seen that the Masontown and Uniontown quadrangles are adjacent and are located in the southwestern part of Pennsylvania. They extend from latitude 39° 45' on the south to 40° on the north, and from longitude 79° 30′ on the east to 80° on the west. Each includes one-sixteenth of a square degree of the earth's surface, and they cover an aggregate area of 458 square

The quadrangles lie entirely within the State of Pennsylvania, their southern boundary extending to within 2 miles of the West Virginia Area and line. The major portion of the terridivisions included.

tory belongs to Fayette County, but the Masontown quadrangle extends west across Monongahela River and includes a part of Greene County and the extreme southeast corner of Washington County. The quadrangles are named from the most important towns within their boundaries.

TRIANGULATION POINTS.

The exact location of these quadrangles with reference to latitude and longitude is determined from certain points the position of which has been ascertained accurately by triangulation. The survey of the two quadrangles is controlled by five triangulation stations located within their boundaries and eight other stations situated in close proximity thereto. For the convenience of engineers the following descriptions of these stations are given, together with the triangulation data from which their positions have been determined:

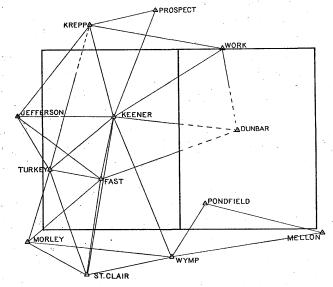


Fig. 1.—Diagram showing triangulation stations upon which the survey of the quadrangles is based.

PONDFIELD, FAYETTE COUNTY.

On a high timbered summit of Chestnut Ridge, about 4 miles air-line distance south of Fairchance and one-half mile north of Robert Rankin's house. Theodolite was elevated 25 feet and lines of sight were cut through timber toward other stations.

Station mark: A stone post 36 by 12 by 12 inches, set flush with surface of ground, in the center of top of which is cemented a copper bolt; 3 feet south of stump.

[Latitude 39° 46′ 57.92″. Longitude 79° 42′ 07.17″.]

	To station—	Az	imı	ıth.	Back	azi	imuth.	Log. distance.
		•	,	"	٠,	,	u,	Meters.
	Wymp	34	25	25.2	214	23	09.0	3.9532404
1	Mellon	282	48	22.5	102	56	31.1	4.2706993

DUNBAR, FAYETTE COUNTY.

On a bald summit of Chestnut Ridge, one-fourth mile east of State Orphan School and about 5 miles by wagon road southeast of Uniontown.

Station mark: A stone post 42 by 8 by 8 inches, set 36 inches in the ground, in the center of which is cemented a bronze tablet marked "U. S. Geological Survey—Pennsylvania."

[Latitude 39° 53′ 15.11″. Longitude 79° 38′ 38.67″.]

To station—	Azimuth.	Back azimuth.	Log. distance.
Keener	97 12 12.7	% / " 277 03 28.5 350 43 35.0	Meters. 4.2915497 4.1119491

KEENER, FAYETTE COUNTY.

About 8 miles west of Uniontown, 1½ miles north of McClellandtown, and 23.3 feet west of a lone locust tree on a bare knob owned by Ben Keener, who lives 300 yards south of station.

Station mark: A stone post 40 by 8 by 8 inches, set 36 inches in the ground, in the center of top of which is cemented a bronze tablet marked "U.S. Geological Survey—Pennsylvania."

Reference mark: A stone post 36 by 12 by 12 inches, set 34 inches in the ground, in the center of top of which is cemented an aluminum bolt; azimuth from station, 275° 27'; distance, 20 feet.

[Latitude 39° 54′ 33.86″. Longitude 79° 52′ 16.00″.]

To station—	Azimuth.		Back azimuth.		Log. distance.	
	0	,	"	•	, m	Meters.
Fast	10	45	03.1	190	44 15.0	3.9804006
Turkey	51	08	33.2	231	04 02.8	4.1097964
Jefferson	93	07	26.3	273	01 04.2	4.1512351
Krepp	166	57	58.6	346	56 35.3	4.1346130
Prospect	203	35	01.7	23	38 12.3	4.2448865
Work	239	05	15.9	59	13 04.4	4.3047205
Dunbar	277	03	28.5	97	12 12.7	4.2915497

FAST, FAYETTE COUNTY.

About 2 miles southeast of Masontown, on road to Smithfield, 8 feet north of an east-west fence on land owned by Mr. Fast, who lives about 300 yards south of

Station mark: A stone post 36 by 10 by 10 inches, set 36 inches in the ground, in the center of top of which is cemented a bronze tablet marked "U.S. Geological Survey—Pennsylvania."

[Latitude 39° 49′ 29.36″. Longitude 79° 53′ 30.97″.]

			,
To station—	Azimuth.	Back azimuth.	Log. distance.
	0 / //	· (1 11	Meters.
St. Clair	10 01 47.4	190 00 37.0	4.1777734
Morley	47 17 02.2	227 11 58.5	4.1871165
Turkey	99 01 56.6	278 58 14.5	3.9215699
${\bf Jefferson}$.129 24 42.4	309 19 08.7	4.2041975
Keener	190 44 15.0	10 45 03.1	3.9804006
	l		1

TURKEY, GREENE COUNTY

About 1 mile north of Sigsbee and 4 miles south of Carmichaels, on Turkey Knob, in a cultivated field owned by Leroy Hartley.

Station mark: A stone post 42 by 10 by 10 inches, set flush with surface of ground, in the center of top of which is cemented a bronze tablet marked "U.S. Geological Survey—Pennsylvania."

[Latitude 39° 50′ 11.72″. Longitude 79° 59′ 17.60″.]

To station—	Azimuth.	Back azimuth.	Log. distance.
Morley	154 58 31.5 197 57 02.7 231 04 02.8 278 58 14.5	0	Meters. 4.0842057 3.9895121 4.3515150 4.1097964 3.9215699 4.2327348

MELLON, FAYETTE COUNTY.

About 2 miles north of Markleysburg and 600 feet north of Mellon's store, on hill covered with timber. Theodolite raised 18 feet on stump of tree and lines of is cemented a bronze tablet marked "U.S. Geological sight cut out to other stations.

Station mark: A stone post 36 by 12 by 12 inches, set flush with surface of ground, in the center of top of which is cemented a copper bolt.

[Latitude 39° 44′ 43.18″. Longitude 79° 29′ 23.30″.]

To station	Azimuth.	Back azimuth.	Log. distance.
Wymp		0 / " 261 57 14.8 282 48 22.5	Meters. 4.3709214 4.2706993

WYMP, MONONGALIA COUNTY, W. VA.

On high summit 1 mile southwest of Wymp Gap, in Chestnut Ridge, about 9 miles air-line distance northeast of Morgantown, W. Va., and 16 miles south of Uniontown, Pa.

Station mark: A stone post 36 by 12 by 12 inches, set flush with surface of ground, in the center of top of which is cemented a copper bolt.

[Latitude 39° 42′ 57.71″. Longitude 79° 45′ 40.28″.]

To station—	Azimuth.	Back azimuth.	Log. distance.
St. Clair	94 13 55.6 214 23 09.0	258 42 43.2 274 03 51.4 34 25 25.3 82 07 39.3	Meters. 4.1494319 4.3536430 3.9532404 4.3709214

ST. CLAIR, MONONGALIA COUNTY, W. VA.

In a pasture on a bald hill owned by Mr. E. H. St. Clair, about 4 miles northeast of Morgantown and 1½ miles south of Stewartstown. Station mark: A bronze tablet countersunk and

cemented in a dressed stone 42 by 12 by 12 inches, set flush with surface of ground.

[Latitude 39° 41′ 28.58″. Longitude 70° 55′ 21.04″.]

To station—	Azimuth.	Back azimuth.	Log. distance.
Morley Turkey Fast Wymp	160 46 31.0 190 00 37.0	296 44 41.3 340 43 59.6 10 01 47.4 78 48 54.2	Meters. 3.9880410 4.2827348 4.1777784 4.1494319 +

MORLEY, GREENE COUNTY.

On a flat, bald ridge owned by D. W. Morley, 1 mile southeast of Bald Hill and one-half mile north of Pennsylvania-West Virginia line. There are few trees under brow of hill on east side.

Station mark: A stone post 42 by 12 by 12 inches, set flush with surface of ground, in the center of top of which is cemented a copper bolt.

[Latitude 39° 43′ 50.65″. Longitude 80° 01′ 25.65″.]

To station—	Azimuth.	Back azimuth.	Log. distance.
Turkev	• /. // 194 30 55.5	。 , ,, 14 32 17.4	Meters. 4.0842057
Fast		47 17 02.2	4.1871165
WympSt. Clair		94 13 55.6 116 48 34.2	4.3536192 3.9880410

JEFFERSON, GREENE COUNTY.

About 1 mile southeast of Jefferson, on a high, bald

knob owned by Lawrence Kraft. Station mark: A stone post 36 by 8 by 8 inches, set 36 inches in the ground, in the center of which is cemented a bronze tablet marked "U.S. Geological Survey—Pennsylvania."

[Latitude 39° 54′ 58 46″. Longitude 80° 02′ 11.35″.]

To station—	Azimuth.	Back azimuth.	Log. distance.
Krepp Keener Fast Turkey	273 01 04.2 309 19 08.7	93 07 26.3 129 24 42.4 154 58 31.5	4.1512351 4.2041975

KREPP, WASHINGTON COUNTY.

About 1½ miles northwest of Brownsville, on a prominent and well-known bald knob owned by James Nick-

Station mark: A sandstone post 40 by 8 by 8 inches, set 36 inches in the ground, in the center of top of which Survey—Pennsylvania."

[Latitude 40° 01′ 44.55″. Longitude 79° 54′ 25.69″.]

To station—	Azimuth.	Back azimuth.	Log. distance.
	· . / · //	0 / //	Meters.
Jefferson	41 28 31.9	221 23 32.6	4.2228714
Prospect	254 22 24.1	74 26 58.4	4.0209121
Work#	278 08 09.5	98 17 22.0	4.3136372
Keener	346 56 35.3	98 17 22.0	4.1346730
Turkey	18 00 10.1	197 57 02.7	4.3515150

PROSPECT, FAYETTE COUNTY.

About 13 miles southeast of Redstone and 7 miles northeast of Brownsville, on a flat, bald hill having a large apple tree on summit. The land is owned by the heirs of Thomas Murphy and is occupied by J. C. Murphy,

Station mark: A stone post 40 by 8 by 8 inches, set 36 inches in the ground, in the center of top of which is cemented a bronze tablet marked "U.S. Geological Survey—Pennsylvania."

[Latitude 40° 03′ 15.98″. Longitude 79° 47′ 19.34″.]

To station—	Azimuth.	Back azimuth.	Log. distance.
Keener	23 38 12.3	203 35 01.7	Meters. 4.2448965 4.0209121
Krepp	74 26 58.4	254 22 24.1	

WORK, FAYETTE COUNTY.

On land owned by John Work, about 5 miles west of Connellsville and 9 miles north of Uniontown. A row of locust trees crosses top of hill along a north-south

Station mark: A stone post 36 by 8 by 8 inches, set 30 inches in the ground, in the center of top of which is cemented a bronze tablet marked "U.S. Geological Survey—Pennsylvania."

Reference mark: A nail driven at foot of locust tree 25½ feet distant, magnetic bearing of which is N. 30° E.

[Latitude 40° 00′ 09.20″. Longitude 79° 40′ 06.44″.]

To station—	Azimuth.	Back azimuth.	Log. distance.
Keener		289 05 15.9 278 08 09.5 170 44 31.3	Meters. 4.3047205 4.3136372 4.1119491

PHYSIOGRAPHIC AND GEOLOGIC RELATIONS.

In their physiographic and geologic relations these quadrangles form a part of the Appalachian province, which extends from the Atlantic Coastal Plain on the east to the Mississippi lowlands on the west, and from central Alabama to Canada.

THE APPALACHIAN PROVINCE.

With respect to the topography and the attitude of the rocks, the Appalachian province may be divided into two nearly equal parts by a line which follows the Allegheny Front throughout Pennsylvania, Maryland, and West Virginia and the eastern escarpment of the Cumberland Plateau across Virginia, Tennessee, Georgia, and Alabama.

East of this line the rocks are greatly disturbed by faults and folds and in many places they are so metamorphosed that the determina-

tion of their original character is diffi- Differences of geologic cult. West of the line the rocks are less disturbed; they lie nearly flat, and subdivisions the few folds which break the regular-

ity of the structure are so broad that they are scarcely appreciable.

The general topographic features of the northern part of the province are well illustrated by fig. 27, Illustration sheet. East of the dividing line the topography consists of alternating ridges and valleys, designated the Greater Appalachian Valley, and of a slightly dissected upland, like the Piedmont Plain of eastern North Carolina and Virginia. West of the line the surface is composed of more or less elevated plateaus, broken by a few ridges, where minor folds have affected the rocks, and is greatly dissected by streams. In contradistinction from the lowlands of the Mississippi Valley west of the province and the regularly alternating ridges and valleys on the east, this part of the province has been called by Powell the Allegheny Plateaus. The Masontown and Uniontown quadrangles are entirely within the western division of the province.

ALLEGHENY PLATEAUS.

The Allegheny Plateaus are characterized by distinctive types of geologic structure, of surface described below.

Geologic structure of Allegheny Plateaus.— The structure of the Allegheny Plateaus is comparatively simple. The strata lie nearly flat and the Allegheny Plateaus. It is probable that this their regularity is broken only by small faults and low, broad folds which usually have little effect upon the general structural features of the the change which has taken place in the northern

The most pronounced fold is a low, broad arch, known as the Cincinnati anticline. The main axis of the fold enters the Allegheny

Plateaus from the direction of Chicago, but a minor fold from the western end basins and the intervening arch. of Lake Erie joins the major axis near

the type locality. From Cincinnati the axis of the anticline passes due south to Lexington, Ky., and there curves to the southwest, parallel with the Appalachian Valley, as far as Nashville, Tenn. Its maximum development is in the vicinity of | name Allegheny Plateaus implies, the surface of Lexington, where the Trenton limestone is exposed at the surface at an altitude of 1000 feet above sea level. In Tennessee it again swells out into a dome-like structure which is represented topographically by the Central Basin of Tennessee.

This anticline separates the Allegheny Plateaus into two structural basins, which are best known from the coal fields which they contain. The is not always apparent. Its surface rises from western basin extends far beyond the limit of the | beneath the Cretaceous cover in central Alabama province, and contains the Eastern Interior coal field of Illinois, Indiana, and Kentucky. The eastern basin lies entirely within the limits of the Allegheny Plateaus, and is generally known as the Appalachian coal field.

By reference to the map (fig. 28) showing the northern extremity of the coal basin, it will be seen that the Uniontown and Masontown quadrangles are situated well within the boundaries of the latter field, hence a somewhat detailed description is necessary in order to present a clear idea of the geologic features of the quad- from 2000 to 2400 feet. rangles.

Since the Appalachian coal field lies in a canoeshaped basin, the strata around its margin dip generally toward the center of the field. Structural This is particularly noticeable on the features of the Appalachian coal field, especially in northwestern side dipping gently but features of the Appalachian coal field, especially in Pennsylvania and West regularly to the southeast, and those virginia. on the southeastern side dipping more strongly to

the northwest. In Pennsylvania and West Virginia the regularity of the dip near the southeastern margin of the trough is interrupted by parallel folds, which in many cases give rise to anticlinal ridges and synclinal valleys. These undulations are similar to the great folds east of the Allegheny Front, except that they are developed on a very much smaller scale and they have not been broken by faults, as have many of the great folds farther east. These minor folds are a constant feature along the southeastern margin of the basin from central West Virginia to southern New York. Across the northern extremity of the basin the minor folds are developed in large number, extending at least halfway across Pennsylvania near its northern boundary. In the southern part of the State there are only six pronounced anticlines, and two of these disappear near the West Virginia line. Farther south the number is less, until on Kanawha River the regular westward dip is interrupted by only one fold of small proportions.

Drainage of Allegheny Plateaus.—The drainage of the Allegheny Plateaus is almost entirely into Mississippi River, but the northeastern end of the region drains either into the Great Lakes on the northwest or through the Susquehanna, Delaware, or Hudson into the Atlantic Ocean on the southeast.

In the northern part of the province the arrangement of the drainage is largely due to the advance of the ice sheet from the north during the Glacial epoch. Before that time it is supposed that all of the streams of streams with former with former terms. north of central Kentucky flowed to systems. the northwest and discharged their waters through the St. Lawrence system. The encroachment of new drainage lines were established along the present courses of the streams.

sources upon the summit of the Blue Ridge and cross the Greater Appalachian Valley as well as drainage has been readjusted also, but the changes occurred much farther back in geologic time than part of the province. The original divide between some of the streams flowing into Mississippi River and those draining southward into the Gulf was probably along the eastern margin of the Allegheny Plateaus, but through some crustal movement the westward flowing streams secured an advantage over those flowing to the south and the drainage from the southern part of the Greater Appalachian Valley was directed to the Mississippi Basin.

Surface relief of Allegheny Plateaus.—As the this division of the province is composed of a number of plateaus. The highest and most extensive plateau lies along the southeastern margin of the division and extends throughout its length. This feature is very old and consequently

is so greatly dissected that its plateau character at a height of 500 feet above sea level. From this altitude it ascends to 1700 feet at Chattanooga, 2400 feet at Cumberland Gap, 3500 feet at New River, and probably 4000 feet at its culminating point in central West Virginia. From this point it descends to about 2800 feet on the southern line of Pennsylvania, and 2300 to 2400 feet in the central part of the State. North of this point the plateau is widely developed in the northern counties of Pennsylvania and throughout southern New York, and it ranges in altitude

The surface of this topographic feature is best preserved in Alabama and Tennessee, where it constitutes the Cumberland Plateau. North of Tennessee it doubtless was once well developed, but now is difficult to identify. In northern West Virginia and northern Pennsylvania occur a few remnants of high-level land which appear to be parts of the original surface of this plateau, but it is generally so dissected that only the hilltops mark its former position.

Throughout most of the province there are knobs and ridges which rise to a greater height than the surface of the high plateau, but generally they may be distinguished by the fact that they stand above the general level of the surrounding

The surface of the high plateau slopes to the west, but it is generally separated from the next lower plateau by a more or less regular Western eswestward facing escarpment. This carpment the high escarpment is most pronounced in Tennessee, where it has a height of 1000 feet and separates the Cumberland Plateau on the east from the Highland Plateau on the west. Toward the north the height of the escarpment diminishes to 500 feet in central Kentucky, and north of Ohio River it is so indistinctly developed that it has not been recognized. In southern Pennsylvania it becomes more pronounced where the hard rocks of Chestnut Ridge rise abruptly above the plain formed on the soft rocks of the Monongahela Valley, but the surface of the uppermost plateau is so greatly dissected that it can be recognized only with difficulty. Toward the central part of the State the plateau surfaces that are usually separated by this escarpment seem to is west of Monongahela River. approach each other and the escarpment is merged in a mass of irregular hills which represent all that remains of the higher plateau.

A second plateau surface is well developed as a distinct feature in Tennessee and Kentucky. It is known in the former State by the

name of the Highland Plateau and in the latter by the name of the Lexington Plain. It slopes to the west, but

along its eastern margin it holds throughout these States a constant altitude of 1000 feet above sea the great ice sheet closed this northern outlet and level. In the territory north of Ohio River this plateau was developed on harder rocks than in Kentucky and Tennessee, and the result is that In the southern half of the province the west- the surface is less regular and its exact position

southern part of New York.

The surface features of this plateau are variable, but there is not so much diversity as in the higher plateau. In Kentucky and Tennessee it is preserved in large areas as a nearly featureless plain, but in other States it was less perfectly developed and has suffered greatly from dissection since it was elevated.

West of the Highland Plateau there is a third plain which is developed in the Central Basin of Tennessee and in the western portion of Kentucky and Indiana.

TOPOGRAPHY OF THE QUADRANGLES.

DRAINAGE.

The size and arrangement of the streams which | the Chestnut-Laurel ridge a few miles south of drain a region are prominent factors in both its this territory in West Virginia. topographic development and its usefulness to man. The part which the streams have played in shaping the surface features of these quadrangles is important, but it will be discussed in a section devoted to that subject. The effect of of Hector Hollow, in the southern part of the main drainage lines upon human affairs is readily | Uniontown quadrangle. From this high point seen in the industrial development that generally the altitude of the summit decreases southward

the Uniontown and Masontown quadrangles. Its it increases in altitude toward the north, so that upper valley is not marked by so much mining | north of Youghiogheny River it rises to as great and manufacturing as characterize the lower course of the stream, but the time will come when mines will be opened and manufacturing plants established along the river in this territory.

During ordinary stages of water the stream is not navigable, but by means of a series of locks and dams steamboats and coal barges can make the passage development along it. from Pittsburg, Pa., to Morgantown,

W. Va., at any season of the year, except when prevented by ice.

The construction of these dams was begun by private enterprise at Pittsburg about 1840, and by 1854 dams Nos. 5 and 6 had been built near the northern boundary of the Masontown quadrangle. Since that time the system has been extended, until slack-water navigation is secured to beyond the West Virginia line.

The altitude of the surface of the water in the various pools is as follows:

Altitudes of water surface of Monongahela River between Pittsburg and Morgantown.

,	
	Feet above tide.
Pool of Davis Island dam, Pittsburg.	 703.00
Pool No. 1	 707.40
Pool No. 2	 715.10
Pool No. 3	 $\dots 723.10$
Pool No. 4	 733.48
Pool No. 5	 746.41
Pool No. 6	 760.15
Pool No. 7	 769.99
Pool No. 8	 780.80
Pool No. 9	 793.40
·	

Most of the territory west of Laurel Ridge is drained by tributaries of Monongahela River. The principal streams are Redstone, Dunlap, and Run, in the vicinity of Carmichaels. Most of the drainage basins of these streams lie outside of these quadrangles, only their lower courses cross-

corner of the Uniontown quadrangle. It drains that part of Ligonier Valley which lies north of the National Pike and a gheny River. tributaries are Indian and Dunbar creeks and Meadow Run.

South of the National Pike is Big Sandy Creek, which discharges into Cheat River a few miles south of this territory.

SURFACE RELIEF.

the western base of Laurel Ridge. East of this | with remarkable uniformity. In such a view the

features, and of drainage arrangement, which are | ward-flowing streams not only drain the Alle- | is more difficult to determine. It appears to rise | line is the so-called mountain region of western gheny Plateaus, but many of them have their from an altitude of 700 or 800 feet in Indiana to Pennsylvania. In the southern part of the State 1000 feet in Ohio, 1200 to 1300 feet in southwest- the most westerly mountain ridge bears several ern Pennsylvania, and probably 1600 to 1800 feet | names. North of Youghiogheny River it is throughout the northern part of the State and the known as Chestnut Ridge, and south of that stream it is usually called Laurel Ridge.

> Parallel with the Chestnut-Laurel ridge and distant about 12 miles to the southeast is Laurel Hill, one of the most pronounced mountain ridges of this region.

This ridge does not occur in the Uniontown quadrangle, but the high land along the National Pike in the south-

east corner of the quadrangle lies upon its flank. Both ridges are deeply trenched by Youghiogheny River, which cuts through the Chestnut-Laurel ridge above Connellsville in the northeast corner of the Uniontown quadrangle and through Laurel Hill above Ohiopyle, which is located east of the eastern edge of the territory. Cheat River also has cut a deep, narrow gorge through

The altitude of the Chestnut-Laurel ridge varies from about 1900 feet above sea level on the edge of the Youghiogheny gap to 2778 feet at Pondfield triangulation station, near the head marks the river valleys of western Pennsylvania. | to the gorge of Cheat River. Laurel Hill is low Monongahela River is the principal stream in | near the southern margin of this quadrangle, but a height as the Chestnut-Laurel ridge.

Between these two ridges is a strip of country that is a few hundred feet lower in altitude than the summits of the ridges on either side. It is generally spoken of as the Ligonier Valley, from the town of this name in Westmoreland County. Across this broad valley, as well as the adjacent ridges, Youghiogheny River has cut a gorge from 600 to 1300 feet in depth. The tributary streams both of this system and of Cheat River have also cut deep V-shaped valleys, leaving the upland much dissected by the numerous small streams of the region.

Generally it has been assumed that the evencrested summits of these ridges are the sole surviving remnants of an extensive pene-

plain that once existed over much of graph the Appalachian region. In these ridges and Liounier quadrangles there is not much evidence in favor of the existence of such a plain. The summit of Laurel Ridge appears to be too irregular to suit such a hypothesis, and accurate maps

of the other ridge are not available to show its form and altitude. It is possible that some part of the present surface coincides with the surface of such a peneplain, but from the topography of this quadrangle it is not apparent.

A close examination of the altitude of the surface of Ligonier Valley about Farmington and Fayette Springs shows that there is a large area of the surface at about 2000 feet above sea level; also that many divides between principal streams are at about the same level. It is true that two of the principal divides, one near Mount Wash-George creeks and Browns Run. On the west side | ington and one south of Farmington, are cut of the river the principal tributaries are Dunkard | below the 1900-foot contour, but these appear to Creek, near the southern border of this territory; be exceptions to the general rule. The existence Whiteley Creek, a little farther north, and Muddy | of so much surface at 2000 feet above tide and the reduction of so many divides to about the same level seems to indicate that at the stage of uplift in the region when Fayette Springs (Chalk ing that part of the Masontown quadrangle which | Hill) was near sea level the movement of the land ceased long enough for erosion to broaden Youghiogheny River crosses the northeast the valleys and reduce much territory nearly to drainage level. If this period of quiescence had been of great duration, most of the land would have been reduced approximately to this level small area west of Laurel Ridge. Its principal and a peneplain would have been formed, but the period was evidently short and served simply to record one stage of the uplift and erosion of the region. So far as the writer is aware, this stage has not been recognized in adjacent regions and hence its age is problematical.

Viewed from the Chestnut-Laurel ridge the country to the west appears like a nearly feature-According to surface relief, this territory is less plain. Slight irregularities in detail may be naturally divided into two parts by a line along | noted, but the summits of the hills fall into line

valleys are lost from sight, and the surface prob- | entire surface, including the Chestnut-Laurel ridge, | most southerly abandoned channel in the Mason- | sharply to the east, by Grays Landing and up Cats ably appears in much the same condition as it did before these valleys were cut. When examined in detail the surface is found the surface west of the to be far from regular, being decid
Aspects of the surface west of the characteristic control of the surface west of the surface w

edly hilly in almost all parts of the quadrangles. From the contoured maps it will be observed that the altitudes of these hills ing streams and those in which the surface was range generally from 1200 to 1300 feet above sea level. Along the major streams where erosion has been most active the summits rise but little definitely ascertained. It has been correlated over 1200 feet above tide. This may be seen in with a peneplain in the eastern part of the State the high land west of Morris Crossroads, on the ridge between Old Frame and New Geneva, and also on the ridge north of Jacobs Creek. North of Masontown the land rises somewhat higher, but in the immediate vicinity of the river the spurs generally have an altitude of about 1200 feet. This is particularly true in Luzerne Township, which lies in the great bend of the river that there is a second stage, or substage, of Terbetween East Riverside and Brownsville. On this projecting point erosion has been very effective and the surface is reduced to an altitude of at an altitude of 1100 feet. East of the river nel is so youthful that its bounding walls are into the great Carmichaels valley to the west. about 1200 feet. On the west side of the river this level is not so pronounced, but it may be extremely steep and the river itself is flowing on the 1200-foot level is not so striking, but it may be seen in the high land north of Carmichaels and on many of the principal divides of the main body of clay and sand extends from the and also in the elevated region east of that village. region. It is most apparent on the ridge sepa-South of Little Whiteley Creek the 1200-foot rating Dunlap Creek from Monongahela River, feet, up to an altitude of about 1000 feet above level is not well developed; in fact, the surface but it is also noticeable on several other dividing sea level. Deposits of gravel occur at higher is eroded to a lower level, which will be described | ridges. in a subsequent paragraph.

western front of Laurel Ridge. The rocks outcropping in this locality are prevailingly soft, substage in the erosion of the region. It may 1060 feet. and the surface is worn down into a broad, nearly easily be accounted for on the assumption of a level valley, the altitude of which on the summit | regional uplift of about 100 feet, and then a ces south of Uniontown is about 1170 feet. This divide is slightly lower than the one which sepa- tion of many of the divides, and also of large areas as a rock shelf on the west side of the river. rates Redstone Creek from the drainage that in the immediate vicinity of the rivers, nearly to | Since traces of a similar shelf may be observed unites with the Youghiogheny River at Connells. drainage level. This substage of supposed late on the east side in the village of New Geneva ville. The latter divide has an altitude of approxi- Tertiary erosion has not been generally recog- and at the mouth of Jacobs Creek, it seems probmately 1200 feet, as has also much of the high nized, and it is possible that it is a feature due to able that the old valley had a breadth of about land in the drainage basin of Redstone Creek.

In this region there are certain areas which are marked by summits that rise above the 1200-foot level. These may be observed west of Uniontown and in the region about Juniataville and upper part of the series are more arenaceous than | the broad meanders of its former course. those lower down, and consequently they are softer rocks to the east.

a gently undulating surface bearing so close a resemblance to a uniform plain The physic that it might be classed as a peneplain.
Such a surface may be produced either

Such a surface may be produced either

Such a surface may be produced either Chaurel ridge

by the cutting action of waves or by subaereal erosion. There is no evidence that the sea has occupied this region since Paleozoic rials, ranging from the finest clay to bowlders time; hence the first explanation is not appli- having a diameter of 4 to 5 feet. Usually the the peneplain was produced the land in this transported by an active stream before the channel row to a point at its western extremity, but this region stood nearly 1200 feet lower than at was abandoned. Resting upon this basement ridge, as shown on the map, is square-ended next the present time. On that land rains and run-gravel is a varied assortment of material, some the river and gives no indication of having been ning streams operated until it was reduced to a coarse, some fine, apparently deposited without gently undulating plain. It was subsequently much system of arrangement or distribution. uplifted to its present position and dissected by The bulk of the material is composed of clay and the very streams which had been instrumental in sand rudely stratified, like flood-plain deposits of

deep valleys which the streams have cut. the physiographic development of this region. It the midst of fine deposits, where apparently they ley, consequently the river in late Tertiary time established channels of the region. carries us back to a time when the land did not had been dropped from floating ice, while in the presumably flowed from Dam No. 8 direct to New which was so long that the hills wasted away, shows that quiet conditions prevailed which per- | No. 7 into the present valley of Whiteley Creek.

would have been reduced to a common level, but town quadrangle extends from Dam No. 8 to New the existence of this ridge of hard rock, as well Geneva. On leaving this channel the river chose as of other areas of high land already described, a more circuitous route, although the new course shows that the period was limited in its duration differs only a little from that which the stream and that the time was sufficient only to reduce such areas as were located near the major draincomposed of soft rocks.

The geologic age of this peneplain has not been that is regarded as of early Tertiary age, but the evidence is not conclusive. Nevertheless, the assumption that it was formed during the Eocene period is in harmony with the facts observed in these quadrangles, and it is here provisionally doned channel is much wider than the one now

A careful study of the topographic maps shows tiary erosion recorded in this region. West of Monongahela River it may be seen in the upland appearance of maturity, while the modern chanrecognized on the headwaters of George Creek a rock bottom. In the abandoned channel the

It is possible that the agreement in altitude The 1200-foot level is well developed along the between these various features is simply a coincidence, but it seems probable that it marks a Geneva to Point Marion at an altitude of about sation of movement which permitted the reduclocal conditions.

ABANDONED CHANNELS OF MONONGAHELA RIVER.

Below the 1100-foot level just described the streams have cut sharp valleys, but the slopes are Elm Grove. The presence of high summits along interrupted by a system of rock terraces and course lay in a curve to the west near Mapletown this line is explained by the fact that they are abandoned channels along the main stream, which and along the lower course of Whiteley Creek. East Riverside. Near Arensburg Ferry the old located on a pronounced arch of the strata, which | mark a second substage of late Tertiary or Pleis | An old channel also leaves the present course at | valley again swings to the left and makes a short brings to the surface harder rocks than those tocene erosion. These terraces and abandoned Grays Landing and returns with a sharp bend by detour on Pumpkin Run, but the channel is not which outcrop on either side. These hard beds channels are from 140 to 150 feet above water Masontown to the present stream at Hatfields clearly outlined. have resisted erosion more successfully than those | level, and they are of frequent occurrence from in adjacent areas, and consequently they form a Pittsburg, Pa., to Morgantown, W. Va. Several low ridge along the anticlinal fold. High land | notable cases occur in this territory; in fact, from also occurs in Greene County on the west side of Dunkard Creek to East Riverside the river has the river. In this case it is not due to geologic | deserted its original, broadly meandering channel structure, but to the fact that the rocks in the for a direct course through the upland and across Riverside.

more resistant to the action of erosion than the depths ranging from zero to 100 feet, but in many If the sharply cut valleys were filled to an alti- streams, which not only have carried off the soft erosion has destroyed many of the original characteristics of the valleys, leaving them with much more irregular floors and outlines than they originally possessed.

The valley filling is composed of various matehere and there of the original surface; the rest is varied greatly from place to place, giving to the washed away, and its place is occupied by the deposits local characteristics. Thus in the sand

formerly maintained. The new channel, however, by a small hill composed of rock in place. Owing to the existence of this hill, the river could not have reached its present position by swinging to the left. It is apparent that the stream has been transferred bodily from one course to the other, but the reason for pursuing a more circuitous route than formerly is not apparent.

In comparing the two valleys, ancient and modern, it is interesting to note that the abanoccupied by the stream, and also that the slopes leading into the upper valley are low and much less precipitous than those which border the present stream. The abandoned valley has the rock floor, which has an altitude of about 920 to Grays Landing. altitudes, but they are probably isolated exposures and not parts of a continuous sheet. Professor Stevenson observed them on the road from New

From New Geneva to Jacobs Creek the stream follows its original channel, but a part of the old floor of the upper channel is still to be seen one half mile and that the present channel occupies only a part of the floor of the older valley.

In the vicinity of Grays Landing the old channels are rather complicated. From Jacobs Creek to the mouth of Whiteley Creek the original Ferry. Instead of following the present course of

reached its present position by lateral swing.

the amount of erosion noticeable on the slopes of quiescence had been extended indefinitely the Descriptions of the abandoned channels.—The ent course of the river the stream probably swung son, White, Lesley, Wright, and Chamberlin, but

Creek, to Masontown, where it bent in a sharp return curve and crossed the present channel of the river at Hatfields Ferry. The channel cut by the river when it followed this course would have an abrupt bend at the mouth of Whiteley Creek, is distinct from the old and is separated from it but on a stream of this size the curve presumably would not have been much sharper than that which shows at the end of the Masontown bend. It certainly could not have produced the angle now visible at that point, which is made by the bluff north of the river and that which borders the old valley west of the mouth of Whiteley Creek. The only adequate explanation of the straight bluff west of the mouth of Whiteley Creek is that it was formed when the course of the stream was down Whiteley Creek and along the present river valley to Hatfields Ferry. This means that the Masontown channel was abandoned first and that the stream flowed through the Mapletown valley and along the present course of the river to Hatfields Ferry, and thence The last change appears to have been the abandonment of the Mapletown valley by the cutting of a new channel across the bend from Dam No. 7

> The Mapletown and Masontown bends are deeply filled with clay, sand, and gravel. In the former the main body of the filling rises to an altitude of about 1000 feet above sea level; in the latter it has a thickness of 100 feet, and rises to an altitude of 1020 feet. Above the principal deposits which cover the rocky floors a thin veneer of sand and pebbles is frequently found on the valley slopes at a considerably greater altitude. In the Mapletown bend such deposits were noted at the forks of the road on the hill between the abandoned channel and the river at an altitude of 1050 feet, and at the same altitude in the vicinity

> of Mapletown. The best example of abandoned channels is the Carmichaels bend, now occupied in part by Muddy Run and Little Whiteley Creek. The Masontown channel formerly crossed the present river valley at Hatfields Ferry; it extended west about 3 miles and then swung to the north by Carmichaels in a broad curve and reached the present channel at

The central part of the Carmichaels channel is the river below Hatfields Ferry, the old channel filled to a depth of 70 feet with alternating beds pursued a westerly course up Little Whiteley of clay and quicksands, and scattering gravels Creek for 3 miles and then in a broad sweep by have been traced to an altitude of 1080 feet. In Carmichaels reached the present course at East | the upper end of the valley the filling has been largely removed by Little Whiteley Creek, but The valley near Mapletown is excellently devel- in every sheltered place clay is found above the Generally the channels have been silted up to oped, with a breadth on its rock floor of about gravel pavement at the bottom, showing that one-half mile. It is separated from the present originally the floor was well covered with fine cases the filling has been removed by the small river valley by a group of hills a mile in width material. In the lower end of the valley the and rudely triangular in shape, with the longest rock floor has been considerably dissected by tude of about 1200 feet the country would have silt of the valley but have cut deep channels in side of the triangle facing the present channel of Muddy Run, but for about a mile from the river the rock floor beneath. The partial filling and the stream. The hills reach an altitude of 1150 a wide shelf is preserved on the east side of the feet, and since they are composed of rock in place stream. This shelf is covered by a thin coating it is manifestly impossible for the river to have of sand and gravel, evidently belonging to the gravel pavement which was deposited by the In the Masontown bend it is not so apparent stream before the heavy masses of clay and sand that the cut-off is not due to lateral corrasion by in the vicinity of Carmichaels accumulated. the stream near the mouth of Whiteley Creek. Along Whiteley and Little Whiteley creeks, If the change was produced by lateral corrasion | where the conditions of erosion have been essencable. The second is generally accepted, and rock floor is overlain by a thin deposit of sand at the base of the promontory on the inside of the tially the same as along the lower course of it seems to satisfy all of the conditions. When and well-rounded gravel, evidently the material curve, the ridge north of Cats Creek should nar- Muddy Run, clay is found in every protected locality overlying the gravel pavement on the rock floor. This shows that the abandoned valleys above Carmichaels were originally silted up cut through by the river as it swung in against and that the streams have succeeded in removing its base in the sharp turn from the Whiteley only a part of the filling. The absence of clay on Creek channel to its course up Cats Creek. From Muddy Run is due to lack of deposition, and indicates that the conditions in this part of the producing it. To-day we see only the remnants an active stream. Conditions of sedimentation bordering the Masontown bend, and from the valley were different from those which prevailed great reduction which the point of land on the at the same time either above or below this localinside of the bend has suffered, it seems probable ity. This fact is important, since it affords a clue pits at Bellevernon, a few miles north of this ter- that this valley marks the original course of the to the conditions which then prevailed and which This peneplain records an important epoch in ritory, large subangular bowlders are found in stream. The same is true of the Mapletown val-were responsible for the abandonment of the well-

Cause of abandonment of channels. — These move up or down appreciably during an epoch | bend at Carmichaels beautifully laminated clay | Geneva, thence in a broad gentle curve by Dam | abandoned channels constitute the most striking topographic feature of the region. They have except where the rocks were hard. If the period mitted undisturbed sedimentation to take place. Instead of continuing to the north along the pres-been recognized as abandoned valleys by Steven-

Masontown and Uniontown.

offered. They have been described as "oxbows" or "abandoned channels," as though it were the most natural thing in the world for a stream to abandon its channel. If western Pennsylvania were a country of low relief, it might be possible for a stream during its normal development to cut off oxbows, as the Mississippi does on its low flood plain below Cairo, Ill.; but western Pennsylvania is a rugged region, with a general upland difficult and slow process for a stream to cut off ble for it to establish a totally new course unless the conditions under which it operates are very different from those which normally affect the development of a stream.

posed.

valleys it is necessary to go outside of the territory under consideration and briefly describe similar phenomena in other parts of the province, in order to determine the general conditions under which they were formed.

Outside of the glaciated region, abandoned river channels of the character here described do not occur, except in the Ohio Valley. So far as the

streams and forced the water to seek another outlet, which it found along the present course of the Allegheny and the Ohio. In the ponds which ensued from this ice blockade the silts found along the abandoned channels of Monongahela River were formerly supposed to have been deposited, and to the cutting down of the new outlet and the draining of this immense pond has been attributed the origin of the abandoned valleys. While it must be admitted that ponding to a certain extent took place during these changes of drainage, and that probably silt was deposited cases in this territory there is no direct evidence in the lake so formed, it is plainly apparent, as of the position of these ice barriers, but in the shown on another page, that general ponding can | Carmichaels bend, which presumably was the last not account for the irregularities of deposition to be abandoned, almost the exact position of the that are shown in the sediments. It is possible dam is indicated by the termination of the silt $1\frac{1}{2}$ that the scattering gravel which occurs in many | miles northeast of the town.

the Carmichaels valley was abandoned.

The irregularities of the principal deposits indi-

cate that local conditions controlled the deposition

of material and also that they were responsible rising 500 feet above the water level of the prin- for the change in the alignment of the river. The cipal stream. In such a region it is an extremely question now presents itself, what local conditions could produce such profound changes in the any of its meander, and it is manifestly impossi- | drainage of the region? The changes evidently climate, and if so, it seems probable that ice of these stream courses was accomplished. The Prof. I. C. White has recognized the anomalous | Glacial ice sheet did not reach so far south, character of the deposits and physical features of and hence it could not have been directly instru- the water was forced over a low divide at Grays town. It is obvious that at one time the stream the region, and in a vague way he has attributed mental in producing them. In rivers which flowed them to ponding of the northward flowing waters | north, or toward the ice front, it seems probable by the advance of the Glacial ice sheet in Beaver | that during the short summers which must have Valley. If the valley were silted up to an alti- prevailed at that time the ice in the stream would of the stream might be accounted for by super- broken ice, on being swept down, would tend to the present course was established, which avoids presumption is that a gorge of river ice caused position, but the absence of silt in a part of the form jams or gorges, as the ice to-day is gorged the old channel only where the ice blockade the blockade. The altitude of Ohiopyle is 1238 Carmichaels channel shows clearly that the valley in almost all northern rivers during the break-up was not silted up in all its parts, and consequently | in the spring. With the topographic environment | In attempting to account for these abandoned | built by floating ice, and that the shortness of | mined it is interesting to speculate regarding the | such movement, and the character of the material same manner in which they were originally built, been a dam so strong as to persist for a great many seasons, and so high as to force the water writer's knowledge goes, they are limited to the fol- to seek a new outlet in some more favorable local- if possible, the original arrangement of the minor while the present stream descends 330 feet between lowing streams: Allegheny, Kiskiminitas, Youghi- ity. In the pond produced by such dams immense ogheny, Monongahela, Kanawha, Guyandot, Big | quantities of silt would accumulate, but the char-Sandy, Kentucky, and Ohio. These streams are acter and arrangement of the material would located a short distance south of the limit of depend largely upon the shape of the channel glaciation, therefore the abandonment of the chan- and upon the location of the outlet. If the outnels seems to be due to some condition induced let occurred near the dam, strong currents would toward the southwest, at nearly right angles to was nearer sea level than it is to day and that it by the presence of the ice sheet. The contempo- doubtless sweep through the entire pond and the the general drainage lines of the region. Browns had remained stationary long enough for the raneity of the two phenomena is evidenced by the | finest material would be carried on, leaving only | Run is nearly at right angles to the new course | streams in the region west of the Chestnut-Laurel occurrence of fossil leaves in an abandoned chan the coarser sediments in the bottom of the pond; of the river, but inclines slightly in the direction ridge to reach grade and to broaden their channels nel near Morgantown, W. Va., which, according but if the outlet occurred at some distance from to Dr. F. H. Knowlton, have an arctic facies and | the point where the dam was built, as in the probably were deposited during the Glacial epoch. | Carmichaels channel, then there was a large body In studying the problem still further it will be of water nearly free from movement, and in such noted that abandoned channels are most abundant | places finely laminated clay would be deposited. on streams that flow northward, or directly toward | The most striking example of such deposition is the ice front. The streams flowing in that direc- in the great Teays Valley of southern West Virtion are Monongahela, Youghiogheny, Kanawha, ginia, which was vacated by Kanawha River Guyandot, Big Sandy, and Kentucky, and along all, under similar conditions. In this valley laminated except the last, abandoned channels are abundant. | clay of the finest character accumulated to a In this connection it must be noted that the depth of 60 feet. The outlet was 14 miles above drainage of the Upper Ohio Basin has suffered the dam, and sedimentation in the lake was quiet erly direction. It seems therefore, more probable present channel below the abandoned valleys. decided changes through the advance of the and undisturbed. Below such a dam little or no Glacial ice sheet. It is now fairly well established | deposition would occur and the channel would be that the present Allegheny River system was left in the same condition as when it was occupied that was the case the dividing ridge between river, consequently a small amount may be added formerly divided into three parts, all of which by the active stream before the formation of the Browns Run and the river extended from north of to this measure. Also another addition may be drained into the St. Lawrence Basin. The waters | dam. It may be urged that it would be impossi- | Masontown to the high land east of Carmichaels | made for the reason that the pre-Pleistocene drainof Monongahela River also found a northern out- ble for such a dam to persist long enough to and terminated in the angle between the two age was into the St. Lawrence system and prelet through Beaver River into the same system. permit the stream to intrench itself in a new streams above East Riverside. The lowest divide sumably reached sea level in a much shorter Kanawha River with its tributaries, Guyandot | course, but it must be remembered that during | at present in this ridge is east of McCanns Ferry, | distance than the present drainage by way of and Big Sandy rivers, flowed north through the the cutting of the new channel the old one is and its altitude is about 1000 feet. The gap Mississippi River. Thus it seems that the postpresent Scioto Valley and probably constituted a being silted up, and that the amount of work across which the water found an outlet must have Kansan (?) elevation may have ranged from 200 branch of the river system which occupied the necessary is only enough to lower the grade of basin of Lake Erie. The advancing ice is sup- the stream below the top of the silt in the old it was probably just below 1000 feet. This altiposed to have dammed these northward-flowing valley This, presumably, would be less than 100 feet in all cases, and with the volume of water that doubtless then prevailed, it may have was here filled to the level of the water surface. been accomplished during the life of the dam.

If this hypothesis is correct many such dams may have been formed, and each of the abandoned channels in this territory was probably produced by an independent ice jam. The results are frequently masked by later dams farther down the stream, for behind each dam there must have been an extended pond of water in which silts were deposited. Thus it is that in most of the

no adequate explanation of their origin has been | places up to altitudes of 1050 to 1070 feet was | Sequence of events on Monongahela River. — | ogheny River, and its course is marked by a numestablished from Dam No. 7 to Hatfields Ferry.

barred its way.

drainage in the vicinity of the new channel. In the same points. the case of the Carmichaels channel this is particularly difficult, since the minor drainage shows an time.—From the foregoing description of abanapparently abnormal arrangement. Thus Middle | doned channels it is apparent that during their of flow. It is probable that these minor drainage to a small extent, but not sufficiently long to lines were originally united, but did they then allow Youghiogheny River to produce a similar flow to the north and unite with the river at channel in the hard rocks of the mountainous East Riverside, or turn south and enter the river region. As the abandonment of the channels Antram runs appear to have been determined by of erosion in which they were produced began in quarter of the Masontown quadrangle. For this san stage of the Glacial epoch. The amount of this reason the southwest courses of these streams are movement has not been definitely determined, but not necessarily indicative of an outlet in a south | it must have been greater than the depth of the that Browns Run was the main stream and that This difference is about 150 feet, but the grade of been lower than the one east of the ferry, hence to 500 feet. tude is close to that of the top of the silt south of Carmichaels, and indicates that the channel

The divide below McCanns Ferry was soon cut below the level of the silt above the dam, and the below the point where the dam was formed. No dam formed below this point after the abandonment of the Carmichaels channel, and consequently the Carmichaels valley remains in the condition in which it was left by the river, with the exception of the changes which have been produced by normal erosion since that time.

deposited in the ponded waters at the time of the The general sequence of events has been roughly ber of abandoned channels of the same character formation of the Allegheny-Ohio river. In fact, outlined. The river's old course appears to have and at approximately the same altitude as those Monongahela Valley may have been filled by extended from its present course at Dam No. 8 previously described. None of the channels of these gravel deposits to a depth of 1050 feet, but | directly northwestward to New Geneva. From | Youghiogheny River occur in this territory, but if so they were almost completely removed before Dam No. 7 it followed the Mapletown channel a small one is to be seen at Ohiopyle, just east of to the mouth of Whiteley Creek, where it turned | the eastern margin of the Uniontown quadrangle. eastward to Masontown and crossed the present | Youghiogheny River enters the village of Ohiocourse to Carmichaels. The first change is hypo- pyle from the east, but instead of turning to the thetical, but it seems probable that an ice gorge | north in a simple curve it turns to the south and was formed in the Masontown channel either | forms a loop about 2 miles in length and returns below Grays Landing or between Masontown and | to within a few hundred yards of its course at the Hatfields Ferry. The height of the dam is also falls. The promontory around which it flows is problematical, but it probably had a height of high and rocky, except at its base, where it is but occurred during the prevalence of an arctic nearly 100 feet, reaching to the summit of the 15 to 20 feet higher than the channel of the river ridge on the concave side of the bend. The water above the falls. This low neck of land is covered was the instrument by which the abandonment | found an outlet south of Hatfields Ferry and a new | with a thick deposit of well-rounded river bowlders course was established along this line. A second resting upon a rock floor only a little higher than dam was formed in the vicinity of Mapletown and that upon which the stream is flowing above the Landing and the present course of the river was | flowed across the neck of the peninsula along the line of the Baltimore and Ohio Railroad, but it About the same time an ice gorge was formed | has abandoned this direct course and cut a new across the old channel near Dam No. 8. An out- and circuitous channel. It is evident that the tude of about 1050 feet the change in the course | break first near the head of the river. This | let was found near and to the left of the dam and | direct course must have been blockaded, and the feet, hence the hypothesis of a general pond due The last change was produced by gorging of to glacial ice does not apply to this case, unless the present drainage can not be regarded as super- and under the arctic conditions then existing, it the ice 14 miles below Carmichaels. Since in this there has been differential crustal movement since seems possible that immense dams may have been case the actual location of the dam can be deterd the diversion occurred. There is no evidence of the summer season did not permit their being height necessary to force the river to assume its filling the abandoned channel at Ohiopyle indimelted before the rigors of the ensuing winter present course. It is impossible to determine this cates that at the time the change occurred the fixed them firmly in position. During the second with accuracy, but there are some facts which stream was still active and had not begun to summer they may have been increased in the throw light on the subject. Since the new chan-grade its valley. This is to some extent corrobnel was established at the lowest point in the rim orated by the occurrence of an abandoned chanand it seems possible that the result may have of the basin, its altitude must have been less than nel on Dunbar Creek at Sitka at an altitude of that of any existing divide. In undertaking to about 970 feet. This shows the grade of the old solve this problem, it is necessary to determine, | valley to be 260 feet between Ohiopyle and Sitka,

Uplift of western Pennsylvania in Glacial Run and Antram Run flow in parallel courses formation the surface of western Pennsylvania near Hatfields Ferry? The courses of Middle and | occurred in early Pleistocene time the partial cycle the geologic structure; they are in harmony with | late Tertiary time and was terminated by an uplift most of the minor drainage lines in the northeast of the region, presumably at the close of the Kan-Middle and Antram runs were tributary to it. If the old stream was less than that of the present

The latest or Wisconsin stage of glaciation does not appear to have affected the streams of this region. Either the climate was not so severe or the streams were too deeply intrenched in their modern canyons to be diverted. The Wisconsin epoch is recorded in the lower Allegheny Valley new channel by Parkers Bar and Adah was by a terrace of drift material about 20 feet above established. The ice composing the dam finally | the present flood plain of the river. Such material melted, leaving no trace of its existence except was not available in Monongahela Valley, and the new channel and the absence of sediment consequently no one has yet been able to differentiate the low terraces of this stream.

RELATION OF TOPOGRAPHY TO MAN'S ACTIVITIES.

In this territory it is clearly apparent that man's activities have been largely controlled by the character of the surface, but a modifying condition has recently appeared that may change this Abandoned channels along Youghiogheny to a considerable extent. Originally surface River.—Similar conditions prevailed on Youghi | features were all-powerful in shaping the growth of the community, but now the presence of good | anticline or the lowest part of the syncline, and | and it is represented on the Geologic Structure | coal is largely the determining factor in development.

In the early settlement of this region the valleys were avoided for the reason that the slopes were too precipitous for farming purposes and the streams were too small for navigation, except by the smallest type of boats. The most promising location for a town was in the broad, shallow vallocation for a town was in the broad, shallow valley at the western base of the Chestnut-Laurel ridge, and here Uniontown was established, on the line of Braddock's trail from Potomac River to the junction of Monongahela and Allegheny rivers. Before the days of railroads the National Pike was built by the Government through this the chosen stratum; second, from the depth of region from Cumberland to Wheeling. For a that stratum beneath beds above it; and third, long time this was a great national thoroughfare from the height of that stratum above beds and Uniontown was one of the thriving towns along its course.

In later years the settlement of the country extended to the river valleys, but, even to the present day, the valleys are of slight importance compared with the more open and accessible upland. For many years the principal artery of traffic through this territory has been the Baltimore and Ohio Railroad, which utilizes the valley of Youghiogheny River for its line between Pittsburg on the west and Washington and Baltimore on the east. A few towns have been established along this line, but they owe their location as much to the mineral deposits there available as to the presence of the railroad. The stage roads have fallen into disuse, but Uniontown has thriven, for it is situated in the very heart of one | number of sections taken in various directions. of the best coal basins in the country.

The development of the coking plants in the Uniontown region has increased the population of this valley by thousands, but at present the activities are shifting, and recent improvements west of Uniontown give indications of great development in Monongahela Valley in the near future. Although slack-water navigation has been carried on for nearly a score of years, the physical features of the valley are so forbidding that no new developments have been undertaken. Under the stimulus of coal mining on a large scale and railroad connections, doubtless this valley, despite the natural disadvantages, will be thickly populated and manufactories will abound.

GEOLOGY.

STRUCTURE.

Structure of the Appalachian coal field.—The geologic structure of the Appalachian coal field is very simple, consisting, in a general way, of a broad, flat, canoe-shaped The lay of the Appa-lacian coal trough. This is particularly true of basin in gen the northern extremity, a generalized

map of which is shown in fig. 28. The deepest part of this trough lies along a line extending southwest from Pittsburg across West Virginia to Huntington on Ohio River. Toward this line the rocks dip from both sides of the trough. On the southeastern side they dip to the northwest and on the northwestern side they dip to the southeast. About the canoe-shaped northern end the rocks show in a rudely semicircular line of part of the trough.

In Pennsylvania the deepest part of the trough is situated in the southwest corner of the State, and the inclination of the rocks is generally toward that point.

Although the general structure of the region is of this simple character, the eastern limb of the trough is crumpled into a number of parallel wrinkles or folds that make the detailed structure somewhat complicated and break up the regular westward dip of the rocks, so that at first sight it approximate to the facts. is not apparent. Close examination, however, shows that from the Allegheny Front westward each succeeding trough is deeper than the one on the east, and the successive arches become lower, until the rocks which are over 2000 feet above sea at the Allegheny Front extend below sea level in the central part of the basin.

In describing these folds the upward-bending arch is called an anticline and the downwardbending trough is called a syncline. The axis of a fold is that line which at every point occupies the highest part of the ville sandstone is selected as a reference surface

Masontown and Uniontown.

from which the strata dip in an anticline and toward which they dip in a syncline.

Method of representing structure.—In previous reports the underground relations, or structure, of the rocks have been illustrated by

Structure sheet. Another method of representing the basins and arches is employed in

these maps, as follows: The upper or lower surface of a particular stratum of rock is selected as a reference surface. The form of the reference surface is ascertained, first, from the outcrop of beneath it. In the first case the stratum outcrops and is observed. In the second case it is underground, and the outcrop of some higher bed is observed. The thickness of rocks between the two being known, the depth of the reference surface can be estimated. In the third case the reference surface is in the air—that is, the chosen stratum has been eroded—and the outcrop of an underlying bed is observed. The thickness of the intervening rocks being known, the height of the reference surface can be determined.

By reference to the topographic map the altitude of any outcrop can be ascertained and thus the height above sea for a corresponding point of the reference surface can be determined. This is done for hundreds of points along a very large Points which have the same altitude are then connected by a line, which gives the form of the reference surface at that elevation. Many such lines are drawn at regular vertical intervals. They are contour lines, and as printed on the Geologic Structure sheet they show: First, the horizontal contour of the troughs and arches; second, the relative and also the actual dip of the beds; and third, the height of the reference surface above the sea at any point. The depth of the reference horizon may be determined by subtracting the elevation of the reference horizon from that of the surface of the ground.

As a rule these structure contours are generalized and are only approximately correct. Where mines have been opened on the chosen stratum, as on the Pittsburg coal, the contours are precise and detailed, but in other cases they are liable to error from several conditions. Being estimated on the assumption that over small areas the rocks maintain a uniform thickness, the position of a contour | the Chestnut Ridge anticline. will be out by the amount by which the actual thickness varies from the calculated thickness. Being measured from the altitude of observed outcrops, the position of the contour is uncertain to the degree that that altitude is approximate, and while in many instances topographic altitudes are determined by spirit level, in most cases geologic observations are located by aneroid barometers. The aneroids are constantly checked against pre- The axis swings approximately into line with cise bench marks, and the instrumental error is that of the Dulany fold, and the only perceptible probably slight, but it may be appreciable. And difference is a low place in the arch along Dunfinally the observations of structure at the surface | bar Creek and a slight flattening of the dips in | ment north of Youghiogheny River. can be extended to buried or eroded strata only the vicinity of Youghiogheny River. outcrop and at all points dip toward the lowest in a general way. The details probably escape determination. These sources of error may combine or may compensate one another, but in any case it is believed that their sum is probably less than the amount of one contour interval; that is to | tion of the contours on its western slope. Along | say, the absolute altitude of the reference surface will not vary more than 100 feet from that indicated in the mountainous region east of Uniontown and not more than 50 feet in the other part of the quadrangles; and the relative altitudes for successive contours may be taken as very closely

DETAILED GEOLOGIC STRUCTURE.

In the Uniontown and Masontown quadrangles the most pronounced structural features are in the mountainous country southeast of Uniontown. The parallel ridges which are so conspicuous in this region owe their existence to anticlines of full length of Ligonier Valley. hard rock that have withstood erosion better than the softer rocks of the adjacent synclines.

In order to bring out the details of the structure of this mountainous belt the top of the Potts. 100 feet, printed in orange color. Where this line, but there are several more or less The Pittsburg horizon is below the surface its position has been calculated from the beds in sight, on the assumption that intervals between formations are fairly has been eroded from the tops of the arches its restoration likewise has been determined from the rocks showing at the surface.

In the report on the geology of this region Professor Stevenson recognized the fact that the Chestnut Ridge anticline north of Youghiogheny River did not quite Arches represented by the Potts-ville datum surface.

Arches represented by the Potts-ville datum surface.

south of that stream. He speaks of it as an offset of some kind, but he did not determine the exact nature of the complication. From the contour lines it is apparent that these folds, although very closely related and connected, are really distinct and have separate axes. That which attains its greatest development in Chestnut Ridge north of Youghiogheny River is here designated the Chestnut Ridge anticline, while the axis of the westernmost fold south of the river, for want of a better name, is called the Dulany anticline, from the well-known cave on as the Uniontown and Latrobe synclines.

Laurel Ridge. If the Pottsville sandstone were restored across the Dulany anticline it would reach an altitude, as shown by the contours, of 3300 feet above sea level. From this maximum the sandstone bed Pittsburg coal is at an altitude of about descends beneath the western face of the ridge until it is below the level of the sea, but in this feet below the tops of the highest hills. As region it is so deeply buried that it is useless as a | shown on the map, the bottom of the syncline is reference stratum and the contours have been carried only to a depth of about 500 feet below half in width and 3 or 4 miles in length. From the surface. On the eastern side the descent this relatively level bottom the coal bed rises is not so great, and the Pottsville in the vicinity of Elliotsville reaches the bottom of a local syncline in Ligonier Valley at an altitude of dips are lower, and that side of the basin is cor-1300 feet above sea level. The Dulany anti- respondingly wider. The axis rises toward the cline attains its maximum development on the south, so that the coal is exposed at the surface National Pike, but it continues southward at | near Fairchance, but it continues to occupy the nearly the same altitude to within a mile or two hilltops to beyond the margin of the quadrangle. of the southern margin of the quadrangle. South 2100 feet on the axis back of Mount Braddock. At this point the fold loses its distinctive character, and soon dies out on the western flank of

The Chestnut Ridge anticline makes its first appearance as a low fold south of the National Pike, and it increases slowly northward until the Pottsville sandstone attains an altitude of 2300 feet at Elk Rocks. From this point to the northern line of the quadrangle the fold maintains a constant altitude, and presumably it does not change much across the Connellsville quadrangle.

east of the southeast corner of the Uniontown quadrangle. It plunges rapidly to the southwest, and the effect of the plunge is seen in the directhe National Pike the Pottsville rises from an altitude of about 1500 feet in the vicinity of Farmington to a little over 2200 feet on the axis of the fold, and then it dips rapidly into the deep syncline in the vicinity of Confluence.

are separated by an irregular basin which is here designated the Ohiopyle syncline. It is a part of the great Ligonier Valley syncline, but it has been given a distinct name because it has local characteristics and as a separate and distinct synclinal axis it probably does not extend throughout the

A minor syncline also exists between the Chestnut Ridge and Dulany anticlines. It is con-Elliottsville syncline.

West of Laurel Ridge the structural features sheet by contour lines, with a vertical interval of are not so pronounced as they are east of that distinct folds crossing these quadrangles. In the territory west of the

Chestnut-Laurel ridge the Pottsville sandstone constant over small areas. Where the Pottsville | does not outcrop and another reference surface gives more reliable results. The best known horizon in this field is the Pittsburg coal, and the contours printed in brown color on the Geologic Structure sheet are represented as being drawn upon the floor of this bed with a vertical interval of 50 feet.

> The synclinal basin along the western foot of the Chestnut-Laurel ridge is the best known structural feature of western Pennsylvania. It is the celebrated Connells-

ville basin, in which is produced the major portion of the coke used in this country. The term Connellsville basin applies to a general synclinal trough extending from the West Virginia line on the south to Conemaugh River on the north. In reality the basin is made up of two separate and distinct synclines which abut against each other with a slight offset north of

The southern syncline has its greatest development near Uniontown, and hence it is proposed to designate it the Uniontown syncline.

the city of Connellsville. They are here described

In the deepest part of this basin the


550 feet above sea level, or about 600 rather flat, having an area about a mile and a sharply and with great regularity to the surface along the eastern side of the basin. On the west,

The data upon which these contours are based of the latter point it plunges rapidly, and it is are very much more accurate than the data for only a moderate fold where it is cut by Cheat the contours of the Pottsville sandstone. In River, a few miles south of the Pennsylvania line. the areas covered by large mines the contours North of the National Pike the fold diminishes are located from actual levels within the mines, until the Pottsville attains an altitude of about and are therefore accurate so far as the scale of the map will permit. Between and beyond the areas occupied by mines the contours are extended on geologic evidence secured at the surface and from drill records, where such are available. The structure of the basin is remarkably regular and free from minor variations. So far as known, the minor irregularities are limited to the center of the basin, where the dips are slight, and to the extreme ends, where the flatness of the coal tends to exaggerate slight inequalities of its floor.

West of the Uniontown syncline lies an anticlinal fold, which is only slightly pronounced on

the southern margin of this territory, but which increases irregularly northward and reaches its greatest develop. anticline of the Pitts-burg coal.

This fold has been called by Stevenson the The axis of the Laurel Hill anticline lies just | Fayette anticline, and the name will be retained, although the fold is equally well developed in Westmoreland County. South of the National Pike the Pittsburg coal is preserved in many of the hilltops even along the axis, and from this fact the size and form of the fold were easily and accurately determined. North of the pike the anticline is of greater magnitude and the coal has been eroded from a wide belt on both sides of the axial line. In this part of the territory the data The Laurel Hill and Chestnut Ridge anticlines | for drawing structural contour lines are meager and the shape of the fold is to some extent hypothetical. The evidence of the former position of the Pittsburg coal where the axis crosses Redstone Creek is derived from the records of a deep well drilled a number of years ago at Upper Middletown. In this well the Pottsville formation is identifiable and affords a clue to the position not only of the Pittsburg coal but of the Upper Freeport coal as well. The record of the deep well at Smithfield shows the interval nected with the Ohiopyle syncline, but it has a between the Pottsville sandstone and Pittsburg separate and distinct axis, and it is called the coal to be 910 feet. If this measure is added to the altitude of the Pottsville in the Upper

sandstone.

Middletown well it gives the former position of ago at Ceylon, and that the Pittsburg coal is only the gray Catskill, or Pocono, recognized in the It is overlain by bright-red shale of the Mauch the Pittsburg coal at this point as 1400 feet. This | 324 feet below the Waynesburg coal. If this | eastern part of the State, is probably represented | Chunk formation. Under the shale occurs very is apparently on the axis, and therefore gives us reported record is correct the structure contours in Laurel Ridge by the group of sandstones which are naceous limestone, and below this the bulk of fairly reliable data concerning the height of the fold. In the vicinity of Youghiogheny River there is abundant evidence for determining the shape and size of the fold, but between this stream and Redstone Creek the evidence is scanty and the fold is determined simply by connecting contour lines. The magnitude of these folds may be seen by comparing the altitude of the coal at Upper Middletown with the same bed in the bottom of the Uniontown syncline. Thus it is seen that the coal rises at least 950 feet from the axis of the syncline to the axis of the anticline.

On the west the coal dips again into a basin which is somewhat deeper than the Uniontown syncline and which is more irregular

in direction and outline. Its greatest development is in the vicinity of Dunlap Creek, and it is called the Lambert syncline from syncline, from a mining town which has lately been established at the head of Middle Run. The axis of the syncline enters this territory from the north, crossing Redstone Creek at the mouth of Washwater Run. From this point it extends southwestward and crosses Monongahela River near the mouth of Middle Run. After pursuing a westerly course for nearly a mile beyond the river, the axis turns almost due south, through Paisley, and terminates somewhat indefinitely near Willow Tree, in Greene County. At its deepest point the coal is supposed to reach an altitude of less than 450 feet above sea level. From the deepest part of the basin it rises in all directions, and at the southern extremity reaches an altitude of over 700 feet. Toward the north the syncline extends only a short distance beyond Redstone Creek, where it merges with another syncline on the west, forming the deep basin which crosses Youghiogheny River at Port Royal and extends northward to Irwin, on the Pennsylvania Railroad.

In the Masontown quadrangle the coal rises westward from the Lambert syncline in an irregular arch, which is called the Browns-

ville anticline. The axis of this fold passes just east of the town of Brownsville and crosses Monongahela River at on the Pitts burg coal. East Riverside. From this point south-

ward the fold is very poorly defined, but there which may be traced beyond Turkey Knob. irregularly bedded conglomerate. This is a minor wrinkle in a large synclinal basin, the eastern limb of which rises to the Fayette anticline and the western limb to the Bellevernon | but even in this locality the shaly material preor Waynesburg anticline, which lies beyond the ponderates. The apparent character of the beds limits of the territory. West of the Brownsville anticline the rocks appear to be gently warped, but with no pronounced synclinal fold. In the have undergone. Where the beds are freshly cut, extreme northwest corner of the territory the contours show slopes leading up to the Belvernon

All of the structures in the western part of the Masontown quadrangle are poorly defined, and from the data at hand there is great difficulty in expressing the structure by means of contour lines. In many places well-marked geologic horizons could not be found, and hence the position of the Pittsburg coal could not be determined with great accuracy. In this portion of the map | drilled west of Laurel Ridge the drill has penethe contour lines should be taken as the expression of structure in a very broad way only, and considerable allowance should be made for inaccuracies of observation and for variation in thickness of formations.

the Masontown map a possible error was discovered in the vicinity of Ceylon due to unsuspected variation in the interval between the ing a thickness of 150 feet. Pittsburg and Waynesburg coals. The actual position of the Pittsburg coal was determined by drill records at Willow Tree, on Whiteley Creek

are too low in this locality by about 50 feet.

that they do not show in structure sections drawn to the scale of the maps, therefore none have been prepared for the Masontown quadrangle. In the Uniontown quadquadrangle

rangle, however, the structural features are more pronounced, and they are illustrated by a section which follows in a general way the course of the National Pike. This is engraved on the Structure Section sheet, and it represents the strata as they would appear in the side of a deep trench cut across the quadrangle along the line A-B. The vertical and horizontal scales are the same, hence the actual form and slope of the land and the dips of the strata are shown. On this section the rocks may be seen rising on the east to the Laurel Hill anticline, and in the middle arching over the Dulany anticline. The minor irregularities of structure in the broad valley between these ridges are not apparent on the section. The slight dip of the rock under the Uniontown syncline is shown on the left, but the basin is too shallow to show to advantage on this

STRATIGRAPHY.

General statement.—The rocks exposed at the surface in these quadrangles are prevailingly of Carboniferous age, but in the Dulany anticline lower rocks are brought to light in the ravines that have been eroded on the flanks of Laurel Ridge and in the gorge of Youghiogheny River where it cuts across the anticline in the northern part of the Uniontown quadrangle. These belong to the Devonian system, and they are the oldest rocks exposed in the territory.

DEVONIAN ROCKS.

Catskill formation.—The upper part of this formation is well exposed on the National Pike between Hopwood and Summit. The rocks showing in this exposure con- olive-green sist almost entirely of olive-green shale states.

with occasional beds of argillaceous or muddy sandstone. The upper limit of the formation is marked by the sandy Pocono beds town quadrangle. It outcrops on the stone, conwhich overlie it, and the plane of contact is flanks of Laurel Ridge at the southern and arenaappears to be a slight undulation in the rocks, usually characterized by the presence of a thin, margin of the quadrangle, but toward

the Catskill formation appears to be more sandy, depends largely upon the nature of the outcrop and the amount of weathering which the rocks as along the National Pike or in deep drill holes, they have a decidedly shaly aspect, but where the weathering has been severe the shales are worn back, leaving the beds of sandstone well exposed along the bluffs and giving the impression that they predominate.

The full thickness of the formation can not be determined. That part which is exposed at the surface has a thickness of not over 400 feet, but in the deep oil and gas wells which have been trated beds of this character to a depth of 1200 | Pike about halfway up the mountain and along | formation. or 1300 feet without apparently reaching the usually green in color. But the records of the of about 700 feet below the Pocono sandstone an the region. Toward the top the sandstone gives extensive deposit of red shale, sometimes attain-

southeast of Sigsbee, at Hatfields Ferry, and by the report on Ligonier Valley, Professor Steventhe Gates shaft at the mouth of Middle Run. At son, under the direction of Professor Lesley, points nearly encircle Ceylon, it was assumed (Am. Jour. Sci., 3d series, Vol. XV, 1878, pp. that the interval remained constant in this region, | 423-430) he stated that he regarded them as Stevenson reports that a well was drilled years this locality. In the same paper it is stated that and very little of it can be classed as limestone. stone.

beds are present at some depth.

base of the Pocono sandstone which, according to George H. Girty, are of the Catski in the Catski beds. Chemung age, and Professor Stevennumber of species which, according to Professor sandstone, and clearly show that, from a paleontologic standpoint, no formation can be present

Catskill formation is merely a shore or brackishwater phase of certain Devonian formations. In the vicinity of Delaware Water Gap this phase made its appearance in Hamilton time, and from until somewhere in western Pennsylvania and New York the brackish-water, or Catskill, phase thinned to a feather edge and disappeared about the close of Devonian time. The rocks of Laurel wholly in the open sea and entirely west of the

When the accompanying geologic map was prepared the writer was inclined to consider these beds as equivalent to the true Catskill of New York, but further consideration convinced him that they are more nearly related to the Chemung of the type locality, and consequently should bear that name. In the meantime the name Catskill had been engraved and printed and could not be changed.

CARBONIFEROUS ROCKS. MISSISSIPPIAN SERIES.

Pocono sandstone.—This sandstone, named from Pocono Mountain, in the northeastern part of the State, is well exposed in the Union-

the main line of the Baltimore and Ohio Railroad beds of the well-known Pocono section.

is here called the Pocono formation, but that the bed is essentially a greenish-gray sandstone West of Laurel Ridge the folds are so slight the red Catskill is entirely wanting. This state that, presumably, is calcareous in its upper porment is correct so far as surface exposures are tion. Near the southern margin of the quadranconcerned, but, as shown by the drill, the red gle the bed is evidently much more strongly calcareous, for Dulany Cave has been formed in During the present survey fossils were collected | it on the western side of Laurel Ridge. In this on the National Pike about 50 feet below the locality it is a blue sandy limestone which grades down into the coarse sandstone of the true Pocono formation. In many places this bed appears to be a relatively pure limestone, but no fossils have son, in the paper cited, states that he found a been found in it. In previous surveys the limestone portion has been classed as a part of the Hall, are typical Chemung forms. These were Greenbrier formation, but Professor Stevenson, in found within 18 inches of the base of the Pocono his report on Bedford and Fulton counties, recognized the close relationship between the siliceous limestone and the underlying sandstone, and between the Chemung shales and the Pocono remarked that "this bed is much more closely related to the Pocono sandstone than to the It is now clearly established that the so-called | Mauch Chunk shales," so that in all probability it should be classed with the former.

> The Pocono sandstone is remarkably persistent and regular in thickness in the southwestern part of the State. It has probably been encountered that point it progressed upward and westward in every deep well that has been drilled in this section of the country, but to the driller it is known only by the name of the Big Injun sand. In the records of wells drilled at Upper Middletown and Haddenville the Pocono sandstone has Ridge appear to have been deposited almost a thickness of 290 feet. At Smithfield its apparent thickness is only 151 feet, but it is possible area in which brackish-water conditions prevailed. | that some shaly beds occurring lower in the well should be included in this formation.

> > Mauch Chunk shale and Greenbrier limestone lentil. — Above the arenaceous limestone last described occur red and green shales with interstratified limestone and sandstone beds; the whole having a thickness of about 250 feet. This is the representative of the great Mauch Chunk red shale of the eastern part of the State, and it takes its name from the city of Mauch Chunk, in the

region of its greatest development.

In the type locality the formation is composed almost entirely of red and brown shales and brown sandstone, and no limestones are recognized in it. In passing to the south and west, a limestone appears, which at first is an extremely thin bed, but which thickens until far to the southwest it replaces in large measure the Mauch the north the arch increases in magnitude and the | Chunk formation. This bed is the great Green-In the exposures along Youghiogheny River | sandstone is carried to the summit of the ridge. | brier limestone of central Virginia, and in its At the point where it is crossed by the National | greatly expanded development constitutes most Pike the Pocono sandstone is eroded, but it appears | of the Mississippian series farther west. In its in the high summits on either side of the gap. The | greatest development in Mississippi Valley it is arch decreases in size toward the north and the | not only of sufficient magnitude to be classed as outcrop disappears from the summit, and is found one formation, but it is complex, and has been almost entirely on the eastern flank of the ridge in | divided into several formations which have been the deep ravine cut by Dunbar Creek. It is well | identified over a wide range of territory. In no shown also in the gorge of the Youghiogheny, ris- | part of the State of Pennsylvania does it attain ing from river level a short distance above the on its outcrop a greater thickness that 30 feet. waterworks in South Connellsville, and sinking | It occurs about 50 feet above the base of the from view on the other side of the arch near the | Mauch Chunk formation, and throughout the eastern margin of the quadrangle. The thickness | southwestern portion of the State it is always of the formation is approximately 300 feet. It is underlain by beds of typical Mauch Chunk red composed almost entirely of sandstone, which varies | shale. Since in Pennsylvania the Greenbrier from thin-bedded, flaggy rocks to massive conglom- | limestone occurs in the midst of typical Mauch erate. Its base is usually characterized by a thin | Chunk shales, to treat it as a lentil is more conglomerate, which is well shown on the National | satisfactory than to regard it as an independent

In its best development the Greenbrier limelower limit of the formation. In the surface about 3 miles above Gibson Junction. The stone lentil has a thickness of about 30 feet. The exposures the rocks are prevailingly dark and upper part of the formation is usually more larger part of the formation is composed of thin massive than the lower, and on this account it is | beds of pure blue limestone, but toward the top After the structure contours were engraved on deep wells previously mentioned show at a depth a more prominent feature in the topography of they become shalp and the formation changes to olive-green shale through gradations of shaly limeway to a strongly arenaceous limestone which is stone and calcareous shale. It is extremely fossilhere regarded as constituting the top of the for- | iferous, but during this survey no collections were On purely lithologic grounds it is difficult to mation. At the top the limestone is blue and made. Professor Stevenson, however, recently correlate these beds with rocks of probably the | sandy and it would not for a moment be confused | (Mauch Chunk of Pennsylvania: Am. Geologist, same age in the eastern part of the State. In with the sandstone underneath, but in passing Vol. XXIX, 1902, pp. 242-249) collected fossils downward the limestone is found to become more | from this limestone at a quarry on the National sandy, until from an arenaceous limestone it grades | Pike east of Laurel Ridge. Stuart Weller proall of these points the interval between the two classed these rocks as doubtfully belonging to into a calcareous sandstone, and presumably nounced the fossils to be of Genevieve age and coal beds is about 380 feet. As these determined | the Catskill formation, but in a later publication | changes gradually to the nearly pure siliceous | to be identical with those occurring in the Maxville limestone of Ohio. From these fossils it On Youghiogheny River the calcareous upper seems probable that the Greenbrier limestone and the contour lines were drawn accordingly. equivalent to the Chemung of New York, the bed is quarried extensively and crushed for ballast. lentil may be correlated with the base of the Since then it has been discovered that Professor | Catskill phase of sedimentation being absent in | At this point it has a thickness of over 60 feet, | Chester beds, or the top of the St. Louis limemined in the field by the many quarries which 30 to 80 feet in thickness. The top of the bed have been opened upon it. The stone is hauled seems to be generally regular, but the base is usually well exposed, but the lower and softer ness until on Kanawha River it exceeds the greatto adjacent farms and burned in open ricks to uneven, seeming to rest unconformably upon the members are generally concealed by the débris est measure known in the anthracite field. supply fertilizer.

every well-kept drill record throughout the region west of Laurel Ridge, but the reports of the drillers vary greatly in their description of its character. In the Upper Middletown well it has a thickness of 145 feet and is noted as red rock ness where it is well exposed in the railroad cuts, formerly crushed for glass sand at this point. Its and slate. In the Haddenville well it is reported but in places it seems to be lacking. Irregular thickness is 60 to 80 feet and it is separated from as consisting of 5 feet of shale underlain by 90 | beds of sandstone occur in the shale, and gener- | the lower member by a shale interval from 10 to feet of limestone. In the Smithfield well it is as follows:

Mauch Chunk shale as shown in Smithfield well.

	F	eet.
Red shale with some lime		94
Dark shale		40
Limestone		117
Total		251

The rocks above the Greenbrier limestone lentil consist principally of red and green shale with occasional beds of greenish sandstone. In this Pottsville sandstone is of an olive-green color, and it has attained considerable prominence from the fact that it carries small beds of iron ore that | frequently contains lenses of shale. were extensively worked before the introduction of Lake Superior ores.

quently interstratified with thin bands of impure limestone.

mation throughout western Pennsylvania and the fact that beds of different character come into contact with the Pottsville sandstone are presumably due to an unconformity between the Pottsville sandstone and the Mauch Chunk shale. basin as far as the Uniontown quadrangle. Its description of the Pottsville formation.

along Youghiogheny River from the waterworks | the quadrangle, but it is present on the National in South Connellsville to beyond the margin of Pike just east of this territory. the quadrangle. In passing over the arch of the Chestnut Ridge anticline it rises several hundred | the rocks rise in a large anticlinal fold which feet above the river, and consequently is visible carries the upper heavy plate of Pottsville conat only one or two points in passing along the glomerate to the summits of the highest hills in Baltimore and Ohio Railroad. It is also present the northeast corner of the Uniontown quadranon Dunbar Creek above the furnace. Owing to gle. Erosion has been so severe that the sandthe development of the Dulany anticline to the stone is not always present on the bluffs facing southwest, its outcrop passes from the head of the river, but it shows in a continuous line of out-Dunbar Creek to the summit of the mountain at | crop a little distance back from the front. It is | the Smithfield well, but the details differ, as Jumonville. From this point to the edge of the particularly prominent on the highest summit shown by the following section: quadrangle it occurs continuously on both sides of Laurel Ridge, but the formation is composed | blocks which lie scattered about in picturesque of soft rocks and its outcrop is usually marked confusion. These are well known as the Elk

PENNSYLVANIAN SERIES.

Pottsville sandstone.—The Pottsville sandstone is the lowest member of the Pennsylvanian series or true coal-bearing rocks. It rests unconformably upon the soft shale of stone benche the Mauch Chunk formation and is and thin coal between. overlain by the relatively soft rocks

of the Allegheny formation. Sandwiched thus between formations which are easily eroded, the hard beds of the Pottsville are conspicuous features in the landscape. To their resistant charprominent cliffs.

Youghiogheny River in Stewart Township. This outcrop is east of the Uniontown quadrangle, but the exposures are so much better than those occurring within the territory that they will be in outcrop only on the flanks of the ridge. It is regarded as the type for the field.

well exposed along the Baltimore and Ohio Rail- | face of most of the long spurs on the west side of road from Ohiopyle to within 2 miles of Indian | the ridge. South of this territory the anticlinal Creek. The upper bed is generally more massive and thicker than the lower bed, and it is a much erate caps the summit of the ridge.

The upper bed is generally more massive and again the Pottsville conglomation.

The upper bed is generally more massive and again the Pottsville conglomation.

The upper bed is generally more massive and again the Pottsville conglomation.

The upper bed is generally more massive and again the Pottsville conglomation.

The upper bed is generally more massive and again the Pottsville conglomation.

The upper bed is generally more massive and again the Pottsville conglomation.

The upper bed is generally more massive and again the Pottsville conglomation. more prominent feature in the topography of the

shale beneath. The upper bed is generally con- from the upper bed. Where the formation passes The Mauch Chunk shale can be identified in glomeratic, but in most of the outcrops the peb- below river level at the waterworks in South Con-

> benches is very irregular in thickness and com- | bed is thin, probably not exceeding 30 feet in position. It varies from 20 to 50 feet in thick | thickness. The upper bed is massive and it was ally a thin streak of coal may be seen in the rail 15 feet in thickness. road cuts. This bed of coal is usually too thin and irregular to be of value, but in the vicinity appears to be thinner than above Indian Creek, of Ohiopyle it measures about 2 feet in thickness. It is visible just below the falls, and according to exposure of the lower part. The upper bench Professor Stevenson its thickness ranges from zero to 15 inches. His correlation of this bed has in the gap of Youghiogheny River above with the Mount Savage coal of Maryland has Connellsville. The lower sandstone bed is not been verified by David White from fossil plants known in this territory south of Youghiogheny collected in the railroad cuts below Ohiopyle.

region the shale immediately underlying the | irregular in thickness and bedding. In places it is a coarse conglomerate, but generally it is composed of coarse, irregularly bedded sandstone that

The thickness of the bed is difficult to determined. Its top is exposed at a great many places The beds below the Greenbrier lentil are not along the railroad, but its base is concealed by so uniform in character as those above. They the railroad embankment. Between Bear Run and are prevailingly red in color, but the shale is fre- | Ohiopyle some greenish shale shows at the railroad level, which possibly belongs to the Mauch Chunk formation, but at this point the upper The irregularities in the thickness of this for- | limit of the sandstone is not visible. Presumably | lows: its maximum thickness is less than 100 feet, but it is so variable that measured sections apply only to the point at which they were taken.

The narrow canyon which the river has cut in these beds throughout Stewart Township extends This unconformity is plainly apparent on the west | up the stream as far as Ohiopyle, where it is terside of the Appalachian coal basin from Pennsyl- minated by a waterfall. Above the falls the vania to Alabama, and it extends beneath the river follows an east-west course directly across significance will be more fully considered in the west of the river the Pottsville sandstones cap the ridge as far as the southern line of the Union-The Mauch Chunk shale shows in outcrop town quadrangle. The outcrop does not show in lows:

On Youghiogheny River below Indian Creek south of the river, where it is broken into huge by ravines or low gaps in the spurs of the ridge. Rocks, and they have been figured and described in previous reports on the region. North of the river the ridge is capped by the heavy beds of Pottsville, which rise on the west slope of the ridge somewhat more rapidly than the surface, and dip on the east beneath the Allegheny formation in Ligonier Valley.

In the valley of Dunbar Creek the Pottsville is particularly conspicuous. The upper bed is in thickness of the formation was due quarried and crushed for glass sand, and the inclined quarry face extends from the bottom of the valley to the summit of the ridge lying between this creek and Youghiogheny River. acter is due much of the mountainous topography | On the south side of the valley the outcrop of to the summit of the mountain at the head of miles, but for the remainder of the distance it has been eroded from the crest of the arch and shows | Anthracite field. particularly prominent in Pine Knob south of the The two heavy benches of the formation are National Pike, and its inclined beds form the sur-

ville formation. The upper bed of sandstone is bles are not abundant enough to be conspicuous, nellsville it shows the same arrangement of beds The shale interval between the two sandstone as it does near Ohiopyle, except that the lower

On Laurel Ridge the Pottsville formation but the apparent thinness may be due to imperfect seems to hold about the same thickness that it River, but it is probably present along Laurel The lower sandstone bench is exceedingly Ridge, since it occurs in its proper position in a section measured by Prof. I. C. White on Cheat River at the mouth of Big Sandy Creek a few miles south of the State line. In this section the upper conglomerate has a thickness of 160 feet; the shale member a thickness of 35 feet, and the lower sandstone bench a thickness of 31 feet.

> The heavy sandstone beds of the Pottsville formation underlie the coal basins west of Laurel Ridge. They are easily identified in every reliable well record in the region. In the Upper Middletown well the Pottsville section is as fol-

Pottsville sandstone as shown in Upper Middletown well.

138	White sandstone
10	Shale
90	Black sandstone
-	Total

In the Haddenville well the shale bed either is not present or was not recognized. According to the anticlinal ridge known as Laurel Hill. South | the record of this well the Pottsville has a thickness of 230 feet. The record of the Smithfield well shows the formation more in detail, as fol-

Pottsville sandstone as shown in Smithfield well.

														Fee
Sandstone.		٠.	 	٠.		٠.							 	9
Dark shale.			 				 	 					 	3
Dark sands	tone	٠.	 			• -•	 	٠.		٠.				
Black shale			 					٠.		٠.			 	2
Gray sands	tone		 		٠.		 						 	5

The total thickness of the Pottsville formation in the Masontown well is about the same as in

Pottsville sandstone as shown in Masontown well. Shale and coal..... 4 Sandstone 54 Total..... 218

The events which attended the deposition of

the Pottsville formation constitute one of the most interesting episodes in the geologic history of this region. It was of the Potts-ville and the formerly supposed that the variation unconformity beneath it. to different conditions of sedimentation and that the thinner beds of rock on the west side of the basin corresponded in age with the thicker beds on the east. Through the study of fossil plants David White has recently demonstrated that this of this part of the State, and the erosion of the this hard bed forms a terrace diagonally up the is not the case, that the thinner beds are due to of this well, which is published on another page, soft shale beneath causes them to stand out in side of the mountain from Dunbar furnace nearly lack of sedimentation, and that they are separated from the underlying rocks by a long time interval The Pottsville sandstone is best exposed along | Tucker Run. From the head of Tucker Run the | that is represented by the deposition of at least massive sandstone caps Laurel Ridge for 2 or 3 | the lower half of the formation in its full development in the type locality in the Southern such thickness is known in any of the outcrops,

> According to Mr. White the thickness of the Pottsville in the Southern Anthracite basin is 1200 feet, in the Western Middle field 850 feet, and in the Northern field 225 feet. The published reports give it as 160 feet in thickness in maugh gap. In the Uniontown region its thick- the region. One of the best exposures In the exposures along Laurel Ridge it is dif- ness is 200 feet and in the western part of the occurs at the mouth of Cucumber Run, in Stewart

The outcrop of the limestone is easily deter- region. Along the river it probably varies from ficult to obtain a complete section of the Potts- State its general average is about 300 feet. Toward the south it increases steadily in thick-

> From the evidence afforded by fossil plants, Mr. White proves conclusively that about the beginning of the Pottsville epoch an uplift occurred, which affected much of the Mississippi Valley. A large land area was formed that extended as far east as the Broad Top basin and the Northern Anthracite field. This land area persisted until at least 600 feet of Pottsville sediments were deposited in the Southern Anthracite basin. A subsidence then occurred in the western part of the State, which allowed the Sharon conglomerate and its associated coal group to be deposited, but presumably this area of sedimentation did not extend as far east as the Uniontown quadrangle, since the plants found in this region indicate that the bed first deposited is probably equivalent to the Connoquenessing sandstone.

> At the close of the Sharon episode the land along the Allegheny Front apparently sank and unbroken sedimentation was resumed from the anthracite basins to the western edge of the bituminous field.

The lower sandstone bed exposed along Youghiogheny River is probably equivalent to the Connoquenessing sandstone of Beaver Valley; the shale and coal lying between the two plates of sandstone constitute the Mercer group; and the upper and more prominent sandstone is probably equivalent to the Homewood sandstone of the western part of the State.

Allegheny formation.—The Allegheny formation overlies the coarse beds of the Pottsville, and its average thickness in this region is about 270 feet. This was formerly The Lower Productive measures.

called the "Lower Productive measures," from the fact that most of the workable coal beds in the lower part of the series occur within it. More recently it has been referred to as the "Allegheny River series," but in this report it will be spoken of as the "Allegheny formation," so named from the river along which it outcrops in typical form. In the Uniontown and Masontown quadrangles it shows in outcrop only in the mountainous part, except in a narrow belt on the west side of Laurel Ridge. Along this belt its outcrop occurs in the valley at the foot of the ridge or on the steep slopes, and therefore frequently it is obscured by the sandstone débris from the Pottsville formation outcropping on the higher slopes of the ridge. In Ligorier Valley it is more generally exposed. Near the river it remains on some of the highest hills, but in the interior it forms the floors of most of the deep valleys, being deeply covered in the interstream areas by the Conemaugh formation, which lies above it.

In the previous survey it was recognized in the valley of Redstone Creek in the vicinity of Upper Middletown, but the evidence upon which this determination was made is not apparent. During the present survey this region was carefully investigated, but no trace of the undoubted Allegheny formation was discovered. It seems probable that the original determination was based upon the occurrence of a coal bed closely underlying a heavy sandstone. Since such a relationship is generally true of the Upper Freeport coal and the Mahoning sandstone, it was probably assumed that the measures below the sandstone belong to the Allegheny formation. This interpretation might be accepted were it not for the evidence afforded by a deep well that was drilled several years ago at Upper Middletown. In the record the Pottsville is easily recognized at a depth of 430 feet below the surface. If the Allegheny formation outcrops along Redstone Creek, it must have a thickness of not less that 430 feet, but no therefore the coal bed which has been assumed to be the Upper Freeport is presumably the Hager coal which lies about 160 feet higher in the series.

The individual beds of the Allegheny formation vary so greatly in character and thickness throughout the territory that beds and

Masontown and Uniontown.

Township. The full thickness of the formation is shown here, but some of the details are lacking. as shown in fig. 2. The coal beds are well exposed,

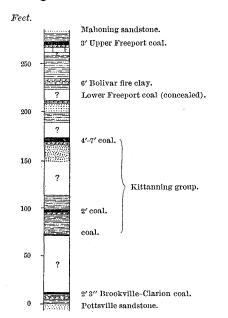


Fig. 2.—Section of Allegheny formation at mouth of Cucumber Run.

and in a general way may be correlated with the coal beds of Allegheny Valley, but it is doubtful if many of them occur at the exact horizon of the coals of the type locality.

Detailed section at mouth of Cubumber River, Stewart Town

		···· <u>P</u> •	
		Mahoning sandstone.	Feet.
		Shale	
	1.	Upper Freeport coal	3
		Clay	3
	3.	Freeport limestone	5
	4.	Concealed	4
	5.	Green shale and clay	5
	6.	=	19
	7.	Bolivar fire clay	6
	8:	Green mudstones	5
	9.	Concealed	8
	10.	(Lower Freeport coal?)	
		Fire clay	2
		Green sandstone	10
	13.	Sandy shale	10
	14.	Concealed (sandy shale)	15
. 1		Coal	4-7
db	16.	Fire clay	3
ro.	17.	Coarse sandstone	18
0.0	18.	Concealed (sandy shale)	. 35
ijί		Shaly sandstone	15
u	20.	Coal	2
Kittanning group.	21.	Fire clay	3
it.	22.	Sandy shale	20
-	23.	Coal (thin)	
	24.	Concealed (shale)	60
	25.	Brookville-Clarion coal	$2\frac{1}{4}$
	26.	Shale or clay	10
		Pottsville sandstone.	
		Total	2671-2701

The lowest coal in the Allegheny formation occurs generally within 20 feet of the top of the Pottsville sandstone. Through a misapprehension this bed was called by Professor Stevenson in his Fayette County report the Mount Savage coal, but this was corrected in a later report on Ligonier Valley, and the coal was called Brookville, from a coal bed occupying a similar position in the series in Jefferson and Clarion counties. Prof. I. C. White inclines to the opinion that the Brookville coal is not present in the southern part of Pennsylvania, or in Ohio and West Virginia, and therefore the coal in Fayette County within 20 feet of the Pottsville is probably equivalent to the Clarion coal of Allegheny Valley. Until full collections of fossil plants have been obtained from the various coal beds mentioned it is impossible to correlate them with certainty. This coal will therefore be called the Brookville-Clarion bed. It is probably present throughout this territory.

A thick bed of excellent fire clay sometimes occurs below the Brookville-Clarion coal. It reaches its best development along the west slope of Laurel Ridge, where it has been extensively or at the horizon of the Morgantown sandstone. dug for the manufacture of fire bricks.

In the middle of the Allegheny formation, as coal lies 100 feet below the top of the formation. data in the surrounding region. Professor Stevenson considered this to be the If No. 34 is regarded as Freeport sandstone, Lower Freeport coal, but Professor White, in then No. 32 becomes the Upper Freeport coal republishing the same section, called it the Upper | bed, and the Conemaugh series lying above it has | occurs a sandstone which in some localities devel- | The interval between it and the lower recogniz-Kittanning coal. The latter determination is cer- | a thickness of 578 feet. The members lying below | ops into a very prominent bed of massive sand- | able beds seems to be variable, and the Waynesthis report the coal is referred to the Kittanning reason that the section does not extend deep Professor Lesley the Saltsburg sandstone, from coal bed, is generally absent, being replaced by group.

sented in the Cucumber Run section. It is gen- the driller stopped operations after his drill had erally thin in Ligonier Valley, but west of Laurel | entered a few feet into the Pottsville formation, Ridge it locally attains workable proportions.

this territory wherever its horizon appears at the surface. Along the west side of Laurel Ridge it | expands to a thickness of 15 to 16 feet, but the of 312 feet, which agrees very well with measured bed is badly broken by shale partings, as will sections in adjacent territory. According to this be shown under the heading "Mineral resources." In searching for and indentifying coal beds the to the top of the Pottsville sandstone is 890 feet. Upper Freeport limestone is an important key rock; it is well shown in the vicinity of Cucumber Run, and also at many other places in this | Pittsburg coal to the top of the Pottsville forterritory.

group of coal beds are well developed in Ligonier | possible error in the determination of the strati-Valley. The Bolivar clay, occurring about 36 feet graphic position of the well heads, therefore we below the Upper Freeport coal, is well shown in may conclude that they are in practical agreethe Cucumber Run section, and it is being dug at | ment, and that the Hutchison well record, as thus a number of points along Youghiogheny River | interpreted, is in perfect accord with the Smithbetween Ohiopyle and Indian Creek.

mation are extremely variable, the aggregate region. thickness seems to be remarkably regular throughout the territory. Professor Stevenson was under of Pennsylvania were originally subdivided with the impression that the Allegheny formation diminished rapidly in thickness near the West contained. The Allegheny formation virginia line on the west side of Laurel Ridge. at the base was called the Lower Pro-His estimate of 125 feet was probably based upon | ductive measures, because it contains a the record of a deep well which was drilled at group of coal beds some of which are always of Hutchinson, about a mile southwest of the National Pike. The section of this well is as follows:

Record of deep well at Hutchinson.

	· · · · · · · · · · · · · · · · · · ·	Feet.	
	Distance of well mouth below Pitts-		
	burg coal	180	
1.	Sandstone	18	
2.	Black shale	1	
3.	Blue clay	2	
4.	Limestone	9	
5.	Variegated shale	55	
6.	Sandstone	4	
7.	Shale	25	
8.	Hard sandstone	6	
9.		39	
10.	Blue clay	2	
11.	Black shale	9	
12.	Hard sandstone	6	
13.	Shale	22	
14.	Coal	1	
15.	Shale	26	
16.	Limestone	5	
17.	Variegated shale	15	
18.	Sandstone	3	
19.	Shale	4	
20.	Sandstone	21	
21.	Black shale	12	
22.	Coal	6	
23.	Shale	6	
24.	Sandstone	13	
25.	Red shale	23	
26.	$Conglomerate\ sandstone$	6	
27.	Shale	5	
28.	Sandstone	14	
29.	Shale	3	
30.	Sandstone	. 8	
31.	Black shale	29	
	Thickness of Conemaugh formation		578
32.	Coal	8	
33.	Shale, with thin sandstone	30	
34.	Conglomerate	60	
35.	Shale, with iron ore	70	
36.	Coal	4	
37.	Shale	12	
38.	Limestone	47	
39.	Sandstone	15	
4 0.	Shale	16	
41.	Sandstone	17	
42	Shale	5	
43.	Coal	3	
44.	Black shale	25	
	Thickness of Allegheny formation	_	312
45 .	Sandstone	2	
	Shale	20	
47.	Sandstone	18	

According to Professor Stevenson this well was begun about 180 feet below the Pittsburg coal, | From this point south the formation is widely | has shown that the basin is much deeper than The particular item in the record which seems to have been the determining feature is No. 34, the shown on Cucumber Run, there is a group of coal so-called Pottsville conglomerate. If this identi- mation is the Mahoning sandstone, which occurs to the north line of the quadrangle. There is beds which undoubtedly occur at the Kittanning | fication is correct there is no interpretation poshorizon, but it is extremely doubtful whether the sible except that which Professor Stevenson gave. individual beds correspond with the Upper, Mid | But if it is conceded that this conglomerate may | frequently conglomeratic. It is not always presdle, and Lower-Kittanning coal beds of Allegheny | be the Freeport sandstone, then the section has ent, but in its best development it has a thickness | developments of recent years it would have been Valley. In the Cucumber Run section the largest | an entirely different aspect and agrees with other | of from 20 to 60 feet. In some places it is | impossible to say with certainty whether the

enough to show any stratum having distinctive its great development at the town of that name, sandy shales and thin sandstones.

The Lower Freeport coal is not well repre- | characteristics. It seems probable, however, that | on Kiskiminitas River. In the Connellsville and hence the last item, or possibly the last three has been mapped separately as a lentil in the The Upper Freeport coal is present throughout | items, should be considered as belonging to that | Conemaugh formation. It is not prominent, and formation. If that is granted, the Allegheny formation has, according to this record, a thickness record the total distance from the Pittsburg coal According to the Smithfield well record, which is published on another page, the interval from the mation is 910 feet. The difference of 20 feet The fire clays associated with the Freeport | between these two sections is no greater than the field well record and with the general thickness Although the individual members of this for of the Allegheny formation in the surrounding

> Conemaugh formation.—The coal-bearing rocks reference to the coal beds which they

workable thickness. A group of coal-bearing rocks higher in the series was similarly termed these two principal coal-bearing horizons occurs a series of beds called the Conemaugh formation. It is composed of shales of varying colors and sandstone, with here and there small beds of coal. Occasionally these beds attain workable proportions, but such a stage of development is maintained only over a limited territory. The base of the formation is marked by the Freeport coal and the top by the Pittsburg coal, and 580 feet.

formation are well exposed. They occupy the center of the valley, extending along the National | identified without the aid of other beds. Pike from Fayette Springs, or Chalk Hill, to near upper part of the formation has been eroded from | the synclinal troughs west of Laurel this region, leaving as a maximum only 200 to 300 | Ridge. The formation has been called feet of strata in the center of the basin. The for- the Upper Productive coal measures, mation is trenched by many of the larger streams to a depth which exposes the workable coals of the workable coal of the upper part of the Allegheny formation.

West of Laurel Hill the folds in the rock have | fairly constant thickness of from 370 to 400 feet. exposed this formation in wide bands of outcrop a broad belt as it laps up over the arch of the | times impossible to identify it with certainty. Fayette anticline. On the National Pike this belt has a width of about 3 miles. It narrows above the Waynesburg coal (Dunkard formation) irregularly southward until in the vicinity of Woodside the Pittsburg coal is almost continu- in a very few areas. The basin was supposed to ous across the arch, and the outcrop of the Cone | be too shallow to contain these upper rocks. maugh formation is limited to the deep ravines. | Since that time the great development of mines exposed in the valley of George Creek and around formerly was supposed, and that the Waynesburg the southern extremity of the Uniontown syncline.

One of the most important members of the forat its base and which overlies the Upper Freeport coal. This sandstone is generally coarse and | west from Uniontown as far as Chadville.

always a reliable guide to the stratigraphy.

quadrangle, which lies due north of Uniontown, this sandstone is of so much importance that it probably not everywhere present, in the Uniontown and Masontown quadrangles, and at the time they were surveyed it was not deemed of sufficient importance to be shown on the geologic map.

Between the Saltsburg and Mahoning sandstones there is a horizon of black fossiliferous limestone which was used as a key rock by Professor Stevenson in his survey of this region. This limestone is variable in thickness and composition and can be used as a guide only in connection with other members of the formation.

The Morgantown sandstone is another prominent member of the formation. It occurs about 150 feet below the Pittsburg coal, and is generally persistent over the territory. In these quadrangles it is probably more prominent than any of the other sandstone members, but farther north it is outranked in places by the Saltsburg sandstone, previously described. The Morgantown sandstone varies in thickness up to a hundred feet. It is generally present, but sometimes appears to be replaced by sandy shales and thin-bedded sandstones. From 30 to 40 feet below the Morgantown sandstone occurs a thin band of green crinoidal limestone which also was extensively used by Professor Stevenson in stratigraphic determinations. It is a thin bed and in many places it is difficult to find its line of outcrop. Presumably the Upper Productive coal measures. Between it is variable in its occurrence and should be used only in connection with other beds in determining the stratigraphy of the section.

From 30 to 40 feet below the Pittsburg coal occurs the Connellsville sandstone, which is fairly well developed in this region and in the neighborhood of the city of Connellsville, from which it derives its name. It probably never reaches the thickness attained by the Morgantown or Saltsburg sandstone, and probably it is absent the formation has an average thickness of about over a much greater territory than either of the other beds. It is not particularly valuable as a In Ligorier Valley the rocks of the Conemaugh | horizon marker because the Pittsburg coal bed, which lies so close above it, can generally be

Monongahela formation.—The Monongahela the western line of Henry Clay Township. The formation overlies the rocks of the Conemaugh in

from the fact that it contains most of

the coal-bearing series. In this region it has a

Its base is everywhere well marked, consisting across the quadrangles. In the great Uniontown | as it does of the great Pittsburg coal bed, which syncline, or southern end of the Connellsville is extensively worked over most of this territory. basin, as it is more commonly known, the Cone- The upper limit of the formation is not so clearly maugh formation shows from the Pittsburg coal | defined. According to general usage it is at crop outward. Owing to the relatively steep dips | the top of the Waynesburg coal, which is supon the east side of the syncline, the Conemaugh posed to agree also with the base of the Waynesformation outcrops in a narrow belt along the burg sandstone. Unfortunately this sandstone is valley at the foot of Laurel Ridge. On the west | not always present, at least as a recognizable bed, side of the syncline the formation is exposed in and the coal varies so in thickness that it is some-

In previous surveys of the region the measures were not identified in the Uniontown basin except coal and the measures above it are present in an area of almost unbroken outcrop from Uniontown also a small area of these rocks extending south-

Without the data furnished by the extensive replaced by sandy shales, and therefore is not | Waynesburg coal is present in this basin or not. The coal is of medium thickness, but under pres-About 200 feet above the base of the formation | ent conditions it is of no commercial importance. tainly more in accordance with the facts, and in this coal bed are not easy to identify, for the stone or conglomerate. This was named by burg sandstone, which is supposed to overlie the outcrop of the Waynesburg coal is much more extensive than formerly was supposed. This of it has been eroded even from the fact was developed also through mine shafts and drill holes which recently have been sunk in the basin. In parts of the trough the Waynesburg sandstone is well developed and the top of the Monongahela formation can be determined with great accuracy; but in many localities the sandstone is either poorly developed or entirely replaced by finer material, and it is only with difficulty that the coal can be separated from other beds of the series.

The trough extends as far west as Merrittstown, in the northern part of the quadrangle. Beyond this point the rocks are nearly flat, and the Waynesburg coal occurs well up toward the tops of between East Riverside and Brownsville. Here the Waynesburg sandstone with its underlying coal is well developed, hence the determination of the upper limit of the Monongahela formation is expose the base of the formation except in the extreme northwest corner of the quadrangle, where the rocks begin to rise over the Bellevernon anticline, the axis of which is located beyond the margin of this territory. Above Rices Landing the Pittsburg coal, which is at the base of the formation, is about 100 feet below water level. South of East Riverside its depth increases, reaching about 200 feet at the mouth of Middle Run. Above this point the coal rises gradually and appears at water level about the mouth of Cats Creek. South of Cats Creek the coal rises steadily, until it is more than 300 feet above water level at the southern margin of the quadrangle.

In Greene County the Monongahela formation is present along the river bluffs from Rices Landing to the mouth of Whiteley Creek. South of the latter point it spreads in a wide, irregular band of outcrop that extends to the southwest corner of the quadrangle.

The rocks of the Monongahela formation are varied, but on the whole they are prevailingly calcareous, and in this respect differ materially from the formations previously described. The formation contains locally heavy beds of sandrapid erosion, and consequently its soft rocks importance of the coals of the subjacent series. have no appreciable effect on the topography.

From an economic standpoint the Pittsburg coal, at the base of the formation, is its most important member. It will be described, together with other coals of the formation, under the headoverlain by shale, sometimes fine and argillaceous, but more commonly stiff and sandy. In the western part of the Masontown quadrangle the shale is replaced by a very massive sandstone, which in many places attains a thickness of 50 feet. This bed appears to be limited to a narrow belt of country extending due north and south through the eastern edge of Greene County and Luzerne by shale partings as to be nearly worthless. of the valley clay seems to mark the location of Township of Fayette County.

Lithologically the most important member of the formation is the Great limestone, which in places attains a thickness of 140 feet and occurs about 120 feet above the Pittsburg coal. This bed is variable in composition and is never solid limestone. Frequently it may be divided into an upper and a lower division, separated by shales and sandstones. The lower division probably has an average thickness of from 60 to 80 feet, and it is generally composed of alternating bands | Lambert basin of Fayette County. of limestone and calcareous shale. In places there are beds of solid limestone 10 or 12 feet in thickness, but such occurrences are rare. The limeexposed to view.

Masontown and Uniontown.

highest hills. That which remains has shales and imestones a maximum thickness of about 1100 waynesburg coal, comfeet. This thickness is reached in the southern part of Greene County, Pa., vanian series west of the border line of this territory.

The thickest section in the Uniontown and Masontown quadrangles is in the Lambert syncline, where about 400 feet of the Dunkard formation are exposed above the Waynesburg coal.

East of Monongahela River, exposures of the Dunkard formation are limited mainly to the synclinal troughs previously described. In the Uniontown basin the Waynesburg sandstone is poorly developed, but from the shaft section of the hills in the great bend of Monongahela River | the Leisenring No. 3 mine the measures above the | 80 feet. As the valley was originally occupied | ence of this dam. Waynesburg coal are found to have a thickness of 200 feet. Since the surrounding hills rise somewhat higher than the mouth of the shaft, layer of bowlders the succession of material varied the total thickness remaining in this trough is not from time to time with no apparent regularity. easy. The river does not cut deep enough to far from 300 feet. In the Lambert syncline, in Redstone and German townships, occurs the greatest thickness of the Dunkard formation known in these quadrangles. According to the section shown in the Lambert shaft there are 243 feet of material were brought in. Large bowlders were deposits of gravel that were brought down durthese rocks above the Waynesburg coal. This, of the shaft, will probably give a total of about 400 feet.

In Luzerne Township, west of this syncline, the ness at any point.

composed of rocks of this formation. They are cut through in many places by streams, and other points, but no extensive deposits were noted. of the Mississippi Valley. toward the south the rise of the strata carries the | At Carmichaels a log of wood is reported to have Waynesburg coal so high in the hills that only a been taken from the clay at a depth of 40 feet this first ice invasion must have been very great, small part of the Dunkard formation remains. from the surface. The thickest section in Greene County is at Turkey Knob, where about 300 feet of the measures are exposed.

different from that of the Monongahela formation. Limestones are not so abundant, but they donment. The rock floor of this channel has an not only abandoned its original channel, but its are scattered at intervals throughout the forma altitude of about 920 feet above sea level. Clay second position was vacated, leaving three parallel stone, which, together with the coarse overlying | tion. A number of coal beds are known in the | and sand fill the valley to a depth of 60 or 70 | channels, with high land between. All of these Waynesburg sandstone, preserve it from very Dunkard formation, but none of them reach the feet, and the gravel and fine silt extend up the channels, except that occupied by the stream at

formation is the Waynesburg sandstone, which upper end of the valley, near Hatfields Ferry, to to a gentle slope. This indicates a longer period of certainty. It is usually very coarse and some removed by Little Whiteley Creek. About 1½ terminated by a regional uplift which permitted ing "Mineral resources." This coal is usually times conglomeratic, but the pebbles are always miles below Carmichaels the valley filling stops the streams to cut their present gorges from 100 small and not particularly prominent. It is gen- abruptly, and below that the remaining portion to 140 feet below their abandoned channels. Subcliffs along the ravines and river bluffs.

mation. As seen in natural outcrop it appears remaining upon the broad platform that exists on consequently that epoch is not recorded by local to be a large and valuable bed, but it is so broken | this side of the creek. The abrupt termination | changes in the course of Monongahela River. From 40 to 50 feet above the coal bed occurs a | the barrier that ponded the stream and forced it | have flood plains of varying width along their series of shales and sandstones in which the latter | to seek a new outlet along its present course. predominate. These are rather prominent in This barrier has disappeared, leaving no trace of enough to allow of extensive deposits, Bottom lands of the Monon-Greene County, and form most of the high land its existence save the change in character of the but where these have reached their Youghioabout Turkey Knob and vicinity.

tion is the Upper Washington limestone. This served in the same condition as it was when occubed is generally present and easily identifiable in parts of Greene and Washington counties, but it is doubtful whether it can be recognized in the

As a rule the Waynesburg coal closely underlies the Waynesburg sandstone. Occasionally, however, the coal and sandstone are separated by stone beds are usually less than 2 feet thick, but | lenses of shale which are crowded with impresthey are generally irregularly bedded and not sions of ferns and other plants that flourished in less have escaped detection. Since the rejuvenagood for quarrying purposes. The Great lime the Carboniferous swamps. These have been tion of the drainage of the region erosion has stone is particularly well developed in the north- described by Prof. I. C. White as having a Permian | been very active, and the soft material deposited | traces of their old broad valleys. west corner of the Masontown quadrangle, where aspect, and upon the strength of this evidence he in the narrow valleys has been largely removed, it is exposed in all of the ravines leading down to regards the Dunkard formation as of Permo-Car- or at least so cut away as to leave only small the river. It is generally present over the terri- | boniferous age. Recent studies of the fossil | areas remaining. tory west of Laurel Ridge wherever its horizon is | plants by David White lead to the provisional | Creek, along which they show in outcrop through | ton limestone was not identified east of Monon | rial filling it is generally coarse and well rounded. | land for agricultural purposes.

In the next synclinal trough to the west the out most of its course. The original thickness of gahela River the separation of the Permian was the formation is not known. Undoubtedly much | not attempted on the geologic maps of this folio.

PLEISTOCENE ROCKS.

was elevated above sea level, and since that time it has been continuously a River deposits in abandoned land area. Rock material has con-

stantly been removed from the surface throughout history, when local deposits were laid down in by an active stream the lowest materials are laminated clay; at other times fairly strong curwashed down and buried in this accumulation.

The material laid down at different points in of the last (Wisconsin) ice invasion. the valleys is generally of similar composition, pottery purposes. Similar clays were seen at

considered as a type, since it is one of the most The composition of this formation is not very the distribution of the sediments affords positive situated on Monongahela River about 12 miles evidence of the conditions which led to its aban- north of this territory. At this point the river sides of the valley to a height of 160 feet above present, are broadened to a considerable extent and One of the most important members of the its rocky floor. This condition prevails from the the hills bounding them on both sides are reduced occurs at its base. This bed is fairly persistent, about 2 miles below Carmichaels, except that near time than is usually attributed to an ice invasion. but it can not be depended upon with absolute | the former locality the filling has been largely material that is now found in the valley. That best development they are of mappable their tributaries One of the best horizon markers in the forma | the channel below the site of this old dam is pre | proportions and are indicated on the pied by the active stream is proof that no ponding occurred below this point subsequent to the for- this region is that the flood plains of the large mation of the dam.

During the existence of these ice dams the river the tributary streams, and deposition undoubtedly occurred. Some of these deposits have been recognized and mapped, but many of them doubt-actively engaged in deepening its channel. This

conclusion that the beds below the Upper Wash- Sitka, near its junction with Youghiogheny River,

No other examples of drainage modifications occur in this territory, but at Ohiopyle, just east of the eastern margin of the quadrangle, Youghiogheny River formerly flowed across the narrow Carmichael clay.—After the deposition of the neck of the peninsula on the line now occupied highest rocks of Carboniferous age this region by the Baltimore and Ohio Railroad. In this case the stream abandoned a direct course, not over a quarter of a mile in length, and chose a circuitous route around the bend, about 2 miles long, to reach the same point. Its former course this long period of time, and no deposition took is marked by a deposit of rounded bowlders and place except during the latest period of geologic sand of about the same degree of coarseness as the material transported by the stream to-day. the abandoned channels of Monongahela River. This change of drainage is very peculiar and These channels were obstructed, and in the apparently can be explained only on the hypotheponded water back of the obstruction, clay, sand, sis of a local dam across the neck of the peninsula. and gravel were deposited to depths of 60 to There is, however, no direct evidence of the exist-

The age of these valley fillings may be deteralways coarse and well rounded. Above this mined approximately by comparing them with similar features on Allegheny River. Allegheny River is not marked generally by abandoned At times the water appears to have been still, channels, but its valley is characterized by welland in it was laid down exceedingly fine and developed rock terraces which merge with the abandoned channels of Monongahela River at rents seem to have prevailed, and sand and coarse Pittsburg. Upon these rock shelves occur great carried in and dropped in the midst of fine depos- ing an early (Kansan?) ice invasion. Since these added to the height of the hills above the mouth its, and trees and other vegetable matter were deposits were laid down the modern gorge has been cut, and it has been partially filled by gravel

Since the sequence of events has been approxiremaining portion of the Dunkard formation is but in places there are local deposits that differ mately the same for both streams, the epoch durthin, probably not exceeding 150 feet in thick- from the ordinary filling. About a mile and a ing which the old channels of Monongahela River half southeast of New Geneva there is a deposit were abandoned and new ones cut apparently In Greene County most of the high land is of very fine white clay which has been used for marks the first great ice invasion in the East, and this probably corresponds with the Kansan stage

> The duration of arctic conditions at the time of for it permitted the stream to cut a number of The abandoned channel at Carmichaels may be | new channels and broaden them to an appreciable extent. This is well illustrated by some abanstriking examples in the region, and also since doned channels back of Bellevernon, which is

The Kansan (?) invasion appears to have been erally massive, and frequently shows in a line of of the rock floor on the east side of Muddy Run sequently the Wisconsin ice sheet gave to the is covered by only a thin coating of river gravel. region a cold climate, but either the cold was not The most important coal bed, the Washington, It seems certain that this part was never silted up, so severe as before or the streams were too deeply occurs about 140 feet above the base of the for- for if it had been so buried there would be traces intrenched to be turned aside by ice jams, and

> Alluvium.—Most of the streams of this region valleys. The valleys are not broad geologic sheet.

The most peculiar feature of the drainage of creeks are better developed than those of Monongahela River. This may be explained by the fact water must repeatedly have flooded the valleys of | that the wider flood plains of the tributaries survive from a cycle preceding the latest uplift, whereas the river is in a new cycle and is still change has affected the lower courses of the major tributaries, but the upper courses still retain

The small streams flowing down the western slope of Laurel Ridge have carried immense quantities of sand and gravel down to the foot of the Dunbar Creek has an abandoned channel at mountain, where it is spread out in broad alluvial fans that conceal most of the underlying forma-Dunkard formation.—All of the rocks lying | ington limestone are certainly of Carboniferous | which is similar to the larger valleys of Monon- | tions. No attempt was made to map these above the Waynesburg coal have been grouped age, but those above that stratum may belong to gahela River. The stream that occupied it was a accumulations, but they are of considerable size into one formation and named from Dunkard | the Permian system. Since the Upper Washing- | rapid mountain torrent, and consequently the mate- | and have a marked effect upon the value of the

Youghiogheny River and its tributaries show even less alluvial land than the other streams of this region. In its passage through Laurel Ridge the river is still actively engaged in cutting the solid rock in the bottom of its channel, and such flood plains as it has built are of very limited extent and are composed of coarse material. They are eroded and redeposited at every period of high water. After leaving the gorge through the mountain the stream has graded its channel and has built moderate flood plains along much of its course. The upper end of this flood plain shows in the northern part of the Uniontown quadrangle, but it does not extend up the river beyond the waterworks in South Connellsville.

MINERAL RESOURCES.

COAL.

Scope of the discussion.—In undertaking the present geologic survey of a region so well known as southwestern Pennsylvania, it was considered unnecessary to duplicate work previously done, except in so far as to test by modern methods the results obtained. The aim of the present workers is to devote most of their time to those features which received least attention in the previous reports. Under this general plan the geologic structure or lay of the beds, the detailed distribution of various kinds of rocks, including coal, and the physiographic history of the region have been studied carefully in the field and recorded on the maps, so far as was practicable. Detailed sections of coal beds and some other facts have been taken largely from the previous reports, which abound in such information. Special acknowledgment is due to Professor Stevenson for the data thus obtained.

resource of the Uniontown and Masontown quadrangles. All of the rocks occurring above the Mauch Chunk red shale are coal bearing, but the beds are much thicker and more abundant in certain parts of the series than in others. Formerly it was supposed that coal was limited to the rocks overlying the Pottsville formation, and the term Coal Measures was applied to them in contradistinction to the supposed barren strata below. Later this was found to be incorrect, but | Recently the coal has been opened on the the term still clings in geologic literature. The summit of Laurel Ridge east of Percy, but the face of vania is shown in fig. 28, Illustration sheet.

MOUNTAINOUS REGION EAST OF UNIONTOWN SYNCLINE.

Mercer coal.—In these quadrangles the Pottsville is the two benches of sandstone there is usually

a thin bed, the Mercer coal, that locally attains workable proportions. Along Youghioulocally attains along Youghioulocall gheny River, where it is best exposed, this

coal is extremely irregular, ranging from a few inches to 2 feet in thickness.

So far as known it reaches its best development near made. the Wharton Furnace on Chaney Run. It was formerly used in the old furnace, but the poor quality of coke produced from it caused the At Wharton furnace.

mines to be abandoned long ago, and now it is difficult to obtain exposures which show its thickness and character. At an opening above the mouth of rangle, in connection with iron-ore deposits ridge west Braddock Run the coal shows a thickness of 4 feet, hence it seems probable that along the east face of the abandoned long before the Second Geological Survey of Chestnut-Laurel ridge in the vicinity of the National | the State was organized, but the section of the coal bed Pike this coal, although not adapted to furnace use, may (sec. 2, fig. 3) is reported to be as follows: have considerable value for general fuel purposes. In other parts of the field it is too irregular in thickness to promise much for future development, but local basins may be found in which the coal is of workable thickness.

The correlation of this coal bed with the Mercer horizon of Beaver Valley is based upon fossil plants which were obtained in railroad cuts along Youghiogheny River. The fossils are not abundant, but, according to David White, they are sufficient to establish the identity of the two horizons.

Brookville-Clarion coal.—Throughout this territory a exposed. coal bed of considerable importance occurs in the Alleghenv formation within 30 feet of the top of the Pottsville sandstone. This was correlated by Professor tion of the Coolspring furnace east of Uniontown the Stevenson with the lowest coal bed of this formation in coal was opened in connection with the development of Allegheny Valley and named from it the Brookville a bed of iron ore. At this point the section (sec. 3, coal. Prof. I. C. White is of the opinion that the fig. 3) is as follows: Brookville bed is absent in the southern part of the State and that the coal bed mentioned above should be correlated with the Clarion, or the second coal bed above the Pottsville sandstone. Since the question can not be settled on stratigraphic evidence alone, it is deemed best, for the present, to refer the coal to the Brookville-Clarion horizon and trust that, in the future, fossil evidence will be obtained that will make a definite correlation possible.

The rocks in the lower part of the Allegheny formation are well exposed along Youghiogheny River in the vicinity of Ohiopyle, and the Brookville-

Clarion coal has been opened at a number Brookville-Clarion coal of places. It was formerly mined along the near Cucumber Run. river road between the mouths of Meadow

and Cucumber runs, but the mine was abandoned long ago and the coal is not now visible. According to report its thickness is about 2 feet 3 inches (sec. 1, fig. 3). It was also mined just below the forks of Cucumber Run,

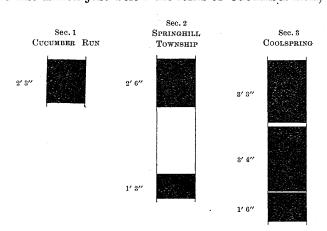


Fig. 3.—Sections of Brookville-Clarion coal.

but the mine has not been worked for a number of years and the coal is inaccessible.

On the opposite side of the river the coal bed at this horizon is reported to have a thickness of 4 feet, but since the openings have all been abandoned it is doubtful whether the coal is as thick as has been reported. The bloom of this bed may be seen in the Baltimore and Ohio Railroad cut just below Ohiopyle, but its thickness can not be determined. About 2 miles north of this point the coal outcrops on Bear Run, where it has a thekness of from 2 to 3 feet.

Throughout most of that part of Ligonier Valley which lies back from the river hills this horizon is below the surface and the coal is not exposed, but it shows in the valley of Big Sandy Creek below the southern line of the quadrangle. No measured section was obtained, but the coal is exposed in natural outcrop at a number of places in Coal is by far the most important mineral the roads, and the size of the bloom indicates that the bed is of workable proportions. Judging from a large bloom which was seen on the Chestnut-Laurel ridge south of this quadrangle, the coal at this horizon holds fairly constant and workable thickness across the southern line of the Uniontown quadrangle.

On the east side of the Chestnut-Laurel ridge indications of coal at this horizon were seen at a number of places. Near the old Wharton furnace it

has an apparent thickness of 2 feet and out-crops about 15 feet above the heavy con-nutle crops glomerate of the Pottsville formation. ridge, east

extent of the bituminous coal field of Pennsyl the bed is not visible. Very little coal was seen on the dump, hence it seems probable that the bed is thin and unimportant. At this point it is associated with very valuable fire clay, which will be noted later in the general description of the clays of the region. From this not an important coal-bearing formation, but between | point to the Dunbar furnace the coal has been opened in | mines have been abandoned. On Dunbar Creek the thickness of the coal is only 18 inches. In the Youghiogheny gap through the Chestnut-Laurel ridge it is not known, but the outcrops are so concealed in the gorge that it would not be apparent unless special search were

On the west side of the Chestnut-Laurel ridge the bed is thicker than in Ligonier Valley. In the early days of the iron industry the coal was extensively prospected near Cheat River, a few miles south of the boundary of the quadonthe Chest

which occur near its horizon. The pits were

Brookville-Clarion coal near Cheat River, Springhill Town-

shi	p.	v	
	•	Feet.	Inches.
Coal		2	6
Clay		3	0
Iron ore		0	6
${\bf Coal}\dots\dots\dots\dots\dots$		1	3
Total	,	7	3

For some distance north the débris from the mountain completely covers this horizon and the coal is not

In North Union Township the Brookville-Clarion coal reaches its maximum development. During the opera-

Brookville-Clarion coal near Coolspring, east of Uniontown.

	Feet.	Inches.
Clay shale.		
Coal	3	3
Clay	0	3
Coal	3	4
Clay	0	1
Coal	1	6
* ,		
Total	8	5

development, for it is reported that in openings a short | and the coal inaccessible. On the headdistance away the shale partings show a greatly increased thickness without a corresponding increase in the total thickness of the bed. The coal is said to make a good fuel, and it may be utilized when the more regular beds are exhausted.

Kittanning coal group.—There is considerable diversity of opinion regarding the classification of the coal beds of the Allegheny formation in the southern

part of the State. In the Cucumber Run The type secsection, which may be regarded as the type, and which was published by Professor

Stevenson in report KKK of the Second Geological Survey of Pennsylvania, there are six coal beds, as shown in fig. 2. Professor Stevenson called the coal, No. 15 in his report, the Lower Freeport, although it occurs at thickness which he classes as Lower Kittanning. the abnormally great distance of 95 feet below the Upper Freeport horizon. He recognized the existence of the small coal bed No. 10, but he did not think it worthy of notice, although it is more nearly at the horizon of the Lower Freeport coal than is No. 15, and is apparently in the series is a coal having a thickness of 3 feet 6 identical with a small coal bed on Meadow Run which he called Lower Freeport.

In publishing this section (Bull. U. S. Geol. Survey No. 65, 1891, p. 116) Prof. I. C. White called No. 23 Lower Kittanning, No. 20 Middle Kittanning, and No. 15 Upper Kittanning. To No. 10 he applied the name Lower Freeport coal, but in the case of this bed as well as the Upper Kittanning he signified uncertainty regarding the identifications by inserting question marks after the names. In the present work the classification made by Professor White is adopted as better expressing the facts and also being in closer agreement with the type section of the Allegheny field than that proposed by but the bed is reported as having a total thickness of 5 Professor Stevenson.

On the road leading north from the mouth of Cucumber Run, on which the type section was measured the thickness of the Upper Kittanning coal could not be definitely determined, but from openings in the neighborhood its thickness is seen to range from 4 to 7 feet. In the same section the Middle Kittanning appears to have a thickness of about 2 feet, while the Lower Kittanning shows a very small bloom by the roadside.

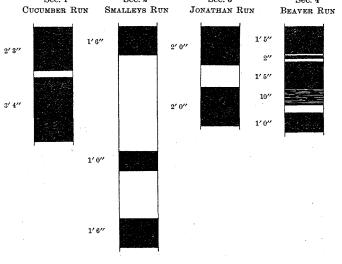
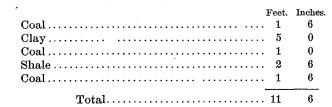


Fig. 4.—Sections of Upper Kittanning coal.


The thickness of the Upper Kittanning coal is shown many places, but presumably it is thin, since all of the | in the following section, which was measured at the mine of Mr. R. Tharp, in the vicinity of Cucumber Run $(\mathbf{sec.}\ 1,\ \mathbf{fig.}\ 4)$:

Unnan Kittanning and in minimital of Calcumbar Palm

Opper Ku	ianning coai i	n vicinity of Co	icamoer	Lun.
			Fee	t. Inches.
$\operatorname{Coal}\ldots$			2	3
Clay			0	4
	Total		5	11

At this point the bed is reported to be nearly 7 feet thick, but this could not be verified. The coal is extremely variable, as shown by comparison with the following section, which was obtained from an opening on Smalleys Run (sec. 2, fig. 4):

Upper Kittanning coal on Smalleys Run.

Toward the north the total thickness of the bed is not so great as on Smalleys Run, but the proportion of coal is greater, as shown by the following section from Jonathan Run (sec. 3, fig. 4):

Upper Kittanning coal on Jonathan Run.

Coal...... 2 Clay..... 1 Total..... 5

In this valley the Middle Kittanning reaches workable proportions. According to report it is 3 feet in thickness in an old opening 65 feet below the outcrop of the Upper Kittaning bed. It also shows at the road crosscould not be determined.

This section probably represents this bed in its best | done so long ago that the openings were generally closed waters of Haney Run two such old prospect pits were visible which appear to be located

on the upper two coals of this group. On Meadow Run the Upper and Middle Kittanning beds are exposed in a number of places. In a ravine on the east side of the run below the mouth of

Beaver Run Professor Stevenson measured a section which extends from the Upper Freeport coal down for a distance of 135 feet.

Twenty-nine feet below the Upper Freeport horizon is a small coal which presumably is identical with the small unnamed coal in his section on Cucumber Run, and which is here called the Lower Freeport. Eighty-five feet below the Upper Freeport horizon is a coal 5 feet in although he figures it as lying directly below the Freeport sandstone, and undoubtedly corresponding with the heavy coal in the middle of the Cucumber Run section which he calls Lower Freeport. Forty-five feet lower inches, which he designates Clarion, but which belongs somewhere in the Kittanning group, presumably corresponding to the Middle Kittanning coal bed.

It does not seem probable that the lower members of the Allegheny formation come to light on Meadow Creek or on the lower part of Beaver Run, although Professor Stevenson identified a massive sandstone as the uppermost bed of the Pottsville. Presumably because of this identification he called the lowermost exposed coal the Clarion bed. On Beaver Run the Upper Kittanning coal has been mined about a quarter of a mile above Meadow Run. Only 4 feet of coal is now visible, feet 11 inches. The exposure a short distance farther up the ravine, which Professor Stevenson regarded as belonging to the Clarion coal bed, is presumably Upper Kittanning, although it shows a much more broken section than farther down the stream. The section of the bed at this point is as follows (sec. 4, fig. 4):

Upper Kittanning (?) coal on Beaver Run above Meadow

		inches.
Coal	1	5
Clay	0	1
Coal	0	2
Clay	0	2
Coal	1	5
Bone	0	10
Clay	0	0-10
Coal	1	0
Total (average)	5	6

On Beaver Run at the crossing of the National Pike a coal supposed to be at the horizon of the Middle Kittan

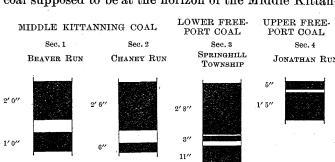


Fig. 5.—Sections of Middle Kittanning, Lower Freeport, and Upper Freeport coals.

ning, has been mined for local use. The section in the mine is as follows (sec. 1, fig. 5):

Middle Kittanning coal on Beaver Run at National Pike crossing.

,	Foot	Inches
Coal		
Shale	. 0	8
Coal	. 1	0
Total	. 3	8

South of the National Pike the coal beds of this group soon pass beneath the surface, and they were not seen again in this quarter of the quadrangle. Owing to the northwestward dip of the strata, the Kittanning coals pass below water level on Meadow Run a short distance above the mouth of Beaver Run, and only the coals lying higher in the series outcrop on the headwaters of the stream.

On Chaney Run the Kittanning coal beds were well prospected during the time that the Wharton furnace was in operation. According to Professor Stevenson the Lower Kittanning coal was once mined below the furnace pits. At the entrance of the mine the coal showed a thickness of 6 feet, but under cover it averaged only about 4 feet. Thirty feet below this mine another coal was opened which furnished the following section (sec. 2,

Middle Kittanning coal on Chaney Run.

	Feet.	Inches.
Coal	. 2	6.
Parting	. 0	6-10
Coal	. 0	6
Total	3	6-10

It is probable that these outcrops have been incorrectly identified, since no bed of this thickness is known below the Lower Kittanning coal. It seems more likely ing near the head of Jonathan Run, but its thickness | that the large bed in the vicinity of Wharton Furnace is the same as the large bed on Cucumber Run and conse-The outcrops of these coal beds were seen in a number | quently belongs to the Upper Kittanning horizon, and of places in this region, but the prospecting had been | that the small bed 30 feet lower is the Middle KittanFurnace, but the small coal bed 30 feet below is not visible.

The Kittanning coal beds outcrop on Laurel Run in many places, but no openings were found at which their thickness could be determined.

North of the National Pike the country is largely uncultivated and the coal beds have been only slightly prospected. The rocks are generally nearly horizontal and not in good position to show their outcropping edges. No exposures of the Kittanning coals are known in the region west of Stewart Township.

On the west side of the Chestnut-Laurel ridge the Kittanning coals are poorly exposed and little information could be gathered concerning them. The

great size of the Brookville-Clarion and Kittanning coal on west Upper Freeport beds makes the coals of the side of Chest nut Ridge. Kittanning group appear insignificant by

comparison. In South Connellsville the rocks of the Allegheny formation are partially exposed in the sidehill cutting along the Baltimore and Ohio Railroad. The large coal beds of the series were not seen in these exposures, but two small ones show in outcrop by the roadside. One of these seems to occupy the horizon of the Upper Kittanning coal. It is a thin bed, as shown by the following section:

Upper Kittanning (?) coal in South Connellsville.

•	Feet.	Inches
Sandstone roof.		
Coal	. 1	7
Shale	. 0	1
Coal		5
Total	2	1

Professor Stevenson states that somewhere in this vicinity a coal having a thickness of 4 feet is reported as occurring, but no definite location is given, except that it is below the horizon of the Upper Freeport coal. From this it seems probable that it belongs to the Kittanning group. He also says that a report is current of its presence in Springhill Township just .

south of the boundary line of the Mason- Kittanning town quadrangle. At this locality it is 65 Springhill Township. feet below the Upper Freeport coal and its

reported thickness varies from 3 to 4 feet. The Lower Freeport coal is also present; therefore it seems highly probable that the Kittanning coal is the uppermost one of the group bearing this name.

Lower Freeport coal. - Professor Stevenson, in his report on Fayette and Westmoreland counties, says that this is one of the most uncertain beds of the

series. During the present work this state-character of ment was substantiated in every respect the Lov except that in Ligonier Valley the coal

generally was found to be thin and worthless, whereas Professor Stevenson regarded it as varying from a few inches to 5 feet in thickness. In the opinion of the writer, this supposed variation is due to the misinterpretation of the section and the correlation of the Upper Kittanning coal with the small bed occurring at the Lower Freeport horizon.

In the Cucumber Run section the Lower Freeport has a thickness of only a few inches. On Meadow Run it is not known to exceed 1 foot in thickness at any point. In general, wherever this coal was found east of Laurel Ridge it holds the same characteristics, and presumably 2'8" is a worthless bed everywhere within this territory.

West of the Chestnut-Laurel ridge the coal is somewhat thicker, but even here it is not a promising bed. It shows in Connellsville, Dunbar, and Springhill townships of Fayette County. The following section (sec. 3, fig. 5) was obtained at an opening in the last-mentioned township:

Lower Freeport coal in Springhill Township.

		Feet.	Inche
Drab shale roof.			
Coal (high sulphur and ash)		2	- 8
Clay		0	1
Coal		0	3
Clay	.	0	3
Coal		0	11
Fire clay	.		
Total		4	2

The coal from the uppermost bench contains considerable sulphur and almost too much ash to be of any value. The outcrop described is located south of the boundary line of the Masontown quadrangle, and the bed occurs within 32 feet of the Upper Freeport coal.

Upper Freeport coal.—This coal bed is one of the most important members of the Allegheny formation in western Pennsylvania. It is generally persistent and thick, although frequently its great size is attained by the increased thickness of the shale partings which almost always divide it. In the Uniontown and Masontown quadrangles this coal bed is believed to be present wherever its horizon remains uneroded.

In Ligonier Valley it occurs throughout all of the deeper portion of the basin, extending from near the eastern line of Wharton Township to the end of Laurel Ridge, and in a north-valley. east-southwest direction reaching beyond the limits of the quadrangle.

On the Uniontown Economic Geology sheet the "lay" of the Upper Freeport coal in this valley has been shown | survey, the horizon of the Upper Freeport coal outcrops, | tion (sec. 4, fig. 6), which, according to the same | very great value. The aggregate of the bed is large, but Masontown and Uniontown.

ning. The Upper Kittanning coal shows a thickness of | by means of contour lines representing the roof of the | as previously mentioned, below the crest of the hill | authority, was measured in the same mine 20 yards 4 feet on the main head branch of Big Sandy Creek, near | coal bed. These contours represent only the broad featthe road from Fayette Springs (Chalk Hill) to Wharton | ures of the geologic structure, not having been determined with sufficient accuracy to show the minor details which undoubtedly are present in the region.

In the Cucumber Run section the Upper Freeport coal is poorly exposed, but it may be seen in adjacent localities, attaining a maximum thickness of 3

feet 6 inches. Generally in this region it Upper Freeappears to be too thin to mine under present conditions. The Freeport limestone is not exposed in the road, but its thickness and position may

be obtained in a near-by quarry. An opening was seen on the Upper Freeport coal in one of the small head branches of Jonathan Run, near Upper Freethe schoolhouse which is situated on the Jonathan

road from Tharp Knob to Fayette Springs, and about a mile and a quarter west of the former locality. The coal was imperfectly exposed at this opening, feet. It also shows as a large bloom in the same road of the supposed Upper Freeport coal bed which Pronear the crossing of the Wharton-Stewart township line. Its thickness in this locality is not known, but judging from the showing in the road, the coal probably maintains a thickness of about 3 feet throughout this terri-

Near the mouth of Jonathan Run the coal has been opened at a number of places on the river hills, with a thickness of about 3 feet. The Freeport limestone, which normally occurs a few feet below the Upper Freeport coal, is also well exposed in this region, having been somewhat extensively quarried and burned with the coal obtained from the Upper Freeport mines. An exposure of the upper Freeport coal in this general locality gives the following section (sec 4, fig. 5):

Upper Freeport coal near mouth of Jonathan Run.

On Meadow Run, which enters the river at the southern point of the great bend, on the eastern margin of

the quadrangle, the Upper Freeport coal is well exposed from the river hills to beyond Upper Freethe National Pike. The first opening seen is at the junction of the Farmington and

Beaver Run roads. The details of the section could not be obtained from this opening, but the coal appears to have a thickness of from 4 feet 6 inches to 5 feet. On the east side of Meadow Run the coal ranges from 3 to 5 feet in thickness, and the Freeport limestone, with a thickness of 6 feet, outcrops at a distance of about 3 feet below the coal bed. The Upper Freeport coal approaches close to water level about 2 miles below the National Pike. The coal does not show at the crossing of the National Pike, consequently it passes below the bottom of the ravine somewhere between the forks of the creek north of Farmington and the pike. On the geologic map it is represented as disappearing near the forks of | has a thickness of about 9 feet in this localthe creek, but it seems more probable that it should extend nearly to the pike before it passes below

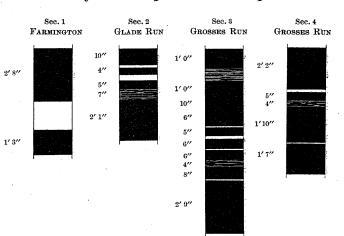


Fig. 6.—Sections of Upper Freeport coal.

water level, for it was formerly stripped from the bed of vicinity of the first road crossing above the pike the coal has been opened in a number of places, but it is now generally inaccessible. Professor Stevenson, however, gives the following section (sec. 1, fig. 6), as measured at one of these mines:

Upper Freeport coal near Farmington.

	•	Inches.
	Coal	30 to 36
•	Clay	18
	Coal	

The coal is reported as fairly good in quality, but it can not compete with the Pittsburg coal, even though the latter has to be hauled across the Chestnut-Laurel ridge from the vicinity of Uniontown.

East of Farmington the rocks rise rapidly toward the Laurel Hill axis, and the Upper Freeport coal is carried close to the top of the hill near the eastern line of Wharton Township. Beyond this line the coal has been eroded from the Hill anti-National Pike over the broad arch of the anticline. There is a difference of opinion between Professor Stevenson and the present writer regarding the identification and extent of the coal beds in this region. According to the observations made during the present

overlying Beaver Run. This determination is not based | from the opening: upon an observed outcrop of the coal, this being concealed, but it depends upon the outcrop of the heavy beds of the Pottsville sandstone about a mile and a half north of the pike in the valley of Beaver Run. This seems to be undoubtedly Pottsville, and if such is the case the position of the Upper Freeport coal is fairly definitely fixed on the line of the National Pike. Professor Stevenson regards the coal which shows near the point where the National Pike crosses the head of Beaver Run as the Philson coal bed, which lies about 65 feet above the Upper Freeport horizon, and he also states that the Upper Freeport coal outcrops a mile and three-quarters farther east along the pike. From observations made during this survey it seems certain that the coal which Professor Stevenson classes as the Philson coal belongs to the Kittanning group, and that the Upper Freeport horizon is entirely above the pike but appeared to have a thickness ranging from 3 to 4 in this portion of Henry Clay Township. The sections fessor Stevenson measured in the headwaters of Beaver Run presumably do not belong to that horizon, but are the sections of a coal lower in the series—just what coal bed it is impossible to determine, for the description of the localities where it outcrops is not sufficiently defined to fix its horizon

> The Upper Freeport coal is not well exposed in the southeast corner of the Uniontown quadrangle; the country is generally wooded and little prospecting has been done. A large coal bloom
>
> Upper Freeport coal in the souththat is supposed to occur at this horizon was seen in the road near the southern town quadrangle and about a mile.

> margin of the quadrangle and about a mile west of the Henry Clay Township line. Judging from the size of the bloom, the coal probably maintains a fairly good thickness throughout this region.

> The Upper Freeport coal horizon is supposed to extend into the peculiar amphitheater-like valley at the head of Stony Run, but the country is so densely wooded that it was impossible to discover any outcrop. It is doubtless present, for south of the line of the quadrangle it has about the maximum thickness that it attains in Ligonier Valley in this quadrangle. At a point on Glade Run the following section (sec. 2, fig. 6) was obtained:

> > Upper Freeport coal on Glade Run.

		. Inches
$\operatorname{Coal} \ldots \ldots \ldots \ldots$		10
Shale	0	2
Coal	0	. 4
Shale	0	4
$\operatorname{Coal} \ldots \ldots \ldots \ldots \ldots$	0	5
Bone	0	7
Coal	2	1
Total	4	9

The Upper Freeport coal was once opened about onehalf mile below Shinbone Alley, on Little Sandy Creek, with a reported total thick. Upper Freeness of 9 feet. The Freeport limestone also Little Sandy ity, and when burned yields excellent lime.

On Big Sandy Creek the Upper Freeport coal shows in outcrop from near Elliottsville to beyond the southern margin of the quadrangle. It also shows for one-half mile on Stony Run; but above Upper Free-Elliottsville a shallow syncline carries the Big Sandy

coal below the bottom of the valley of Big Sandy Creek, and it does not reappear until near the head of the creek. On Stony Run the coal occurs immediately below the massive Mahoning sandstone, and the bed has a thickness of from 5 to 6 feet. It is very promising in this region, but a comparison of the various sections shows that the coal is extremely variable in section, and careful prospecting should be done

before developments are undertaken. The Upper Freeport coal outcrops along the Chestnut-Laurel ridge from the southern margin of the quadrangle to beyond the National Pike. Just below the mouth of Piney Run it has a total thickness of 5 feet, but the the creek a little distance south of the pike. In the | details of its structure are not known. Professor Stevenson gives some sections of the Upper Freeport coal which were presumably measured in this region. He states that on Grosses Run near the Clay pike the following section (sec. 3, fig. 6) was obtained at the mouth of a mine belonging to Mr. H. Seaton:

Upper Freeport coal on Grosses Run, at mouth of mine.

	Feet.	Inches
Shale roof.		
Coal	. 1	0
Carbonaceous shale	. 0	8
Coal	. 1	0
Coal	. 0	10
Coal	. 0	6
Clay	. 0	1
Coal	. 0	5
Clay	. 0	2
Coal	. 0	6
Clay	. 0	1
Coal		6
Bony coal	. 0	4
Clay	. 0	$0-\frac{1}{2}$
Coal		$\tilde{8}$
Clay	. 0	1
Coal	. 2	. 9
Total	9	77_1

The variability of the coal is shown by the next sec-

Upper Freeport coal on Grosses Run, in mine, 20 yards from

opoliting.		
	Feet.	Inches.
Coal	2	2
Clay	0	2
Coal	0	5
Bony coal	0	4
Coal	1	10
Clay	0	1
Coal	1	7
Total	6	7 .

According to Professor Stevenson, the Upper Freeport coal occurs in the hills at the junction of Chaney Run with Big Sandy Creek. This is hardly possible, since the synclinal structure in this region carries the coal considerably below water level, and when it emerges toward the head of the creeks it is with a rather strong easterly dip, which if projected to the west would carry it high above the summit of the Chestnut-Laurel ridge. On Braddock Run the coal is badly broken by partings, the details of which are not known, but in a rough way the section is as follows:

Upper Freeport coal on Braddock Run.

	Feet.
Coal with shale partings	4
Coal	4
Total	-8

North of the National Pike coal openings occur near the Wiggins post-office. The coal could not be seen, but it undoubtedly belongs to the horizon of the Upper Freeport bed. About three-port coal n Wiggins. quarters of a mile northeast of the post-

office a new mine has recently been opened on the hillside. This was not visited, but presumably the bed has a total thickness of 4 or 5 feet, and it is probably the Upper Freeport coal.

On the west side of the Chestnut-Laurel ridge the Upper Freeport coal is exposed in a continuous line of outcrop across the quadrangle. In a gen-

eral way it is thicker and more broken by Upper Freeshale partings at the south, but its local variations are so great that it can hardly be nut-Laurel regarded as of much economic importance.

During the existence of the old iron furnaces this bed was prospected extensively, but at present most of the mines are abandoned and it is now all but impossible to obtain a detailed section of the coal. During the progress of the previous survey many of these mines were accessible and a number of detailed sections were

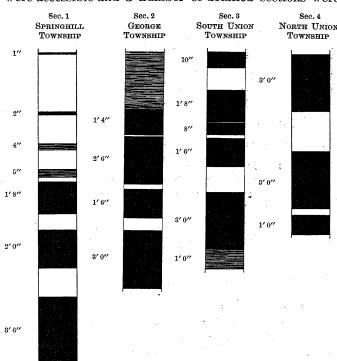


Fig. 7.—Section of Upper Freeport coal.

measured. The following section (sec. 1, fig. 7) was obtained at Jones's bank in Springhill Township:

Upper Freeport coal at Jones's bank in Springhill Township.

	Feet.	Inch
Sandstone, Mahoning.		
Shale, 15 feet.		
Coal	0	. 1
Clay shale	3	0
Slaty coal	. 0	. 2
Clay	. 1	6
Coaly shale		• 4
Clay	1	0
Carbonaceous shale		5
Clay	. 0	3
Coal		8
Dark clay	. 0	10
Prismatic coal		0
Hard clay	. 1	6
Coal	3	6
Fire clay, 6 feet.		
Freeport limestone.	٠	
Total	16	3

In George Township the Freeport coal shows a somewhat reduced aggregate thickness, but the details of the section are much the same as in Springhill Township, The following section (sec. 2, fig. 7) was measured at an opening on Black Creek (probably the same as Lowe Hollow) about a mile south of Fairchance:

The coal of the lowest bench is reported to be of good quality, but the bench is thin and consequently of not

the Pittsburg coal.

Upper Freeport coal on Black Creek south of Fairchance, George Township.

	Feet.	Inche
Shale with streaks of coal	. 3	0
Coal	. 1	4
Clay	. 0	1
Coal	. 2	6
Clay	. 0	3
Coal	. 1	6
Clay	. 0	8
Coal	. 3	0
Total	. 12	4

In South Union Township the coal bed shows a still further decrease in thickness, but it maintains the character shown in all the sections so far given on the west side of the ridge. The following section (sec. 3, fig. 7) was obtained from an opening on the main head fork of Redstone Creek: the exact location of this mine is difficult to determine, but it probably lay west of Pine Knob.

Upper Freeport coal on main head fork of Redstone Creek, South Union Township

South Chief Township.		
	Feet.	Inche
Coal	. 0	10
Clay	. 1	2
Coal	. 1	8
Clay	. 0	$0 - \frac{1}{2}$
Coal	. 0	8
Clay	. 0	2
Coal	. 1	6
Clay	. 1	4
Coal	. 3	0
Coal and slate	. 1	0
Total	. 11	4

In North Union Township the Upper Freeport bed was formerly exposed at a number of places. The following section (sec. 4, fig. 7) is from an opening somewhere in the neighborhood of Hopwood:

Upper Freeport coal near Hopwood, North Union Township.

	Feet.	Inches.
Coal	3	0
Clay		2-48
Coal	3	0
Hard clay	0	4
Coal, worked	1	0
Total	. to 11	ft. 4 in.

As this is given on the report of another party it may not be reliable, but evidently the coal decreases in total thickness toward the north, and also its individual benches become thinner.

On Cove Run back of the old Lemont furnace the Upper Freeport was opened at a number of places years ago while the furnaces were in a flourishing condition. Its visible thickness is 3 feet 3 inches in three benches, 21, 12, and 5 inches in thickness, but the coal is not well exposed and its total thickness may be somewhat greater. A partial exposure at the mouth of Chestnut Hollow

Upper Freeport coal on Cove Run at mouth of Chestnut Hollow.

		Inches
Coal	1	3
Clay	0	2
Coal	1	6
Total	2	a

This coal was formerly worked on Dunbar Creek near the site of the present Dunbar furnace, but the coal is of

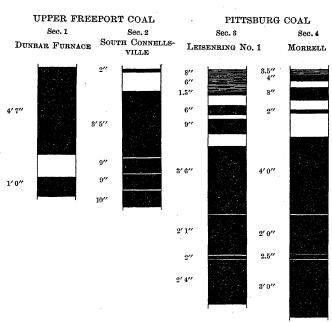


Fig. 8.—Sections of Upper Freeport and Pittsburg coals.

such inferior quality that the mine was abandoned years ago. The following is the section (sec. 1, fig. 8) at this place:

Upper Freeport coal on Dunbar Creek near the Dunbar

furnace.		
·	Feet.	Inches.
Coal	. 4	7
Clay	. 1	2
Coal	. 1	0
Total	. 6.	9

North of Youghiogheny River the Upper Freeport coal has been opened at a number of places on this line of outcrop. At one point in South Connellsville it shows the following section (sec. 2, fig. 8).

it can hardly compare with some of the beds lying above | burg horizon, but this is manifestly incorrect, and it | Cucumber Run. In Tharp Knob the Hager coal has | gle. The depth at this point is only 370 feet to the base clearly belongs to the Upper Freeport horizon. It is probable that most of the operations on this bed north of the river have developed only the largest bench, since the size of the opening it seems as though an opening in Tramp Hollow shows a thickness of only the bed may have a thickness of 7 or 8 feet, but it is 3 feet 6 inches.

Upper Freeport coal in South Connellsville.

• '	Feet.	Inches.
Coal	. 0	2
Shale	. 1	0
Coal	. 3	5
Bone	. 0	1
Coal	. 0	9
Bone	. 0	. 1
Coal	. 0	9
Bone	. 0	1
Coal	. 0	10
Total	. 7	2

Altogether the Freeport bed on the west side of Laurel Ridge holds an immense quantity of coal, but it is so broken by partings that under present conditions it is of the smaller coal beds of the district are needed, the thicker benches of the Upper Freeport may be worked at a profit.

Farmington coal.—This coal is exposed on the National Pike at the little village of Farmington, from which it derives its name. In the report of Professor Stevenson on Fayette and Westmoreland counties it was correlated with the Philson coal that occurs about 135 feet above the Upper Freeport bed in Somerset County. In Fayette County the coal ranges from 40 to 90 feet above the Upper Freeport bed, and it does not seem at all certain that it corresponds with the Philson bed. For this reason the name previously used has been discarded, and the term Farmington, from a well-known locality in large areas in this part of the State. Fig. this region, has been adopted.

On the National Pike this bed probably does not exceed 2 feet in thickness, and it has not been developed in the immediate vicinity of the type local-

Farmington ity. One mile east of the village it shows coal alor for a short distance along the pike, where it was opened many years ago. but the entries

are closed and the coal is not visible at the present time. On Meadow Run north of the National Pike it seems to could not be determined at any point. Farther north it becomes more prominent, and on Jonathan Run it has a thickness of about 3 feet and is 70 feet above the Upper Freeport bed. Northeast of Youghiogheny River it field. The canoe-like structure extends holds about the same thickness and position for a considerable distance.

development than in the region just described. On largely eroded, leaving only an occasional patch here Stony Run it shows in outcrop in the vicin-

ity of the road from Farmington to Elliotts-ville. No good sections were obtained, but the National Pike. its reported thickness is 5 feet 10 inches.

with 5 or 6 inches of shale partings. On the northwestern side of Ligonier Valley, in the vicinity of Stone House, a coal that appears to occur at this horizon has been prospected in a number of places. It was seen on the head of Meadow Run about a mile east of Stone House, where the total thickness of the bed seemed to be about 4 feet, but the coal itself is not visible. In the valley of Dunbar Creek the Farmington coal appears to be thin and inconspicuous. It lies about 100 feet above the Upper Freeport coal, and does not exceed 2 feet in thickness. It also has been noted in North Union Township, but it is thin in this locality, not exceeding 18 inches. West of this locality it has not been noted. It the syncline, where it reaches a minimum altitude of may be present over a considerable territory, but if so it less than 550 feet. The deepest part of the basin lies is too thin to attract attention.

Hager coal.—In the vicinity of Farmington the higher hills are encircled by the outcrop of a coal bed which occurs about 180 feet above the Upper Freeport horizon. It is well exposed in Hager Hill, on the south side of the National Pike, and from this fact it is here desig-Somerset County, but the distance between these outcrops is so great that the correlation has little value, and it seems better to adopt a local name for this thin, though apparently persistent, coal bed. From an opening in Hager Hill the coal was found to have a thickness pits is located near the divide between Stony Run and Big Sandy Creek. It shows coal 2 feet in thickness overlying a thin bed of limestone. At an outcrop farther west, on the south side of the ridge, the following section was obtained:

Hager coal southwest of Hager Hill.

	Feet.
Shaly sandstone	 4
Coal	 3
Shale	 3
Limestone.	

other points south of the National Pike.

Presumably the land north of the pike is not high

been opened on the east side of the ridge, where 4 feet of coal is now visible. From in impossible to say whether this is all coal or whether the altitude of 1131 feet, while that of Leisenring No. 1 is bed is broken by heavy shale partings.

West of Laurel Ridge but little attention was given to the great Pittsburg beds and the other important coals of the Monongahela formation renders the thin beds | those of the Uniontown region. lying below them comparatively insignificant.

About a mile northeast of Haydentown an old coal mine was observed which appears to be at the horizon of the Hager coal. The coal itself is not visible, but it is reported to have a thickness of about 4 feet.

The coal which outcrops along Redstone Creek from Upper Middletown to Waltersburg, and which was mistaken by Professor Stevenson for the Upper Freeport coal, apparently belongs to the on Reds Creek. Hager horizon. The thickness of the coal little value. When the Pittsburg bed is exhausted and is 3 feet, and it has been developed to some extent for local purposes. This is the only locality at which the

COAL IN THE UNIONTOWN SYNCLINE.

Hager horizon is exposed west of the Chestnut-Laurel

Pittsburg coal.—The coal from this bed is so widely and favorably known as a first class steam, gas, and coking coal that it is not necessary here to give more than passing mention of its many excellent qualities and of its great value. It constitutes the greatest source of mineral wealth of southwestern Pennsylvania. Much of this coal bed, as originally formed, has been

removed by erosion, but it still underlies large areas in this part of the State. Fig.

General extent of the large areas in this part of the State. 29 shows its areal extent and also the loca-

tion of the Uniontown and Masontown quadrangles with reference to the coal fields. From this map it is seen that the western part of the Masontown quadrangle extends into the great field of Greene and Washington counties, while the Uniontown syncline is part of a long basin nearly isolated from the main body of the field.

At present the Pittsburg coal is the only bed worked on a commercial scale in these quadrangles, and by far be present, for its bloom was observed in a number of the larger part of the mining operations is confined to places, but it is generally thin and its exact section | the Uniontown syncline of the Connellsville basin. This

portion of the basin extends from a little north of Connellsville, on Youghioghenv River, southwest to the vicinity of Smithsouthward beyond the limits of this terri-

tory, but the canoe is very shallow south of Smithfield, and South of the National Pike the bed has a greater the Pittsburg coal is at such an altitude that it has been and there upon the summits of the highest hills.

From Smithfield to the northern boundary of the Uniontown quadrangle the outcrop of the Pittsburg coal is unbroken, and many mines are located on it. The coal of this basin is regarded as the type coking coal of this country, but even within short distances there are variations in character between the coal on the eastern and western sides of the trough. In the early days of coke production in this region, only the coal from the eastern side was regarded as good coking coal, but this has been nearly exhausted, and now there is no distinction made between the coke produced in the various parts of the basin. As shown on the Economic Geology sheets, the trough-like structure of the basin is extremely regular, the coal extending from the surface, at an altitude of 1000 to 1200 feet above sea level, to the axis of between Oliver and Monarch. From this central area the coal rises in all directions, gently along the axis and

steeply toward the sides of the trough. The first mines to be operated in this region were located on the southeast side of the syncline and were operated entirely from slopes driven down on the body nated the Hager coal. In Professor Stevenson's report of the coal. Many of these mines are still in operation, this bed was doubtfully identified with the Price coal of | but the smaller ones are exhausted and most of the coal along the southeastern rim of the syncline has been removed. A few slope mines have also been established on the western margin of the syncline and several shafts have been sunk near the center of the basin. The most southerly of these shaft mines is the Leith mine of the of about 3 feet. In the ridge south of this hill the coal H.C. Frick Coke Company. This is about a mile south has been extensively prospected. One of these prospect of Uniontown, and reaches the base of the Pittsburg coal at a depth of 303 feet. Recently the Continental Coke Company has sunk a shaft about the same distance southwest of Uniontown, which reaches the coal at a depth of about 270 feet. About a mile north of Uniontown the Oliver Steel Company has two shafts on opposite sides of Redstone Creek. On the west side of the creek the base of the coal was reached at a depth of 303 feet, and on the east side at a depth of 416 feet. At Bute the 2'0" Leisenring No. 2 air shaft shows a depth of 400 feet to the base of the Pittsburg coal, but the deepest shaft of the region is at Monarch, in the Leisenring No. 3 mine This coal bed doubtless outcrops in the higher hills in of the H. C. Frick Coke Company. This shaft shows a the center of the basin, but it was not observed at any depth of 548 feet to the base of the coal. The Juniata mine is near the edge of the basin, and the coal is reached at a depth of 227 feet. A short distance east of this enough to carry the Hager coal except in a few isolated | mine the Mayer shaft was sunk to a depth of 309 feet | knobs, but in the vicinity of Youghiogheny River the to the base of the coal. The Leisenring No. 1, of the Owing to the excellence of the coal of this bed and to | pitch of the syncline carries all of the measures lower, | H. C. Frick Coke Company, is nearly on the axis of the its coking qualities, it was referred by many to the Pitts- | and the upper coals appear in the high land north of | syncline and near the northern margin of the quadran-

of the coal, but the difference between this depth and that given for Leisenring No. 3 is not all due to the rise of the coal northeastward toward the point of the syncline. The mouth of the Leisenring No. 3 shaft is at an only 1002 feet above sea level. Beyond the northern boundary of the Uniontown quadrangle there are a numthe coals of the Conemaugh formation. The presence of | ber of shafts near the axis of the syncline, but the coal continues to rise, and none of the shafts are as deep as

In the northern part of these quadrangles the Fayette anticline carries the Pittsburg horizon so high that the coal has been eroded, but from near the

center of the territory to the West Virginia line the anticline is low and the coal still the Fayette anticline. remains in isolated patches on the summits

of the higher hills. In these isolated areas the coal is considerably damaged by weathering, so that, as a rule. the larger coal and coke companies do not care to operate upon them, but they are capable of furnishing a large amount of valuable fuel, and in a number of places they are being utilized at the present time.

The Pittsburg coal in the Uniontown syncline ranges from 8 to 11 feet in thickness, usually with only one small "bearing-in slate," about 18 inches

from the floor, so that except in the northern end of the basin the characteristic partings and benches of the other districts are largely unknown. Frequently thin binders

(one-quarter inch or less) separate the benches in the lower division. Its physical condition, also, is different in this basin from what it is in the main body of the coal to the west. It is genefally soft, and during the process of mining it breaks up into rather small particles, coming from the mine in the best possible form for thorough coking. Its typical analysis, as determined by Mr. A. S. McCreath, from mines on Youghioghenv River, is as follows:

Typical analysis of Pittsburg coal from mines on Youghiogheny River.

Water	Per cent. 1,260
Volatile matter	
Fixed carbon	
Sulphur	.784
Ash	8.233
Total	100,000

The average of a number of determinations made by the H. C. Frick Coke Company is as follows:

Average of several analyses of Pittsburg coal.

Water	Per cent. 1.130
Volatile matter	29.812
Fixed carbon	60.420
Sulphur	.689
Ash	7.949
Total	100 000

The character of the bed is shown by the following sections, which were measured at some of the most important mines in the basin:

Pittsburg coal at Leisenring No. 1.

(Sec. 3, fig. 8.)

	Feet.	Inches.	Feet.	Inches.
Roof division:				
Bone coal	. 0	8		
Slate	. 0	1/2		
Bone coal	. 0	6		
Coal	. 0	11		
Slate	. 0	$6\frac{1}{2}$		
Coal'	. 0	6		
Slate	. 0	$2\frac{1}{2}$		
Coal	. 0	9		
			. 3	4
Main clay parting	. •		0	8
Lower division:				
Coal	. 3	6		
Slate	. 0	5		
Coal	. 2	/ 1 ·		
Slate	. 0	3.		
Coal	. 0	2		
Slate	. 0	1/2		
Coal	2	4		
			Q	97

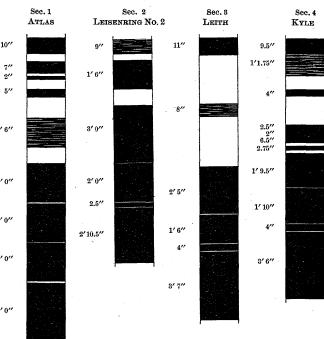


Fig. 9.—Sections of Pittsburg coal.

Pittsburg coal at Morrell mine. (Sec. 4, fig. 8.)

(Sec. 4, 11g. 6.)				
Roof division:	Feet.	Inches.	Eeet.	Inches.	
Bone coal	0	3^1_{2}			
- Coal	0	4			
Slate	0	4			
Coal	0	8			
Slate	0	6			
Coal	0	2			
			2	$3\frac{1}{2}$	
Main clay parting			1	3	
Lower division:					
Coal	4	0			
Bone	. 0	1			
Coal	2	0			
Slate	0	1/2			
Coal	0	$2\frac{1}{2}$			

Pittsburg coal at Atlas mine.

(Sec. 1, fig. 9.))			
	Feet.	Inches.	Feet.	Inche
Roof division:				
Coal	. 0	10		
Slate	. 0	5		
Coal	. 0	7		
Slate	. 0	2		
Coal		2		
Fire clay		6		
<u>-</u>		5		
Coal		-		
Slate		-1		
Bone coal	. 1	6	5	8
Main clay parting			0	10
Lower division:				
Coal	. 2	0		
Bone	. 0	1		
Coal	. 2	0		
Bone		1/4		
Coal		. 0		
O UNIZ ************************************		•		
Slate		1		
Coal	. ฮ	0	9	91
			ð	$2\frac{1}{4}$

The variation of the roof division of this coal is shown by the following section (sec. 2, fig. 9), from the Leisenring No. 2 mine:

Pittsburg coal at Leisenring No. 2 mine.

	Feet.	Inches.	Feet.	Inches.
Roof division:				
Bone coal	0	9		
Slate	0	4		
Coal	1	6		
			2	7
Main clay parting	• • •		0	10
Lower division:				
Coal	3	0		
Slate	0	14		
Coal	2	0		
Slate	0	$\frac{1}{2}$		
Coal	0	$2\frac{1}{2}$		
Slate	0	· 1		
Coal	2	$10\frac{1}{2}$		
Limestone				
			8	2

The Lemont mines show the roof division to be 3 feet 7 inches in thickness, main clay 2 inches, and the lower division 8 feet 11 inches, broken by thin partings into four benches of 3 feet 5 inches, 1 foot 7 inches, 6 inches, and 3 feet 3 inches. The roof division at the Leith mine contains very little coal, as shown by the following section (sec. 3, fig. 9):

Pittsburg coal at Leith mine.

	Feet.	Inches.	Feet.	Inch
Roof division:				
Coal	0	11		
Slate	2	6	•	
Bone coal	0	8		
Slate	1	8		
			5	9
Main clay parting	• •		Q	11
Lower division:				
Coal	2	5		
Slate	0	12		
Coal	1	6		
Slate	0	1/2		
Coal	0	4		
Slate	0	12		
Coal	3	7~		
Fire clay				
			צו	441

The extreme variability and broken character of the roof division is probably best illustrated by the section (sec. 4, fig. 9) from the Kyle mine, which is as follows:

Pittsburg coal at Kyle mine.

	Feet.	Inches.	Feet.	Inche
Roof division:				
Coal	0	$9\frac{1}{2}$		
Bone coal	1	13		
Slate	0	$8\frac{1}{2}$		
Coal	0	4		
Slate	1	6	-	
Coal	0	$2\frac{1}{2}$		
Coal	0	2	٠.	•
Coal	. 0 .	$6\frac{1}{2}$		
Slate	0	2		
Coal	0	$2\frac{3}{4}$		
			5	$9_{\frac{1}{2}}$
Main clay parting	• •		. 0.	$1\frac{3}{4}$
Lower division:				•
Coal	1	91		
Slate	0	1		
Coal	1	10		
Slate	0	1		
Coal	0	4	•	
Slate	. 0	1/2		
Coal	3	6		
Fire clay				

Masontown and Uniontown

about the same character and thickness as on the eastern side and near the center of the field. The following which have been sunk in this district afford thoroughly Crossroads is at the Redstone horizon, section shows the bed in its outcrop in Franklin Township:

Pittsburg coal in Franklin Township.

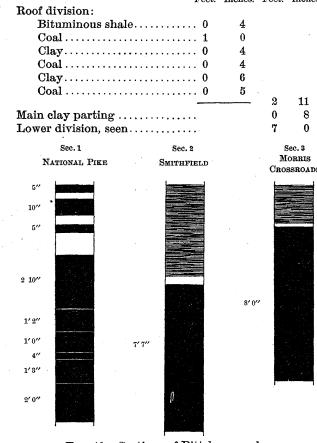


Fig. 10.—Sections of Pittsburg coal.

On the National Pike (sec. 1, fig. 10) west of Union town the roof division has a thickness of 2 feet 6 inches, main clay parting 1 foot 2 Pittsburg inches, and lower division 8 feet 6 inches, National National with six bands 2 feet 10 inches, 1 foot 2 inches, 1 foot, 4 inches, 1 foot 3 inches, and 2 feet in thickness.

The main body of the Pittsburg coal in the Uniontown syncline ends at Smithfield, where several small mines have been established. The bed section of the of the bed are irregular in their occurrence and someterritory. This is shown in the following

section (sec. 2, fig. 10) of the coal at one of Pittsburg the Smithfield mines: Roof division, 4 feet smithfield mines. 9 inches, main clay parting, 5 inches, lower division 7 feet 7 inches.

Pittsburg coal in the highest hills between George Creek No. 3 and also in the No. 2 shaft. But No. 2 and and the State line. A mine has been established at on the west side of the basin, at the Oliver Outcrop, and a number of country banks have been mines, the Redstone coal has a very small opened in the vicinity of Morris Crossroads. The following section (sec. 3, fig. 10) was measured at the latter

Pittsburg coal near Morris Crossroads.

	Feet.	Inches
Roof division	. 2	0
Main clay parting	. 0	2
Lower division		0
Total	. 10	2

The entire thickness of the lower division is not always removed, but generally coal to a thickness of 7 feet 6 inches is available. South of the boundary line of this quadrangle and near Cheat River the upper

division has a thickness of 3 feet, main clay coal near Cheat River. 2 inches, and the lower division 8 feet 4 inches. The lower division carries many clay and mineral charcoal partings. In mining the coal the roof division is never disturbed, and sometimes not all of the lower division is removed.

Coals above the Pittsburg.—In the Uniontown syncline there is considerable difficulty in identifying the coal beds above the Pittsburg horizon. Several of them which usually are persistent and regular are here variable in size, and in many places they are wanting altogether. The other rocks that are usually depended upon as horizon markers seem generally to lack individual characteristics by which they may be recognized. In that part of the basin which lies south of Uniontown the Waynesburg sandstone is fairly well developed, but north of Cove Creek it is doubtful whether this stratum can be identified at any point within this basin. The Great limestone is generally present, but its beds are thin and interstratified with calcareous shale, so that in many places it is difficult to differentiate them from the

smaller beds that occur in other parts of the series. The same difficulty of identification appears to have been encountered by Professor Stevenson in his survey of in the vicinity of Fairchance, where it is Fairchance. The same difficulty of identification appears to have Fayette County, for he failed to recognize the Waynesburg coal throughout most of this basin, simply mapping a few isolated areas of the Dunkard formation, whereas, according to the mine data now available, it is known that the Waynesburg coal is present in a large

Along the western margin of the basin the coal holds | impossible to obtain a correct idea of the thickness and | the section is compared with that of the Lemont air reliable evidence regarding the character of the strata and it is so considered in this report, but see and their succession.

Redstone coal.—According to Prof. H. D. Rogers, who named and described this coal bed, its type locality is near Mount Braddock in this basin. He assigns to it a thickness of from 2 to 3 feet Redstone and gives the interval between it and the Rogers's type section

Pittsburg coal as ranging from 45 to 50 feet. From the section of the Lemont air shaft, which is shown on Columnar Section sheet 2, it will be seen that

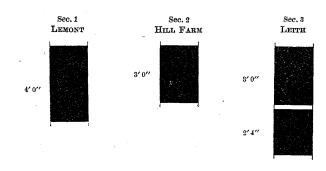


Fig. 11.—Sections of Redstone coal.

there is no coal at the supposed horizon of the Redstone bed, but that the first coal above the Pittsburg horizon occurs about 80 feet above the floor of the Pittsburg coal. This may be regarded as the type section for the Redstone coal and for the rocks occurring in the interval between it and the Pittsburg bed. According to the shaft section, the Redstone coal has a thickness of 4 feet (sec. 1, fig. 11) but it is not known whether this is all clean coal or not. This coal is 3 feet thick (sec. 2, fig. 11) on the east side of the basin at Hill Farm, Redstone coal at Hill

where it is reached in a bore hole 82 feet above the floor of the Pittsburg coal. In both of these sections the coal is closely underlain by the Redstone limestone, which has a thickness of from 11 to 13 feet. In passing to the west across the northern end

of the basin the Redstone coal seems to Redstone diminish, for in the Leisenring No. 1 shaft it Leisenring has a thickness of only 8 inches, but its

associated limestone is present and it occurs at the normal distance of 80 feet above the base of the Pittsburg | fig. 12). It was also found in a bore hole at bed. At the Mayer shaft, which is located just west of the Continental No. 2 mine, at the head of Sewickley coal in this part of the basin resembles that already | Leisenring No. 1, the limestone is present, but the coal | Cove Lick Run. At this point it is reported Continental No. 2 mine. given, except that the thin partings in the lower division is wanting; the interval, however, holding practically to have a thickness of 5 feet and to occur the same, since the top of the limestone occurs 77 feet | 140 feet above the Pittsburg coal. times are wanting near the southern boundary of this above the floor of the coal. In the Juniata shaft, which is still farther west, no coal is present at this horizon. The limestone also is doubtfully present, since no bed having the thickness of the Redstone limestone in the type locality shows in the section. Near the center of the basin the coal shows

South of Smithfield there are only isolated areas of a normal development in the Leisenring coal in development, as shown in the two sections representing the No. 1 and No. 2 shafts.

South of Uniontown the coal develops rapidly, as shown by the following section (sec. 3, fig. 11), exposed in the Leith shaft at a distance of 86 | it has a thickness of 56 inches, (sec. 2, fig.

feet above the floor of the Pittsburg coal: Redstone coal in Leith shaft.

	Feet.	Inches.
Coal	. 3	0
Blue mold	. 0	3
Coal	. 2	4
Total	5	7

Southwest of Uniontown the coal holds about the same relation to the Pittsburg coal that it does in the type locality. It has a thickness of 3 Redstone coal southfeet and occurs about 80 feet above the west of Uniontown. Pittsburg bed in three drill holes on the property of the Continental Coke Company.

In that part of the Uniontown syncline which lies in George Township the Redstone coal was seen at a number of places where it had been opened for local use and where it is exposed in the

roadway. It is well shown in a crossroad about halfway between Brownfield and Oliphant Furnace. It was seen as a large bloom where the road from Fairchance to Highhouse crosses Muddy Run, and it is also well exposed on the west side of the syncline in the vicinity of Highhouse. It has been prospected in this locality, but the prospect pits have fallen shut and it is impossible to obtain measurements on the coal. About a mile north of this point it has recently been exposed in the cuts of the Pennsylvania Railroad east of Continental No. 3 mine. Its thickness at this point seems to be about 4 feet, but it is probable that the coal is mixed with much slaty material. This

coal probably reaches its best development exposed in a number of places. At an opening over the Kyle mine it shows a thickness of from 4 feet 6 inches to 5 feet.

In the southern extension of the Uniontown syncline it is difficult to identify the coals above the Pittsburg | the floor of the Pittsburg coal. This seems undoubtedly area in the center of the basin, and that at the lowest | bed. Throughout Springhill Township, or rather that | to be the Uniontown bed, but since it is not point it has a depth of more than 200 feet below the | part of Springhill Township which lies in the Masontown | present in either shaft of the Oliver mines Position of Indiana. quadrangle, there is a large coal bed about 60 feet above its disappearance must be very sudden in coal in Leith shaft. North of Uniontown exposures of the coal beds above | the Pittsburg, which at one point Professor Stevenson | the Uniontown region. Professor Stevenson

position of these beds, but the various mine shafts shaft it will certainly appear that the coal bed at Morris

there seems to be good evidence that in

the vicinity of Greensboro the interval between the Redstone and Pittsburg coal beds does not exceed 30 feet, therefore the coal in Springhill Township may represent either the Redstone coal or the Sewickley bed. It has a thickness of about 5 feet and it is well exposed in natural outcrop about Morris Crossroads and in the high land along the Point Marion and New Geneva road. In the latter locality it has been mined for local use, but the openings are closed and the coal is not visible at any point. It will not be used to any extent until the Pittsburg coal is exhausted, and then it probably will have been so disturbed by the breaking down of the roof of the Pittsburg coal that it will be valueless. The generally poor character of this bed renders its development highly improbable. As shown in some of the mine shaft sections, there is occasionally a small coal bed about halfway between the Redstone coal and the great Pittsburg bed below. This coal appears to be developed sporadically, and it is too thin to be of value commercially, but it seems probable that in places it has been mistaken for the Redstone coal.

Coal between the Redstone and Sewickley horizons.—Above the Redstone coal bed and below the position of the Sewickley bed the shaft sections show a coal which has not heretofore been recognized or named. Its height above the floor of the Pittsburg coal varies from 118 to 142 feet. At no point does it reach a greater thickness than 2 feet, and in the Leith section it is entirely absent. It is probably not an important bed anywhere, but is one that may be easily confused with either the Redstone below or the Sewickley above.

Sewickley coal.—The mine shaft sections show the Sewickley coal bed in its proper position at the base of the Great limestone, and at a distance of from 153 to 177 feet above the floor of the Pittsburg coal. This bed is present in all of the sections except the Hill Farm bore hole, but it is hardly of commercial thickness in any of the sections except that of the Leith shaft, in which the coal has a thickness of 5 feet 3 inches (sec. 1,

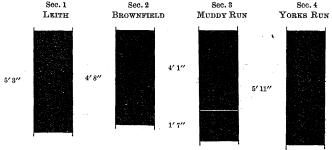


Fig.12.—Sections of Sewickley coal.

In outcrop the Sewickley coal bed was seen in a number of places. Above the Redstone mine at Brownfield 12), and it was once operated for local use,

but with the development of the Pittsburg coal above the Redstone bed beneath, mines on the Sewickley have almost all been abandoned. At this point it occurs under massive sandstone, which is a prominent feature of the region, but the sandstone is a local development and is not generally present over the coal. In the vicinity of Oliphant Furnace the Sewickley coal has been opened at a number of places, and it is at present being mined just west of the Uniontown and Fairchance road, on one of the head branches of Muddy Run. No measurements were obtained in this locality, but at an opening a little

Sewickley coal near Muddy Run, north of Fairchance.

farther west it has the following section (sec. 3, fig. 12):

Coal			
Coar		. 4	1
Clay,		. 0	1
Coal	· • • • • • • • • • • • • • • • • • • •	. 1	7.

On Yorks Run this bed has been opened in a number of places, but the openings are generally in such a condition that it is impossible to obtain a full

measure of the bed. Near the head of the coal on Yorks Run. main fork of the creek an opening shows 5 feet 11 inches of coal (sec. 4, fig. 12), but the coal is soft and badly cut by many thin partings which greatly detract from its value. It is high in ash and contains considerable sulphur, and consequently is not greatly esteemed for fuel purposes.

Uniontown coal.—The absence of the Uniontown coal bed in the shaft sections is a noticeable feature. No shaft north of Uniontown shows a trace of

coal at the horizon of the Uniontown bed, but south of that point, in the Leith shaft, a coal having a thickness of 4 feet 6 inches (sec. 1, fig. 13) is shown at a distance of 251 feet above

the Pittsburg horizon are poor, and it is practically | identified as Sewickley and at another as Redstone. If | son correlated the Uniontown coal with the small bed

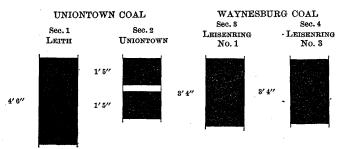


Fig.13.—Sections of Uniontown and Waynesburg coals. shaft also shows that the Uniontown coal is not present in that locality. At the type locality the Uniontown coal was once well exposed in the old cement quarries, where it had the following section (sec. 2, fig. 13):

Section of Uniontown coal in the old cement quarries. Uniontown.

	Feet.	inches.
Coal	1	5
Clay and coal	0	2
Clay	0	2
Coal	1	5
Total	3	2

At the Poor farm, northwest of Uniontown, the coal shows a thickness of about 3½ feet, which is rather remarkable considering its absence from the basin a few miles to the north. It is also exposed Uniontown coal at Poor by the roadside in the southwest corner of farm near Uniontown.

South Union Township, where 2 feet of coal are now visible. South of this point no good exposures of the Uniontown coal were seen, but small coal blooms at this horizon were noticed in a number of places; altogether the outlook is not promising in this direction.

Waynesburg coal.—In all of the longer shaft sections a coal is given above the Great limestone, which, judging from its distance above the Pittsburg coal, belongs at the Waynesburg horizon. In the Hill Farm bore hole this coal has a thickness of 2 feet, and is

380 feet above the floor of the Pittsburg Thickness coal. In the Leisenring No. 1 shaft a coal which is probably the same bed has a thickness of 3 feet 4 inches (The Leisenring No. 1 shaft a coal with reference to ness of 3 feet 4 inches (sec. 3, fig. 13), and ence to Pittsburg is 333 feet above the bottom of the Pittsburg

coal. If this supposed correlation is correct it is extremely interesting, since the two coals mentioned mark the limits of the Monongahela formation, and hence the intervals correspond with the thickness of the formation. In the Leisenring No. 3 shaft the coal has a thickness of 3 feet 4 inches (sec. 4, fig. 13), and is 335 feet

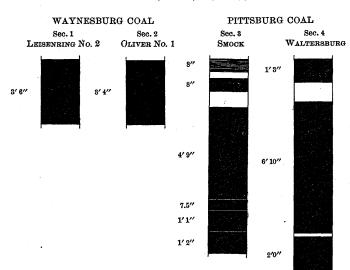


Fig. 14.—Sections of the Waynesburg and Pittsburg coals.

above the floor of the Pittsburg coal. In the Leisenring No. 2 shaft the thickness of the coal is 3 feet 6 inches, (sec. 1, fig. 14), and its height above the Pittsburg coal is the same as that just given for No. 3. In the Oliver 3 feet 4 inches (sec. 2, fig. 14), and a height above the Pittsburg coal of 342 feet. In general there is a close agreement in the position of this coal in the various sections except the Hill Farm bore hole. This increase suggests the thickening of the Monongahela formation toward the east, or in the supposed direction of the continental area from which the coal-bearing sediments were derived. South of Uniontown the Waynesburg coal shows in outcrop in a territory limited to the high | bench. ridge along the center of the syncline. The Waynesburg sandstone, which overlies the coal, is present along the Morgantown road from the hill south of Uniontown to the first forks of the road beyond Chadville. At this point the coal is seen in outcrop underlying the coarse Way-

COAL IN FAYETTE COUNTY, WEST OF THE UNIONTOWN SYNCLINE.

not be determined.

nesburg sandstone. The outcrop of the coal is also

observed on the road running northwest from Chadville

near the township line, but the outcrop is merely a

bloom by the wayside and the thickness of the bed could

Pittsburg coal.—On the western limb of the Fayette anticline the Pittsburg coal dips below the surface, and the northwestern half of the Masontown

quadrangle is underlain by this bed. Its Area of ocoutcrop crosses the territory diagonally from coal. Smock on the north edge of the quadrangle

to New Geneva on the south, but in the latter locality the dip of the bed is so low that its outcrop is very | varies from 3 feet 6 inches to 5 feet, the former (3 feet

ment of the Oliver mines directly under this point shows | anticline to Grays Landing. West of this line of outclearly that this coal is at the Waynesburg horizon | crop the coal is below water level, except in the extreme instead of the Uniontown, and the section of the Oliver | northwest corner of the quadrangle, where it is exposed | cline, near the northern boundary of the for a short distance as it rises on the eastern flank of Masontown quadrangle, a number of mines Pittsburg the Bellevernon anticline.

The general character of the Pittsburg coal in this region has been well described in previous reports and tion for the vicinity of Smock is as follows (sec. 3, fig. 14): it seems unnecessary to attempt to add to the description already given. Although Representathe section of the coal bed is variable, fig. 15 may be considered as the type, in the sense that it shows the various benches that have been generally recognized, and serves as an illustration for Professor Stevenson's description (Rept. K, Second Geological Survey of Pennsylvania, pp. 70-71), which is as follows:

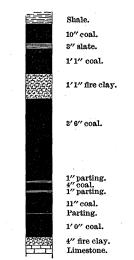


Fig. 15.—Typical section of Pittsburg coal.

"The roof division shows extreme variations. Its thickness is from 2 inches to 8 feet, but there is a distinct increase in thickness northward. Occasionally it is a single bench, but com-

monly it contains two or more benches of burg coal. coal, separated by clay, and at one locality it is broken into twenty divisions. The coal is invariably poor, owing to the large proportion of ash. The clay partings are subject to abrupt variations, for on the Panhandle Railroad the roof shows twenty divisions at | about 8 feet. In several country banks located on the

a little distance east from Raccoon station, while at the station it shows 5 feet of coal, broken only by partings so thin that they can hardly be distinguished on the weathered surface. The changes in thickness of the whole division are equally abrupt, several instances having been observed where within a short distance it varied from a single 2-inch bench of coal to a mass of coal and shale 3 feet thick.

"I have said that this roof division thickens northward. This statement is the result of many comparisons, for if one were permitted to select examples he could without difficulty find many cases in Allegheny and northern Washington where the roof is as thin as at any place in Greene or southeastern Washington. But taking all the measurements in the southeastern portion, and comparing them with all those made in the northern 4'2" portion, it becomes apparent that the roof is thicker northward, and that in northwestern Washington and Allegheny the thickness is suddenly and greatly increased.

"The lower division of the Pittsburg coal is from 3 feet 6 inches to 9 feet thick, and contains three persistent partings, usually thin, which divide it into four benches, known as the 'Upper,' the 'Bearing-in,' the Brick,' and the 'Lower Bottom,'

"In the first or Upper bench there is occasionally a parting, which is rarely seen except at the extreme northwest, where it seems to be a common feature. This is the thick bench and usually yields the best coal.

"The 'Bearing-in' bench varies from 2 to 4 inches, and is invariably distinct, except where the bed is a No. 1 shaft the coal is slaty, but with a total thickness of | block coal, and all the partings are missing. The name is applied because on this bench the miner works in to gain a face against which to bring out the other portions of the bed. This is generally a good coal, but in removal | tion of the coal can not be determined. On the road it is reduced to slack.

"The 'Brick' bench is characterized by cleavage planes which break the coal into blocks in size and shape like a common brick, whence the name. It yields a good coal, hardly inferior to that from the Upper

"The 'Lower Bottom' bench is the lowest of all, always of inferior quality, and for the most part utterly worthless. It is broken by numerous thin layers of clay, as well as by cleavage planes, so that it is brittle and full of ash.

"The Upper bench contains thin partings or binders of pyrites, one of which, at from 10 to 15 inches from the top, is quite persistent. This impurity sometimes occurs in the Brick, and is always present in the Lower | they separate have thicknesses of 30, 23, 22, and 20 Bottom.

Pittsburg bed diminishes northward, as the roof division level about a mile east of New Salem. At this point seems to increase in that direction; but, with the excep- | the lower division has the following structure (sec. 2, tion already noted, the various benches are persistent | fig. 16): throughout. In the southeastern part of the district the total thickness is from 7 to 9 feet; greatest at Brownsville, where the roof is 4 inches and the lower division is 9 feet. In the vicinity of Pittsburg and the adjoining portions of Allegheny County it varies little from 5 feet 6 inches, while in northwestern Washington it

that shows on Cove Run near Hogsett. The develop- | irregular, extending from the summit of the Fayette | 6 inches) being found at Midway, on the Panhandle Railroad, where the coal is a block."

On Redstone Creek where it crosses the Lambert synhave been opened on the Pittsburg coal bed within the last few years. The general sec-

Pittsburg coal in vicinity of Smock.

	Feet.	Inches.	Feet.	Inches.	
Roof division:					
Coal and clay	. 0.	8			
Clay	. 0	4			
Coal	. 0	8			
•			1	8	
Main clay parting			0	10	
Lower division:					
Coal	. 4	9			
Parting.					
Coal	. 0	$7\frac{1}{3}$			
Parting.					
Coal	. 1	1			
Parting.				•	
Coal	. 1	2			
			7	71	

South of Smock the lower division is thicker and the roof division has lost some of its partings, as shown by the following section from an opening west of Waltersburg (sec. 4, fig. 14):

Pittsburg coal in opening west of Waltersburg.

	Feet.	Inches.	Feet.	Inches.	
Roof division:					
Coal			1	3	
Main clay parting			1	0	
Lower division:					
Coal	6	10			
Clay	0	2			
Coal	2	. 0		_	
			9	0	

In the second ravine which enters Redstone Creek from the west above Waltersburg, a mine has been opened about 1½ miles above the mouth of the creek. At this point the upper division is imperfectly exposed, but apparently consists for the most part of black carbonaceous shale. The lower division has a thickness of outcrop of the Pittsburg coal between Redstone Creek and the National Pike the lower division of the coal is reported to show at one point a thickness of 5 feet 10 inches, at another 7 feet, and at another 9 feet. It is mined at a number of points along the National Pike, and at one of these mines, Pittsburg

which is located at the first crossroads east the National of Searights, the lower division of the coal shows three well-defined benches 50, 21, and 31 inches

thick (sec. 1, fig. 16), separated by very thin partings. Sec. 4 NATIONAL WATSON KNOT

Fig. 16—Sections of the Pittsburg coal.

From the National Pike to the Uniontown and New Salem road the outcrop of this coal has been prospected extensively, but most of the pits are closed and the secwhich follows the outcrop north from the last-mentioned road the following section is exposed:

Pittsburg coal north of Uniontown-New Salem road.

	Feet.	Inches.	Feet.	Inches.	
Roof division:					
Coal	. 1	0	- '		
Coal and clay	. 1	4			
Bituminous shale	. 1	0			
			3	4	
Main clay parting			0	6	
Lower division			7	11	

The lower division is broken up by slate partings which range from one-eighth to one-quarter inch in thickness, and, in descending order, the benches which inches, respectively. Along this line the coal dips "The thickness of the whole lower division of the rapidly toward the northwest, and passes below ereek

Pittsburg coal a mile east of New Salem.

Upper bench	Feet.	Inches. 11
Bearing-in	0	. 7
Brick coal		9
Lower bottom bench	1	4
Total	8	7

Two mines have recently been established in this locality on opposite sides of the creek. On the north side the coal bed appears to have a thickness of about 9 feet, but only the lower bench, having a thickness of 7 or 8 feet, is mined. In the Buffington shaft, which is located about a half mile west of New Salem, the coal bed is reported to show a thickness

of 9 feet, but doubtless this includes the roof division, and the workable coal probably does not exceed 6 or 7 feet. In the Lambert shaft, which is located on the headwaters of Middle Run,

the same thickness is reported, but this Inshafts on Middle Run likewise undoubtedly includes some, if not all, of the roof division. The Edenborn shaft gives the section of the coal in greater detail. The roof division is reported to have a thickness of 2 feet, main clay division 1 foot, and bottom bench 9 feet (sec. 3, fig. 16). In the Gates shaft, located at the mouth of Middle Run, the coal is reported to have a thickness of 10 feet, but, like the other large measures, this doubtless includes some clay or shale partings.

In the vicinity of Balsinger the coal shows in a number of hills located on the anticline. At an opening in Watsons Knob the coal shows the following structure (sec. 4, fig. 16):

Pittsburg coal at opening in Watsons Knob

	Feet.	Inches.	Feet.	Inches.
Roof division;				
Carbonaceous shale	0	6		
Clay and coal	2	0		
Carbonaceous shale	0	10		
•			3	4
Main clay parting			1	2
Lower division			8	. 6

The lower division is said to reach a thickness of 11 feet at some places in this opening, but the general thickness runs from 7 feet to 8 feet 6 inches. West of Balsinger on the main outcrop of the coal in

the Lambert syncline, the roof division has West of Balsinger. a thickness of 3 feet 10 inches, main clay 1

foot; and of the lower division a thickness of 7 feet was visible at the point where the section was measured. On the North Fork of Browns Run the coal shows in outcrop for a distance of at least 2 miles, but the rapid western dip carries it from the tops of the highest hills in the vicinity of Messmore to water level near the junc-

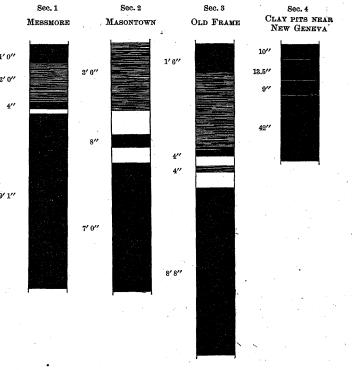


Fig. 17.—Sections of Pittsburg coal.

tion of the North and South forks. At the former place the structure of the coal bed is shown in the following section (sec. 1, fig. 17):

Pittsburg coal at Messmore.

	Feet.	Inches.	Feet.	Inches
Roof division:			***	
Coal	1	0		
Clay and coal	2	0		
Coal	0	4		
			3	4
Main clay parting				1–5
Lower division		•	9	1

Near the junction of the two forks of Browns Run the lower division has a reduced thickness, as shown by the following section:

Pittsburg coal near junction of forks of Browns Run.

	Feet.	Inches.	Feet.	Inches.
Roof division:				
Coal and shale	2	4		
Shale	0	4	ت	
Coal	0	2		
Shale	0	. 9		
Coal	0	6		
			4	1
Main clay parting			1	6
Lower division	• •		6	0

At an old mine on the hilltop about a half mile southeast of Leckrone the thickness of the lower division is 10 feet 3 inches. This is not well exposed, but no shale partings were observed in it, and presumably the full thickness is available coal.

On Cats Creek the Pittsburg coal has been extensively mined for a number of years, and recently a railroad has been built, giving this district connection with the main trunk lines, and a large mine is being developed south of Masontown. A detailed section of the outcrop on this creek is as follows (sec. 2, fig. 17):

Pittsburg coal on Cats Creek near Masontown.

	Feet.	Inches.	Feet.	Inches
Roof division:				
Coal and clay	. 3	6		
Clay	. 1	3		
Coal	. 0	8		
			5	5
Main clay parting			0	10
Lower division			7	0

The coal has been mined for local use in the outliers which cap the ridge in the vicinity of Old Frame. At an old mine a mile or so north of this point the following section was measured (sec. 3, fig. 17):

Pittsburg coal near Old Frame.

	Feet.	Inches.	Feet.	Inche
Roof division:				
Coal	. 1	6		
Clay and coal	4	0		
Slaty coal	. 0	4		
Clay	0	6		
Coal and clay		4.		
			6	8
Main clay parting			0	10
Lower division			8	8

A short distance south of Old Frame the roof division is 3 feet, main clay 1 foot, and lower division 8 feet in thickness. The thickness of the lower division in this region appears to be remarkably constant.

for a detailed section on Jacobs Creek shows On Jacobs the roof division to be 3 feet 11 inches, main

clay 2 feet, and lower division 8 feet 2 inches in thick ness. The coal has been mined in a number of places on the ridge back of New Geneva, but the majority of the mines are worked only a portion of the year, and during the remainder of the time the coal is not accessible. South of George Creek the territory underlain by this coal bed is small and the coal also appears to be thinner than in the region George

just described. The reduction in thickness

of the Pittsburg coal appears to be connected in some way with the development of the Pittsburg sandstone immediately over the coal. In the Union-

town syncline, and also generally along the Thinning of Pittsburg eastern outcrop of the coal in the Lambert Pittsburg syncline, the roof division is overlain by a

large body of shale, which varies from place to place from a fine, highly carbonaceous to a very sandy shale. In certain areas in the western half of the Masontown quadrangle the shale is replaced by a massive sandstone which is always coarse and occasionally conglomeratic. This sandstone frequently rests directly upon the lower division of the coal, and the natural inference is that the roof division was eroded before the sand was deposited. In fact, it seems probable that in many places erosion not only removed the roof division, but cut deeply into the main bench of the coal, reducing its thickness in places to not over 4 feet. The Pittsburg | the second bed 64 feet from the same horiit is developed also to some extent between Crows Ferry and Morris Crossroads. The sandstone is also seen in Luzerne Township near the northwest corner of the Masontown quadrangle and at other points farther north. The facts of its distribution suggest that the current which eroded the coal flowed in a north or south direction and that its course extended considerably beyond the limits of this territory. At the clay pits about a mile southeast of New Geneva the coal

shows in four benches (sec. 4, fig. 17) hav- Near New Geneva and ing a thickness of 10, 13½, 9, and 42 inches. Crossroads. At an opening about three-quarters of a

mile east of Lock No. 8 an old prospect pit showed a thickness of only 4 feet of coal, but it is not certain that this represents the entire thickness of the bed. It seems possible, however, that it does, since two other outcrops within about a mile and a half of Morris Crossroads show the coal to have a thickness of 4 feet in one case and 5 feet in the other. At these openings the coal is overlain by heavy sandstone, and the presumption is that all of the bed except that which was seen has been

It was formerly supposed that all of the Pittsburg coal lying outside of the Connellsville basin was poorly adapted to the manufacture of coke, but since the construction of a railroad along Redstone Creek a number of coking plants have been established, and their product compares very favorably with that of the type locality, the Connellsville basin. Many years ago a coking plant was established on the east side of Monongahela River near Grays Landing, but for some unknown reason it proved a failure. Within the last four years operations

have been begun again in the Lambert syncline, and the coke produced seems equal to and coking that manufactured in the Connellsville basin.
As the result of this discovery a number of

large coking plants have been established. Most of these are located on the eastern outcrop of the coal, and their operations are carried on by means of slopes which extend down the dip of the bed. A few operators have secured property near the center of the basin and have reached the coal by means of deep shafts. The most southerly shaft is that of the Edenborn mine west of McClellandtown, which reaches the floor of the coal at a depth of 486 feet. At the mouth of Middle Run the Gates shaft found the same horizon at a depth of 243 feet below the surface. Near New Salem the Buffington shaft was sunk to a depth of 389 feet, to the bottom of has an exposed thickness of 2 feet; the total thickness the coal. The deepest shaft in this district is that of is somewhat greater, but it probably does not exceed 3 interval is reduced to somewhat less than 80 feet. On Masontown and Uniontown.

which begins on high land and is located nearly on the axis of the syncline. It reaches the floor of the On the opposite side of the river there are Supposed Redstone and coal at a depth of 631 feet below the surface.

As described in the paragraphs on the geologic structure of this region, there is a small anticline which lies west of the Lambert syncline. It is

extremely irregular and the coal has an Occurrences irregularly warped surface instead of lying western part in a distinct fold. In the northwestern part of the Masontown quadrangle the coal

rises above water level on the flanks of a pronounced anticline whose axis lies a short distance beyond the quadrangle. Throughout this broad expanse of the northwestern half of the quadrangle, embracing an area | in this region. The extent of this abnormal interval has of a little over 100 square miles, the Pittsburg coal is | not been made out, consequently the coal beds above the untouched except at the plants just mentioned and a few others that are located on the outcrop of the coal. These mines are comparatively new, and hence but little of the coal has been removed. The deepest part of the syncline is near the Lambert shaft in Fayette County, but all through the extreme western end of this county and the eastern side of Greene County, as far south as Dunkard Creek, the coal lies at a very moderate depth below the surface and could easily be reached by a shaft at any point in the region. The speedy development of the falling in of the roof and its thickness could not be coal will depend chiefly on its quality; it seems probable that throughout most of this region it maintains essentially the same characteristics that it holds in the so-called Klondike region about Leckrone.

Redstone coal.—The Redstone coal bed appears to be generally persistent in this syncline, but in places it consists almost entirely of carbonaceous shale. Owing to | but with a considerably greater interval than is shown a the strong dips which generally prevail near the outcrop | mile away on the west side of the river. of this bed, its distance above the Pittsburg has not always been accurately determined. The mine shafts which have been recently sunk in this region afford the best evidence regarding the position and character of the Redstone as well as of the Sewickley coal. According to the record supplied by the owners of

the Buffington shaft, which is located near Redstone New Salem, the only coal beds encountered coal absent in Buffingare one near the head of the shaft, which

undoubtedly occurs at the Waynesburg horizon, and one at a depth of about 260 feet, which is the normal position for the Sewickley bed. Between the latter horizon and the Pittsburg coal no other coal bed, or even black carbonaceous shale, is reported, so that it seems probable that the Redstone coal is entirely wanting in this vicinity.

The Lambert shaft, located at the head of Middle Run, shows the Waynesburg and Uniontown coals in their normal positions, but the coal beds close to

the Pittsburg are puzzling and difficult to Redstone classify. The lowest bed occurs at an interval of 20 feet above the Pittsburg coal, and

sandstone is particularly heavy on Dunkard Creek, and | zon. The lower of these two beds is underlain by black, sandy shale, and neither in its position nor in its associated | reported section, but as before described, its place is | rocks does it correspond to the Redstone bed. The bed 64 feet above the Pittsburg is underlain by 15 feet of limestone, which seemingly corresponds with the Redstone limestone, which, in the normal section, closely underlies the Redstone coal bed. For this reason the coal is here considered to belong to the Redstone horizon. If this is correct the Sewickley coal does not appear in the shaft section. Its position very nearly corresponds with a bed of black "block slate" underlain by fire clay at an altitude of 108 feet above the Pittsburg bed.

The Edenborn shaft section corresponds very nearly with the type section of the Monongahela formation. The interval between the Redstone and Pittsburg coals is 60 feet, the former is 1 foot Redstone and thick and is underlain by a bed of limestone

Sewickley in Edenborn

which has a thickness of about 15 feet. The Sewickley coal shows a thickness of only 8 inches and

its position is 138 feet above the Pittsburg bed. The Gates shaft section, which is located at the mouth of Middle Run, shows a small coal bed 10 feet above the Pittsburg. This is probably the rider that

frequently occurs above the Pittsburg coal In the Gates

in Fayette County. At a distance of 50 feet above the Pittsburg coal the Redstone bed appears, with a thickness of 2 feet 2 inches. This is underlain by a bed of limestone, and in every respect it resembles the Redstone bed of the type locality. At a distance of 116 feet above the Pittsburg coal there is a small bed which undoubtedly belongs at the Sewickley horizon. From these sections it will be seen that the Redstone and Sewickley coal beds are not of very great importance in this region. At the surface their outcrops were observed in a number of places as blooms by the wayside, but no openings were found in the northern part of the syncline at which the thickness of the coals could be determined.

Southwest of Masontown the Redstone coal bed is exposed by the side of the road leading to the mouth of Jacobs Creek. At this point the coal shows a thickness of 3 feet without partings, but coal near the full section is not exposed, and it seems Jacobs Creek.

possible that it may have a total thickness of 3 feet 6 inches. The coal is overlain by black shale, and it rests upon a bed of calcareous nodules about 15

feet in thickness. Near the village of Old Frame, in Nicholson Township, a coal bed shows about 40 feet above the Pittsburg. This

about the identification of the coal beds. two coals within about 60 feet of the Pittsburg had. The upperment one of these is burg bed. The uppermost one of these is

large and seems to correspond to the Mapletown bed, which is at the Sewicklev horizon. Between this prominent coal and the Pittsburg bed there is a small coal included in a mass of bituminous shale which was regarded by Professor Stevenson as at the Redstone horizon. Although the interval between this bed and the underlying Pittsburg coal does not exceed 30 feet, it presumably will ever be regarded as Redstone, on the supposition that the interval below is abnormally thin Pittsburg on the east side of the river can be determined only provisionally at the present time. About a mile north of New Geneva a coal bloom is visible in the road on both sides of the summit. This presumably occurs about 40 feet above the Pittsburg, and hence is regarded as occurring at the Redstone horizon. It was also reported from the north side of Jacobs Creek at a distance of about 50 feet from the Pittsburg bed. At this point there is an old opening, but the coal is concealed by ascertained. It seems to show, however, that the interval between the Redstone and Pittsburg beds increases northward to about the normal interval in the vicinity of Masontown. On the road east from New Geneva a promiinent bloom was observed about 50 feet above the Pittsburg which seems also to belong to the Redstone horizon,

In Luzerne Township, west of the Lambert syncline, the Redstone coal was not observed, although its horizon appears at the surface in the northwest corner of the township. Professor Stevenson in Luzerne

reports that it is present in the hills opposite Millsboro, and he assigns to it an estimated thickness of about 5 feet. In his description he speaks of it as a mass of carbonaceous shale associated with a very thin coal. From all of the evidence available it seems probable that the Redstone coal has little or no economic importance in this township.

Sewickley coal.—As previously stated, the Sewickley coal is present in the Buffington shaft 137 feet above the top of the Pittsburg bed. In this vicinity

and in each one the coal is shown to have a different thickness and position westernmost shaft the coal shows a thickness

of 3 feet and was struck at a distance of 260 feet below the surface. In shaft No. 1, which is the main hoisting shaft, its depth is 255 feet, and its thickness varies from 0 on one side of the shaft to 2 feet on the other. In the probably occupied by a black carbonaceous shale resting on fire clay at a distance of about 108 feet above the Pittsburg bed. In the Edenborn shaft its reported thickness is 8 inches and its position 138 feet above the Pittsburg bed. In the Gates shaft it occurs 116 feet above the Pittsburg, and its thickness is shown by the following section:

Sewickley coal in Gates shaft.

Coal		Inches. 10
Black slate	. 0	1
Coal	. 1	5
Total	. 2	4

In four carefully kept records of wells located on the ridge between Masontown and Leckrone the Sewickley coal is reported at the following distances above the Pittsburg bed: 111, 115, 136, and 137 feet. The thickness of the bed is and Leck-

These measures are considerably in excess of the thicknesses given in the shaft sections already quoted, and the probability is that they are somewhat exaggerated. In the northern part of the Lambert syncline the

Sewickley coal is not well exposed in outcrop. Its bloom was seen in a number of places, but no definite idea could be gained regarding its Sewickley coal in the thickness, except that it is probably too northern part of thin to mine under existing commercial Lambert thin to mine under existing commercial

conditions. At an opening on the road

reported as 4, 5, 4, and 3 feet, respectively.

from New Salem to Heisterberg the coal is exposed to a thickness of 2 feet. The roof of the coal is composed of heavy sandstone, but the opening was so obscured by the caving of the sides that the base of the bed was not visible. Near the Leckrone mine the bloom of the Sewickley coal is visible in the road at a distance of about 120 feet above the Pittsburg coal. Its thickness could not be determined, but presumably it corresponds closely to that given for the Edenborn shaft. Northeast of New Geneva the Sewickley coal bed is visible at a number of points on the Old Frame road, but its thickness could not be determined. In the vicinity of New Geneva the interval between this coal and the Pittsburg bed gradually decreases. At one point about midway between Old Frame and New Geneva the distance above the Pittsburg seems to be about 90 feet; but at the exposure about one-half mile from New Geneva the

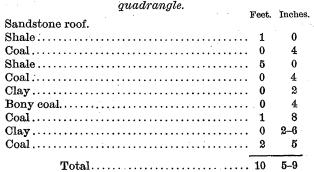
the Lambert mine, on the headwaters of Middle Run, feet. In the vicinity of New Geneva there is some doubt the north side of Jacobs Creek the coal shows in the road from Old Frame to Masontown at an interval of about 110 feet above the Pittsburg bed. Its thickness at this point could not be determined.

West of the Lambert syncline the Sewickley coal is poorly exposed in Fayette County. Professor Stevenson reported the bed as fully concealed at the

time of his examination. During the present Sewickley survey its bloom was noted at only a few Fayette points, and no reliable estimate of its thickness could be obtained. It is probably thin

and of little value, although on the opposite side of the river, in Cumberland Township, Greene County, it varies from 2 to 3 feet in thickness in outcrop along the river hills.

Uniontown coal.—The Uniontown coal is probably of little value in this region. It is generally thin and inconspicuous and was noted at only a few localities. According to the record of the Buffington shaft, the coal occurs 302 feet above the Pittsburg bed and has a thickness of 3 feet, but from the fact that the coal fails to show in a bore hole in the same general locality it is probable that the coal is variable in thickness and irregular in distribution. In the Lambert shaft it has a thickness of 2 feet and it was encountered 300 feet above the base of the Pittsburg coal. In the Edenborn shaft it has the same thickness and is recorded at 293 feet above the Pittsburg bed. No other sections of the coal were obtained in this territory, and Professor Stevenson makes no mention of the Uniontown bed in his report.


Waynesburg coal.—Throughout the Lambert syncline, as well as in the territory farther west, in Favette County, the Waynesburg is the most promi-

nent coal bed exposed at the surface. In the northeastern part of the basin this hed tambert the northeastern part of the basin this bed is less prominent than farther west. In ge fact, it was scarcely seen on the eastern side

of the syncline from the northern boundary of the quadrangle to the vicinity of McClellandtown. In the Buffington shaft it is doubtful whether the Waynesburg bed was encountered, since the head of the shaft is probably at about its horizon. Near the surface a bed 6 or 8 inches in thickness is reported, and in some water wells in the locality a coal at about this horizon is reported to have a thickness of 3 feet, but it is badly mixed with slate, so that presumably the bed has little or no value. The Waynesburg sandstone, which normally overlies the coal, is poorly developed in this region, and consequently it is difficult to identify the coal with certainty. In the road northeast of New Salem there is a large bloom that presumably marks the horizon of the Waynesburg coal. It apparently has a thickness of 2 or 3 feet, but no detailed measurements could be obtained.

North of the Masontown quadrangle, in the bluffs along Redstone Creek, the Waynesburg coal has been opened in a number of places, and presumably has a fair thickness on the east side of the syncline, but even here bore hole its reported thickness is 2 feet. In the Lambert | its greatest development appears to be west of the axis. shaft the Sewickley coal is not present, according to the | The following section is from an opening north of the National Pike, and presumably a short distance beyond the limits of the Masontown quadrangle:

Waynesburg coal near northern limit of Masontown

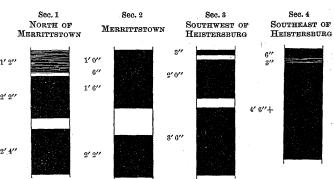
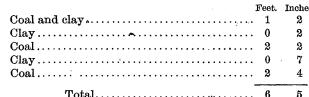



Fig. 18.—Sections of Waynesburg coal. At another opening in the same general locality the section is as follows (sec. 1, fig. 18):

Waynesburg coal north of Merrittstown.

On the roads leading into the valley of Dunlap Creek near the northern margin of the quadrangle the Waynesburg coal makes a large showing. At an opening the following section was obtained:

Waynesburg coal near northern margin of Masontown

quadrangle.			
2 .		Feet.	Inches
Coal		. 1	2
Clay	<i></i>	. 0	2
Coal		. 1	10
Clay		. 0	11
Coal		1	6
Madal			

ing and the coal probably slightly exceeds the thickness | bed. given. In the vicinity of Merrittstown the coal has been mined extensively for local use, and its section at this point is as follows (sec. 2, fig. 18):

Waynesburg coal near Merrittstown.

	Feet	. Inches
Coal	. 1	0
Brick coal	. 0	6
Coal	. 1	6
Clay	0	10-24
Coal		
Total (average)	6	7

Throughout Luzerne Township the Waynesburg coal has been mined at many places for local use. In this obtain complete sections. About 1 mile west of Heistersburg a recent opening on the road leading to Arensburg Ferry shows the following section:

Waynesburg coal a mile west of Heistersburg.

	reet.	inches.
Coal	1	6
Shale	. 3	0
Coal	1	0
· · · · · · · · · · · · · · · · · · ·		
Total	5	6

According to this section the coal is so badly broken by partings that it has little commercial value, but from the thinness of the section it seems probable that one or two benches remain concealed. Professor Stevenson gives the following section from an opening 1 mile southwest of the village, presumably from mines now abandoned, on the Arensburg Ferry road (sec. 3, fig. 18):

Waynesburg coal a mile southwest of Heistersburg.

	r eec.	Inches.
Clay shale	0	3
Coal	0	3
Clay	0	3
Coal	2	0
Clay	0	2-10
Coal	3-4	
Total (average)	R	

About 1 mile southeast of Heistersburg the following section was obtained at a mine which recently has been operated (sec. 4, fig. 18):

Waynesburg coal a mile southeast of Heistersburg.

	Feet.	Inches.
Coal	0	6
Bony coal	. 0	3
Coal		
Total	-5	8.1

The bottom bench is somewhat obscure and its thick

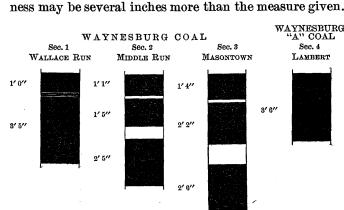


Fig. 19.—Sections of Waynesburg and Waynesburg "A"

At this point the bed is overlain by about 10 feet of shale, which separates the coal from the Waynesburg sandstone above. On Wallace Run a mine has recently been opened on the Waynesburg coal about 1½ miles northeast of East Riverside. At this mine the following section was obtained (sec. 1, fig. 19):

Waynesburg coal on Wallace Run.

	Feet.	Inche
Clay roof.		
Coal	. 1	. 0
Bone	. 0	3
Coal	. 3	5

Total..... 4 8

On Antram Run the coal has been opened in a number of places. No detailed measures were obtained, but the total thickness of the bed appears to be about 5 feet. It is well exposed also on Middle Run near the crossing of the Edenborn and Dearth road, where it shows the following detailed section (sec. 2, fig. 19):

Waynesburg coal on Middle Run.

· :	Feet.	Inches.
Coal	1	1
Clay	0	2
Coal	. 0	8-25
Clay	0	1-14
Coal		
Total (average)		

North of Masontown, on the road leading to McCanns Ferry, an opening occurs at which the following section was obtained (sec. 3, fig. 19).

At this point a good vertical section was obtained showing the Uniontown coal with a thickness of 2 feet 6

The bottom bench was not well exposed at this open- inches, 100 feet below the outcrop of the Waynesburg

Waynesburg coal north of Masontown.

		Inches
Coal	1	4
Clay	. 0	2
Coal	2	2
Clay	. 0	5-20
Coal	. 2	6
Total (average)	7	2

The rise of the strata on the western limb of the Fayette anticline carries the Waynesburg coal above the tops of the hills in the region south of Masontown. On the whole the Waynesburg bed is prominent throughout the northwest corner of Fayette County on account of its region the sandstone is coarse and generally massive and great aggregate thickness, but the number and thickness the coal is easily identified. It was seen on almost all of the clay partings make the bed expensive to mine, roads that crossed its horizon, but it was difficult to and the high percentage of sulphur and ash which the coal usually carries renders it of little value under existing conditions. It has been mined in a desultory way to supply local needs, and probably in the future, when the Pittsburg coal is practically exhausted, this bed may receive some attention, but the prospect is not bright for immediate utilization.

> Waynesburg "A" coal.—The first coal bed above the base of the Dunkard formation has been designated in previous reports the Waynesburg "A" coal. In the Lambert shaft section it occurs 61 feet above the Waynesburg coal and it has a its position and relathickness of 3 feet 6 inches (sec. 4, fig. 19).

> Although not showing so great a total thickness as the Washington coal, higher in the series, still, so far as quality is concerned, it is probably the most important bed in the Dunkard formation.

In the type section of Washington County the Waynesburg "B" coal is supposed to be next in the series, and is separated from the Waynesburg "A" by an interval 6'0" of about 30 feet. In the Lambert shaft section this coal is not present and the next bed above the Waynesburg "A" coal is approximately at the position of the Little Washington coal as given by Professor Stevenson in his type section. This is an unimportanat bed in the Lambert shaft, but its occurrence is interesting, since it shows the wide extent of some of these minor coal horizons.

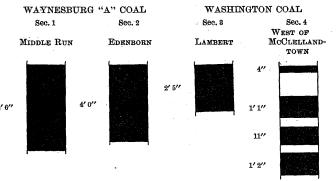


Fig. 20.—Sections of Waynesburg "A" and Washington

On Middle Run the Waynesburg "A" coal has been opened in several places. Just above the crossing of the

road from McClellandtown to Dearth it shows a thickness of 4 feet 6 inches (sec. 1, fig. 20).

On Antram Run it has also been prospected for local use. About 1 mile from the pected for local use. About 1 mile from the

mouth of the run an opening reveals a thickness of about 3 feet. The bloom of this bed was seen in a number of places on the margins of the Lambert syncline and in Luzerne Township, where it closely overlies the heavy Waynesburg sandstone. From the showing which it makes in crossing the roads, it seems possible that its thickness over most of this territory ranges from 2 to 3

In the Edenborn shaft a thickness of about 80 feet of the Dunkard formation was pierced before reaching the Waynesburg coal. In that interval the Waynesburg "A" coal is reported 57 feet above the Waynesburg horizon and its thickness is given as 4 feet (sec. 2, fig. 20). The quality of the coal from this bed is not given, but if it is the same as reported from mines on the outcrop in various parts of the basin, and if it holds a thickness of 4 feet over any considerable territory, the Waynesburg "A" coal will be of value when the larger coals are exhausted.

Washington coal.—The Washington coal bed can not be identified in the Uniontown syncline. In the Lambert basin a bed at about this horizon has been noted in a number of places. Its char- Washington acter and position are probably best shown typical occurrence. in the Lambert shaft, where it has a thick-

ness of 2 feet 5 inches (sec. 3, fig. 20) and occurs 140 feet above the Waynesburg coal. It seems probable, however, that its thickness as given above includes several shale partings, for the section (sec. 4, fig. 20) measured at an opening on the river bluff west of McClellandtown shows the following broken character:

Washington coal in river bluff west of McClellandtown.

Coal	0	4
Clay	1	3
Coal	1	1
Clay	0	6
Coal	0	11
Clay	0	5
Coal	1	2
Total	5	8

The Washington coal shows in several localities on massive Pittsburg sandstone, which generally forms Middle Run, but it does not appear to be the thick com- cliffs above the coal in this region. plex bed that it is in the type locality. At one point a thickness of 32 inches was coal on Middle Run. observed at this horizon, and at another 24

Above the Washington coal a number of small beds | shows the following section (sec. 4, fig. 21): were encountered in the Lambert shaft. From an economic standpoint they are of no value, and it is doubtful

section in Greene and Washington counties.

inches of coal are visible.

COAL IN GREENE AND WASHINGTON COUNTIES.

if they can be correlated with the coal beds of the type

Pittsburg coal.—The Pittsburg coal shows in outcrop over a very small area of Greene County. It rises from water level on Monongahela River about the mouth of Cats Creek, and from this point it General ococcurs in the river bluffs on both sides of pittsburg coal.

the stream as far as Greensboro and New Geneva. Beyond this point it recedes somewhat from the immediate vicinity of the river and is found in outcrop several hundred feet above water level. On the

west side of the river the coal has been mined to some

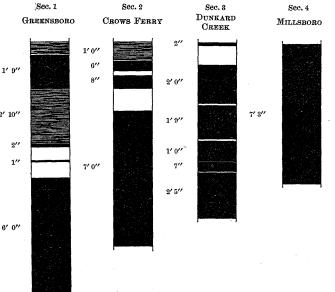


Fig. 21.—Sections of Pittsburg coal.

extent in the vicinity of Greensboro. At an old mine on the Mapletown road the following section is exposed (sec. 1, fig. 21):

Pittsburg coal at old mine north of Greensboro.

1 0000 any court are one memor m		,			
	Feet.	Inches.	Feet.	Inches.	
Roof division:					
Dark shale	. 0	6			
Coaly shale	. 0	8			
Coal	. 1	.8			
Clay with coal streaks	. 2	10			
Coal	. 0	2			
Clay	. 0	8			
Coal	. 0	1		_	
			6	8	
Main clay parting			0	10	
Lower division (seen)			6	0	

The Pittsburg sandstone makes its appearance south of Greensboro, as shown in the following section (sec. 2, fig. 21), which was obtained on the hills back of Crows Ferry, but in this locality the sandstone does not appear to have replaced the coal as at other points in this part of the quadrangle.

Pittsburg coal in hills back of Crows Ferry

	Feet.	Inches.	Feet.	Inches.
Roof division:				
Sandstone.				
Shale and coal	. 1	0		
Coal	. 0	6		
Clay	. 0	3		
Coal		8		
			2	. 5
Main clay parting	• *		1	2
Lower division			7	0

On Dunkard Creek the Pittsburg coal is exposed to beyond the limits of this territory. Near Robtown, which is located near the southwest corner of the Masontown quadrangle, the coal has the following section (sec. 3, fig. 21):

Pittsburg coal near Robtown on Dunkard Creek.

	√ F,6€	et. Inches.
Coal	0	2
Clay	1	. 0
Coal	2	0
Clay	0	1
Coal	1	. 9
Clay	0	1
Coal	1	. 0
Clay	0	$\frac{1}{8}$
Coal	0	7
Clay	0	$\frac{1}{2}$
Coal	2	5
Total	8	1 1 5 8

In the small area of Washington County which lies in the northwest corner of the Masontown quadrangle the Pittsburg coal is exposed in the river bank

near water level from the mouth of Tenmile River outcrop Creek above Millsboro around the bend to coal from the mouth of Meadow Run. Coal has been Creek to Meadow Run. mined for a long time on this outcrop, but

at present the production is largely restricted to three mines of the Monongahela River Consolidated Coal and Coke Company, which lie in the Fifth Pool, just

At one point on the west side of the river the lower division of the coal shows a thickness of 7 feet, and at another opening in the vicinity it has a thickness of 7 feet 9 inches. On the east side of the stream the coal

Pittsburg coal near Millsboro.

	Feet.	Inches.
Roof division	1	. 8
Main clay		9-11
Lower division		0
Total (average)	9	<u> </u>

The roof division is frequently absent, being replaced by the heavy Pittsburg sandstone, which is particularly well developed in this vicinity.

Redstone coal.—There is considerable uncertainty regarding the thickness and position of the Redstone coal west of Monongahela River. It is

exposed in natural outcrop only in the Redstone southern part, reaching water level on Monongahela River near Hate 11. Monongahela River near Hatfields Ferry.

According to measured sections at the surface and to drill records the interval between the Redstone coal and the Pittsburg bed seems to range from 30 to 80 feet. In composition the bed probably varies greatly. In the southern part of the quadrangle the Redstone is thin and composed almost entirely of bituminous shale with occasional layers of coal a few inches in thickness. In the vicinity of Greensboro it reaches a thickness of 18 inches and the inclosing bituminous shale has a thickness of nearly 13 feet. From this point northward the mass of the shale grows less and less until near the mouth of Whiteley Creek it disappears, leaving the coal about the same thickness as at Greensboro. In the record of a deep well drilled near Willow Tree, a coal presumably corresponding to the Redstone occurs at a height of 80 feet above the base of the Pittsburg bed and 90 feet below the Mapletown or Sewickley coal. So far as known this is the greatest recorded interval in this territory. On Dunkard Creek there is a small coal bed at about 70 feet above the Pittsburg, which is supposed to be equivalent to the one reported in the Willow Tree well. In the vicinity of Greensboro the interval between the Pittsburg coal and the first bed higher in the series is only 25 or 30 feet. Either the interval between these beds has decreased between Willow Tree and Greensboro or the coal which shows in the Mapletown road back of Greensboro is at a lower horizon than the one encountered in the Willow Tree well. Since the Redstone coal bed is unimportant in this region, its exact correlation is not a matter of much moment, except in showing the great variation of the measures in this part of the field. In the vicinity of Greensboro the interval seems to be variable, since on the left fork of the road leading up the hill back of Greensboro the Redstone bed appears at a distance of about 50 feet above the Pittsburg coal.

Northward from this point the coal dips gently, reaching water level west of Masontown. At the mouth of Cats Creek the coal has been opened on the north side of the creek, where it shows the following section:

Redstone coal at mouth of Cats Creek.

	Feet.	Inches.
Black shale	. 1	6
Coal	. 3	0
Shale	. 1	0
Limestone	. 6	0
Total	11	6

At this point the coal is about 50 feet above the Pittsburg bed, a relation which appears to hold for some distance northward, since in the Gates shaft, at the mouth of Middle Run, a coal 2 feet 2 inches in thickness is reported at the same distance above the Pittsburg coal.

Previous to the discovery of petroleum in this State the rich bituminous shale associated with the Redstone coal bed was distilled for oil, but the discovery of the great pools on Oil Creek quickly terminated this indus-

Sewickley coal.—The Sewickley coal bed is of considerable importance in the southern part of Greene County, ranking second only to the great Pittsburg

coal. It lies near the base of the Great limestone, and the interval between it and the Pittsburg bed has a fairly constant thickness Pittsburg of about 140 feet. Near the southwest cor-

ner of the quadrangle an old opening was observed in which the bed has a thickness of 5 feet, but the details of parting could not be obtained. South of Wiley an opening displays 4 feet 6 inches of coal, overlain by 2 feet of shale, but the entire thickness of the bed is not exposed. At this point it appears to be about 125 feet above the Pittsburg coal.

On the road from the mouth of Dunkard Creek to Mapletown the Sewickley coal has been opened at a number of places. On the first summit above the river road it shows as a large bloom in the road, but its thickness could not be determined. At this point it is approximately 140 feet above the Pittsburg bed. In an old opening about three-quarters of a mile farther north coal to a thickness of 3 feet is exposed, but the base of the bed is concealed and its full thickness could not be determined. At this point it is not less than 135 feet beyond the boundary line of the quadrangle. The town | above the Pittsburg coal. On the direct road between of Millsboro is built upon a terrace underlain by the Greensboro and Mapletown the Sewickley coal shows as

opened in a small ravine on the south side of the road. | ally thin in this region and is composed largely of | the Brownsville anticline, which, although feebly devel-The base of the bed is concealed by standing water, but | bituminous shale.

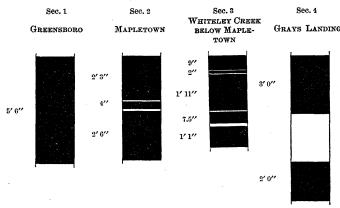


Fig. 22.—Sections of Sewickley coal.

above that 4 feet of the clear coal are visible in the opening. The full thickness is reported to be 5 feet 6 inches (sec. 1, fig 22).

known as the Mapletown coal. It has been mined here extensively for local use, and in coal near Mapletown. general it supplies a fair quality of domestic

fuel. The bed has a total thickness of about 5 feet, but it usually contains small clay partings, which detract considerably from its value. A detailed section at this point is as follows (sec. 2, fig. 22):

Sewickley coal near Mapletown

	Inci
2	3
0	
0	4
0	2
2	6
5	3
	2 0 0 0 2

The coal of the upper bench is of good quality, but that of the lower contains so high a percentage of sulphur and ash that its fuel value is comparatively low. The interval between the Sewickley and the Pittsburg coals is well shown in the Willow Tree well record previously referred to. According to that record there is $|_{4'0''}$ an interval of 135 feet between these beds. This agrees fairly well with a number of accurate well sections recently drilled northeast of Masontown, on the ridge between Cats Creek and Browns Run. In four of these wells the interval was found to be 111, 115, 136, and this vicinity, but they are generally closed and the coal

from place to place, as shown by a comparison of the Mapletown section with the following sections (sec. 3, fig. 22) of two mines on Whitely Creek between Mapletown and the crossing of the wagon road from Greensboro to Sigsbee:

Sewickley coal near Mapletown.

	Ft.	In.	Ft. In.	
Coal	0	9	0 7	
Clay	0	1/8	0 1/4	
Coal	0	2	$0 \frac{7\frac{1}{2}}{2}$	
Clay	0	1/2	$0 \frac{1}{8}$	
Coal	1	11	1 10	
Clay	0	1	$0 \frac{1}{2}$	
Coal	0	$7\frac{1}{2}$	0 1	
Bituminous clay	0	$2\frac{1}{2}$	0 2	
Coal	1	1	1 2	
Total	4	105	$\phantom{00000000000000000000000000000000000$	

The top and bottom benches are reported as containing good coal, generally preferred to that from the Waynesburg bed, and also preferred to that from the middle bench, which carries considerable sulphur. From a drill record near this point the interval between the Sewickley and Pittsburg beds is known to be 125 feet. On Whiteley Creek near the crossing of the Greensboro and Carmichaels road this bed shows a thickness of 4 feet of coal. A section from an opening on the west bluff of the river about one-half mile above Grays Landing shows the Sewickley coal to have a thickness of 6 feet and to lie 56 feet above the Redstone coal. The Sewickley was once extensively mined at Grays Landing, where the following section (sec. 4, fig. 22) was obtained:

Sewickley coal at Grays Landing.

· · · · · · · · · · · · · · · · · · ·	Feet.	Inch
Coal	. 3	0
Clay	. 2	6
Coal		
Total	7	6

Below Grays Landing the shale partings appear to thicken rapidly, completely spoiling the bed for mining purposes. This is exemplified by the following section, measured by Prof. I. C. White about a quarter of a mile above the mouth of Big Whiteley Creek:

Sewickley coal near mouth of Big Whiteley Creek.

		Inches.
$\operatorname{Coal} \ldots \ldots$	2	6
Sandstone		0
$\operatorname{Coal} \ldots \ldots$	0	5
Shale	. 2	0
Coal	0	1
Sandstone	12	0
Coal	. 1	6
Total	33	6

Although the Sewickley coal is above river level throughout the Masontown quadrangle, it is not devel-Masontown and Uniontown.

Uniontown coal.—This bed, although seemingly persistent throughout this part of Greene County, is too thin to be of commercial importance under present conditions. The horizon was recognized at a great many localities by a small coal bloom in the road, but no details of the bed could be obtained. At the time of the previous survey of this region this bed was worked on a small scale in Cumberland Township. The bed section at this opening is as follows:

Uniontown coal in Cumberland Township.

	Feet.	Inches.
Coal	. 1	6
Sandstone	10	0
Coal	. 1	0
Total	12	6

Waynesburg coal.—This bed reaches its greatest development in Greene County. Its total thickness is This coal probably reaches its best development in the | frequently 7 or 8 feet, but it is so broken by clay partvicinity of Mapletown, and for that reason it is locally | ings and the coal is frequently so impure that mining is expensive, and the coal has generally been discarded as a fuel in this region.

Owing to the southward rise of the strata, the outcrop of this bed recedes from the river south of the mouth of Whiteley Creek, and on the ridge between Whiteley and Dunkard creeks the Waynesburg coal is exposed only in the highest points and its outcrop is limited to a few square miles in extent. Near the western edge of the quadrangle, on one of the tributary branches of Dunkard Creek, an opening was seen which shows 5 feet of clear coal with a sandstone roof. Other old openings exist in

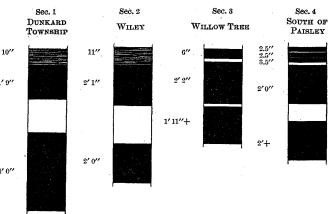


Fig. 23.—Sections of Waynesburg coal.

is inaccessible. The following detailed section (sec. 1, The structure of the Sewickley coal bed varies greatly | fig. 23) was measured at an opening on the Morgantown

Waynesburg coal in Morgantown road, Dunkard Township.

road near the Greene Township line:

		Inches.
Coaly shale	. 0	10
Coal	. 1	9
Clay	. 1	9
Coal	4	0
Total	. 8	4

A partial section from a mine near the northeast corner of Greene Township is as follows (sec. 2, fig. 23):

Waynesburg coal near Wiley.

	reet.	inches.
Coal and shale	. 0	11
Coal	. 2	1
Clay	. 2	0
Coal, seen	. 2	0
Total	. 7	0

The coal in this locality is generally poor and can not compete with coal from the Pittsburg bed, which is accessible all along Dunkard Creek in this quadrangle. Since the mines on the Waynesburg coal generally have been abandoned in this region, it is extremely difficult to obtain details and thicknesses of the various members of the bed. At an opening about a mile west of Willow Tree the following section (sec. 3, fig. 23) was obtained:

Waynesburg coal a mile west of Willow Tree.

	Feet.	Inches.
Clay shale.		
Coal	. 0	6
Clay	. 0	2
Coal	2	2
Clay	. 0	2
Coal, seen	. 1	11+
Total		11.

On the road leading north from Willow Tree across Turkey Knob several coals are exposed, and there is

some doubt as to which of these should be called Waynesburg. In preparing the geo- Uncertainty of identificalogic map, the uppermost bed, which shows in the road as a strong bloom under shaly north of Willow Tree. sandstone, was considered to be the Waynes-

burg coal, but the coal showing 70 feet lower in the road makes also a heavy bloom, and this is overlain by coarse, massive sandstone which resembles the typical Waynesburg sandstone much more strongly than that which overlies the upper coal, and it seems possible that the lower coal is the true Waynesburg bed. If this interpretation prevails, the structure about Willow Tree, as indicated by the contour lines, should be considerably modified and rendered more complicated than by the present interpretation. If the Waynesburg horizon is In the vicinity of Ceylon the coal has been more extended as of Carmichaels (secs. 3, 4, fig. 25 and secs. 1, 2, lowered 70 feet it will apparently introduce a syncline, sively mined than at any other point on the stream. fig. 26):

oped in Greene County, seems to extend at least as far as the western margin of the quadrangle.

Throughout all of the region south of Turkey Knob the Waynesburg coal is of workable proportions, but its character is such as to preclude extensive use until most of the other coal beds of the region are exhausted.

In the northern part of Monongahela Township the Waynesburg coal shows in a number of places in natural outcrop, and it has been mined at several points. Several old openings were observed above Sigsbee, but at no massive sandstone on the road from Sigsbee to Paisley, fig. 24): on the north side of the divide. It was formerly mined on the road from Carmichaels to Greensboro, on a small branch of Little Whiteley Creek. The roof of this mine is composed of massive sandstone, beneath which the following section (sec. 4, fig. 23) was measured:

Waynesburg coal south of Paisley.

	Feet.	Inches.
Shale.		
Coal	. 0	$2\frac{1}{2}$
Bone	. 0	1/2
Coal	. 0	$2\frac{1}{2}$
Bone	. 0	1/4
Coal	. 0	$3\frac{1}{2}$
Shale	. 0	$1\frac{1}{2}$
Coal	. 2	0
Shale	. 0	11
Coal, seen	. 2	0+
Total	. 5	9

Owing to the imperfect drainage of the mine, the lowest bench is not well exposed, but its thickness is probably not much greater than that given. The variation in character of the Waynesburg sandstone is well illustrated in the vicinity of this mine. On the north side of the ridge the coal is overlain by 50 feet of very coarse sandstone, while on the opposite side of the ridge, within less than a quarter of a mile from the mine, the strata overlying the coal consisted entirely of sandy shale, bearing no resemblance to the heavy bed on the

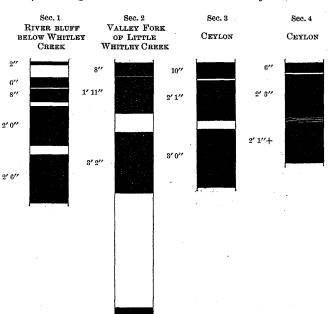
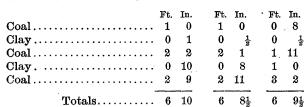


Fig. 24.—Sections of Waynesburg coal.

opposite side of the ridge. On the river bluff directly east of the last-described mines and about a quarter of a mile below the mouth of Whiteley Creek the following section (sec. 1, fig. 24) of the Waynesburg coal is exposed:

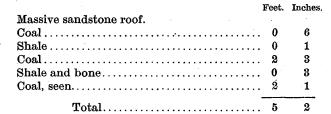

Waynesburg coal on bluff below mouth of Whiteley Creek.

Coal	0	2
Clay	0	8
Coal	0	6
Clay	0	1
Coal	0	8
Clay	0	3
Coal	2	0
Clay	0	6
Coal	2	6
Total	7	4

At this point the interval between the Waynesburg coal and the Uniontown bed is 91 feet. The latter has a thickness of 2 feet and lies 136 feet above the Sewickley

On the Valley Fork of Little Whiteley Creek the Waynesburg coal has been extensively prospected. Most of the pits have been so poorly cared for that the roof has fallen in and the coal is no longer visible. The best sections are the following from three openings about a mile from the main creek, which were published in Report K of the Second Geological Survey of Pennsylvania, p. 120, upon Greene County (sec. 2, fig. 24):

Waynesburg coal on Valley Fork of Little Whiteley Creek.


On all the roads leading out of the lower part of this valley the bloom or old openings of this coal were observed, but most of the latter had been made years

a large bloom by the wayside, and recently it has been oped to any extent below Hatfields Ferry. It is gener-or, at least, a decided flattening almost on the axis of Some of the mines are still open and give the following section (sec. 3, fig. 24):

														_		. Inche	S
Coal															-		
Clay	 								 						0	1	
Coal	 								 						0	24–26	
Clay	 			 							 				0	1-10	
Coal	 			 					 		 				3	0	

Its quality is said to be fairly good, and it is used by the blacksmiths to some extent. A mine just east of point was coal visible. It shows also as a bloom under the village gave the following partial section (sec. 4,

Waynesburg coal just east of Ceylon.

Judging from the previous section, it seems probable that the lower bench is somewhat concealed at this opening, but the coal varies so greatly from place to place that it is impossible to speak with certainty unless the coal is actually exposed.

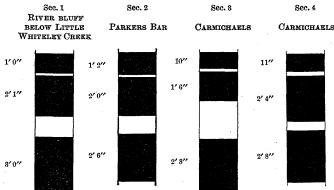
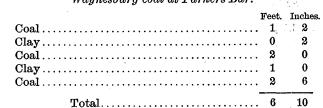


Fig. 25.—Sections of Waynesburg coal.


From Little Whiteley Creek to Carmichaels the valley has been so deeply filled with alluvium that the horizon of the Waynesburg coal is concealed. It shows, however, in the river bluffs at a number of places. About onehalf mile below Little Whiteley Creek the following section (sec. 1, fig. 25) is exposed in an opening 190 feet above water level:

Waynesburg coal in bluff below mouth of Little Whiteley

0.00		
	Feet.	Inches.
Coal	1	0
.Clay	0	2
Coal	2	1
Clay	1	1
Coal	3	0
Total	7	4

At this point the Waynesburg is 90 feet Uniontown coal, which shows a thickness of 1 foot 6 inches. At a distance of 1½ miles below Little Whiteley Creek the coal shows the following section (sec. 2, fig. 25):

Waynesburg coal at Parkers Bar.

On the road from Carmichaels to Parker Bar a large coal bloom occurs in the road at about the horizon of the Waynesburg coal. The Waynesburg sandstone is poorly developed at this point, and the identification of the coal bed is made partly on its supposed agreement in altitude

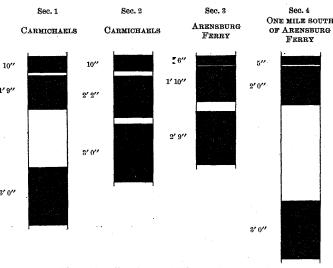


Fig. 26.—Sections of Waynesburg coal

with the Waynesburg horizon and also upon the size of the bloom. The bed appears to be about 5 feet in thickness, but details regarding partings could not be obtained. It was formerly opened on the road west of Browns Ferry, but the mine is closed at the present time and no measurements could be obtained.

The Waynesburg coal has been extensively developed on Glade Run, which flows nearly due north/about a mile east of Carmichaels. The following sections represent ago and were not accessible at the time of examination. the coal as it appears in four openings located about due Waynesburg coal 1 mile east of Carmichaels.

	Ft.	In.	Ft.	In.	Ft.	In.	Ft.	In.
Coal	0	10	0	11	0	10	0	10
Clay	0	2	0	3	.0	2	0	3
Coal	1	6	2	4	1	9	2	2
Clay	2	. 0	0	6	3	0	0	4
Coal			2		3		3	0
Totals	7	2	6	8	8	9	6	7

The coal has also been mined on Muddy Run north of the village. The pits are generally in such condition that the coal cannot be measured, but the following section is reported from this locality:

Waynesburg coal on Muddy Creek north of Carmichaels.

	Feet.	Inches
Coal	. 1	0
Clay	0	2
Coal	. 1	9
Clay	0	2-10
Coal		
Clay	3	0
Coal	. 0	3
Clay	0	4
Coal		5
Total (average)	9	7

In the lower part of Muddy Run Valley many old pits were observed at this horizon, but generally the coal is not accessible. At a mine on the east side of the run, about a mile from the river, the relation coal lies in three benches, the uppermost

having a thickness of 11 inches, the middle bench 2 feet 1 inch, and the lower bench 2 feet 6 inches. The clay parting between the middle and lower benches varies from 7 inches to 1 foot 6 inches in thickness. At the mouth of the run the coal is also divided into three benches, which are 8, 18, and 28 inches in thickness. At this point the Uniontown coal has a thickness of 2 feet, and it has been opened in the hillside 93 feet below the Waynesburg coal and 113 feet above the Sewickley coal, which has a thickness of 3 feet. In a similar section one mile below the mouth of Muddy Run the uppermost bench of the Waynesburg coal has a thickness of 9 inches, the middle bench 2 feet, and the lower bench 2 feet 6 inches. The Uniontown coal, with a thickness of 1 foot 6 inches, was identified 93 feet below the Waynesburg horizon, and the Sewickley, showing a thickness of 2 feet 6 inches, was found at an interval of 111 feet below the Uniontown horizon. At an opening 2 miles below the mouth of Muddy Run the Waynesburg coal shows the following section (sec. 3, fig. 26):

Waynesburg coal at Arensburg Ferry.

	Feet.	Inches.
Coal	0	6
Clay	0	1/2
Coal	1	10
Clay	0	6
Coal	2	9
Model		171

At this locality the Uniontown and Sewickley coals were found in their normal positions, 92 feet and 206 feet respectively below the Waynesburg horizon. They are each reported to have a thickness of 2 feet.

section (sec. 4, fig. 26) was measured at the mouth of

Waynesburg coal 1 mile south of Arensburg Ferry.

	Feet.	Inches.		
Coal	. 0	5		
Clay	. 0	1		
Coal	. 2	0	3	
Clay	. 0	2-60		
Coal	. 3	0		
Total	5 f	t. 8 in.	to 10 ft	6 i

The lowest clay parting, which at the mouth of the entry has a thickness of only 2 inches, swells to a thickness of 5 feet in a distance of 100 feet within the mines.

The Waynesburg coal was seen at several points west of the road from Arensburg Ferry to Carmichaels, but at no point could its thickness be determined.

Throughout Greene County the Waynesburg coal bed appears to be continuous and to carry a large amount of fuel, but it is so broken by clay partings, and the coal itself is generally so impure, that on the whole the bed is not of great prospective value.

Waynesburg "A" coal.—This coal bed is reported to be generally persistent throughout Greene County, but it is doubtful whether it attains as great a thickness in this region as it does in the Lambert syncline of Fayette County. It probably ranges from 1 to 3 feet, with an average in most of the territory of about 2 feet.

A section measured a short distance below the mouth of Little Whiteley Creek shows the coal bed to have a thickness of only 1 foot 6 inches. It is much better developed in the valley of Muddy Run above Carmichaels, where it has been mined, with a thickness of 3 feet 6 inches. The coal is reported to be of excellent quality, being very much superior to that of the Waynesburg bed. Throughout Monongahela Township at a number of places traces of this coal were seen which indicate that it maintains a thickness of about 2 feet throughout much of the territory. Its great development on Muddy Run is presumably local, since Professor Stevenson reports that it thins out and disappears a short distance west of this point.

The Waynesburg "B" coal and the Little Washington bed are doubtless present throughout much of this

territory, but they are too thin to be of commercial | value, and hence need not be discussed.

Washington coal.—The blossom of this coal was observed at a number of places in Greene County, but no sections of the bed could be obtained. It is probable that the aggregate thickness is considerable, but the actual amount of coal is only a fractional part of the whole and consequently the bed has little commercial

COKE.

Almost all of the coal mined from the Pittsburg bed in this region is converted into coke. This industry has reached wonderful proportions, although its development has been limited almost entirely to the decade just passed. In 1860 there were but 70 coke ovens in use in the Connellsville district. From this small beginning the plants have grown steadily in size and number until at present there are approximately 25,000 ovens in constant use in the territory embraced in the Connellsville basin and the Lambert syncline, including over 7000 ovens in the Uniontown and Masontown quadrangles.

The character of the coal varies considerably in the Connellsville and adjacent territory in which the Pittsburg coal is coked. In the early days of the industry no coal pittsburg coal.

except that mined from the southeastern side of the basin would be used, and it is claimed by old operators in the field that the coke produced on that side was far superior to that from the opposite side. At the present time most of the coal from the eastern side of the syncline has been exhausted, and in the trade there is no is located south of the National Pike Locations of gas fields. discrimination made in the coke from the various in the vicinity of Haddenville; the second is on parts of the field. South of Uniontown the coal is under slight cover and there is a large amount | the third lies north of Masontown; the fourth is manufacture of coke. This is especially true of the isolated areas in the vicinity of Smithfield and Morris Crossroads. Yet even in these small areas the coal is being mined and the better part coked at several small establishments.

Until within the last four or five years the coal in the Lambert syncline south of Redstone Creek was not supposed to be capable of producing coke equal to that from the Uniontown syncline. A plant was once established on the river above the mouth of Cats Creek, but, for some unknown reason, it was abandoned and allowed to decay. Within the last four or five years the coal in the Uniontown syncline has become so valuable and coke companies that great efforts have been made One mile south of Arensburg Ferry the following to locate new territory from which coke could be 15, pp. 320-321.) produced for the various steel companies which were operating independently. This led to the establishment of the large mines in the southern developing.

coking field in this direction, since the coal is shale); the top of the red shale is ordinarily from 300 almost entirely below drainage level and is inaccessible except by shafting, which has not been done west of Monongahela River. The Pittsburg | tively. The following record shows the succession of coal in the Lambert syncline is successfully coked | beds encountered: along Redstone Creek north of this quadrangle, and extensive developments, just described, have taken place on the eastern limb of the basin from New Salem to Masontown. It seems probable that in the near future the remainder of this basin will be made available and that the coal under parts of Luzerne Township and in Greene County west of the river will be found to contain coal capable of producing coke well adapted for furnace use.

The Connellsville coke is regarded as the standard of excellence in this country. The essential points in a coke for furnace use are hardness of body, well-developed cell structure, purity, and uniform quality.

 $Average\ composition\ of\ Connells ville\ coal\ and\ coke\ (McCreath).$

	··········	·	
	Coal.	Coke.	
	Per cent.	Per cent.	
Water	1.260	.300	
Volatile matter	30.107	.460	
Fixed carbon	59.616	89.576	
Sulphur	.784	.821	
Ash	8.233	9.113	
Phosphorus		.014	
Total	100.000	100.284	

The average composition of Connellsville coal and its resultant coke, according to Mr. A. S. McCreath, is given in the preceding table.

The average of a number of analyses made in 1893 and reported by the H. C. Frick Coke Company shows the following composition:

Average composition of Connellsville coal and coke (Frick Company).

	Coal.	Coke.	
Water	Per cent.	Per cent.	
Volatile matter	29.812	.880	
Fixed carbon	60.420	89.509	
Sulphur	.689	.711	
Ash	7.949	8.830	
Total	100.000	100.000	
•			

NATURAL GAS.

Natural gas has been encountered in nearly all wells which have been sunk in the Masontown quadrangle, but with the exception of

a few localities it has not been found in occurrence of gas. paying quantities. In nearly every case the sands that have yielded oil have also yielded some gas. The gas, however, is by no means con-

fined to these horizons, but is encountered in slight amounts in nearly all of the more porous sand-At five localities gas has been found in suf-

ficient quantities to warrant the application of the Browns Run in the vicinity of McClellandtown; of weathered coal which can not be used in the about a mile west of Old Frame; and the fifth is just back of New Geneva in the southern part of the quadrangle.

HADDENVILLE GAS FIELD.

The Haddenville field has been developed since the field work of the present survey was completed, and hence none of the wells are located on the map. Judging from the somewhat vague and indefinite reports, it probably outranks the other fields of the Masontown quadrangle. At the present time nine wells are located in this field. In all except two gas is derived from both the Gantz and "Fifty-foot" sands. The two exceptional wells found gas in the Big Injun sand.

Thompson well.—Well No. 2 of Economic Geology sheet, located on Dearth farm, three-quarters of a mile south of Haddenville, Menallen Township. Elevation, is so completely in the possession of the larger | 1150 feet. Well mouth about 170 feet below Pittsburg coal. (Second Geological Survey of Pennsylvania, Report

About 1886 this well was sunk to a depth of about 2000 feet on the Dearth farm, three-quarters of a mile south of Haddenville, in Menallen Township. A flow of gas was obtained at depths of 1200 and 1712 feet, presumably end of the Lambert syncline, and they are rapidly | from the Big Injun and Gantz sands. The "pay streaks" lie respectively at 1040 and 1540 feet below the top of It is impossible to predict the extension of the the upper "red-rock" of the drillers (Conemaugh red to 315 feet below the Pittsburg coal; hence, if the latter were present the approximate intervals between it and the "pay streaks" would be 1340 and 1840 feet, respec-

Record of Thompson well, near Haddenville.

	Thickness in feet.	Depth in feet.
Conductor	. 20	20
Slate	. 10	30
Limestone	. 10	40
Sandstone and slate	. 30	70
Slate, black	. 40	110
Sandstone, black and hard	. 20	130
Slate, white	. 30	160
Red rock	. 20	180
Sandstone	. 10	190
Red rock	. 25	215
Slate	. 30	245
Sandstone	. 25	270
Red rock		290
Slate, black	. 10	300
Sandstone, white	. 35	335
Slate and shells	. 25	360
Coal	. 1	361
Slate	. 9	370
Shells, hard		378
Sandstone, white, pebbly (Mahoning).	. 100	478
Slate, dark		528
Sandstone, white (gas)	. 28	556
Slate and shells		591
Sandstone (salt water)		601
Slate, very black	. 70	671
Sandstone	. 5	676
Red rock	. 20	696
Slate	. 10	706
Red rock		731
Slate	. 5	736
Red rock	. 20	756
Slate	. 10	766
Red rock	20	786

	Thickness	D 47.
	in feet.	Depth in feet.
Sandstone, white (Pottsville)	230	1016
Slate	. 5	1021
Limestone	. 90	1111
Sandstone, white, hard (Pocono; gas as	t :	
1200 and 1212)	. 190	1301
Slate and shale	. 100	1401
Sandstone, dark	. 25	1426
Shale, white	. 100	1526
Slate, white	. 47	1573
Sandstone, dark	. 50	1623
Slate, white	. 25	1648
Sandstone, dark	. 30	1678
Slate	. 32	1710
Sandstone (gas)	. 2	1712

It seems probable that there is an error in this section, since for a distance of 110 feet above the supposed Pottsville sandstone the prevailing color of the rocks is reported to be red—a color that is seldom found in the Allegheny formation.

This well is located almost at the very crest of the anticline, a position usually considered as most favorable for the occurrence of gas. The fact that only a little gas was found, while in the wells recently drilled on the western slope of the anticline and nearly a mile from its axis large flows of gas were obtained, may possibly be due to the lenticular character of the various individual layers of sand and shale making up the producing formations, or to a lack of porosity in the sand at its highest point.

Hugh Thompson well.—Well No. 1 of Economic Geology sheet. Located a few hundred feet northeast of the post-office at Upper Middletown. Elevation, 950 feet. (Second Geological Survey of Pennsylvania, Report I5, p. 319).

Gas in small quantities has been obtained from this well which was sunk to a depth of 2440 feet. Its position is near the crest of the Fayette anticline. The gas reaches the surface accompanied by a strong flow of water, but is collected under a tank and supplies the needs of the town. The amount is apparently too small and the depth too great to encourage further drilling in the vicinity. Following is a record of the well:

Record of Hugh Thompson well at Middletown.

	Thickness in feet.	Depth in feet.
Conductor	10	10
Coal	4	14
Soapstone	20	34
Sandstone, white, hard	15	49
Slate, black	60	109
Sandstone, white	30	139
Limestone, blue	10	149
Slate, black, and coal	40	189
Sandstone, white, hard	38	227
Slate	50	277
"Salt sand" (gas)	20	297
Slate and coal	80	377
Slate and shells	40	417
Sandstone	10	427
Slate	40	467
"100-foot" sand)	138	605
Slate	10	615
Sandstone, black)	90	705
Red rock and slate	145	850
Sandstone, shaly	20	870
Sandstone, white (Pocono)	145	1015
Slate	5	1020
Sandstone, white	120	1140
Slate and shells	80	1220
Sandstone, white, hard	35	1255
Slate and shells	175	1430
"Stray" sand (black)	18	1448
Slate, white	15	1463
Slate, black, and shells	175	1638
Sandstone, pebbly	30	1668
Slate and shells	180	1848
Red rock	310	2158
Slate and shells	50	2208
Sandstone, bluish	20	2228
Slate, white, to bottom	22	2440
TANTAMEN CAS TATETO		

FAYETTE GAS FIELD.

The second largest field was that designated by the Second Geological Survey of Pennsylvania as the Fayette field. This was opened in 1887 by the Ryder well, located on the North Branch of Browns Run a mile or more southeast of McClellandtown. This well was a powerful one, the gas being piped to Uniontown and supplying the needs of that town for some time. The position of the well is high up on the flank of the anticline, its curb being below the outcrop of the Pittsburg coal. The gas was from the Big Injun sand. A few other wells were sunk in the vicinity of the Ryder well and small amounts of gas were obtained, but no extensive pool was developed. The record of the Jos. Mack well gives the succession of the rocks of the field.

Jos. Mack well.—On farm of Jos. Mack, North Branch of Browns Run, about a mile southeast of McClellandtown, German Township (Second Geological Survey of Pennsylvania, Report I⁵, pp. 321–322).

Record of Jos. Mack well, near McClellandtown.

	Thickness	Depth in feet.
	in feet.	.,
Conductor	$\dots 15$	15
Shale, sandy, dark, hard	27	42
Sandstone, blue, hard	40	82
Slate, dark	33	115
Shale, red	20	135
Slate, blue	15	150
Sandstone, blue		157
Shale, yellow		173
Sandstone, gray, hard		192
Slate, blue, soft	25	217
Limestone, gray	10	227
Shale, sandy		238
Ol 1	10	0 = 0

	in feet.	in feet.
Sandstone, white, hard	50	300
Slate, blue	26	326
Sandstone, dark, hard	6	332
Slate, blue	24	356
Sandstone, gray)	16	372
Sandstone, light $\{(Mahoning), \dots, \}$		
gray, hard)	38	410
Shale and coal	14	424
Shale, brown	19	443
Limestone, dark	30 -	473
Sandstone, gray, hard	33	506
Shale, dark	24	530
Shale, black	14	544
Shale, blue	60	604
Sandstone, brown, hard	26	630
Sandstone, white, hard	23	653
Shale and coal	16	669
Sandstone, white, hard	18	687
Shale, blue	50	737
Sandstone, white	47	784
Shale, black	20	804
Limestone, gray	15	819
Shale, dark	42	861
Sandstone, light, hard.	20	881
Shale, blue	8	889
Slate, red	33	922
Sandstone, blue, soft	39	961
Shale, red, some lime	20	981
Limestone, shaly, blue	23	1004
Limestone, hard	18	1022
Limestone, very hard.	33	1055
Limestone, shaly, soft (Greenbrier)	20	1075
Limestone, siliceous		
and red	12	1087
Shale, soft	7	1094
Limestone, siliceous, white	59	1153
Sandstone, white	30	1183
Sandstone, white { (Pocono) }		
(strong gas))	13	1196

MASONTOWN GAS FIELD.

The limits of the Masontown gas field can not be defined at present, as every well sunk in the region produces some gas. The best wells, however, are confined to an area lying between Masontown, Monongahela River, and Browns Run. The gas is mainly from the Gantz sand of the lower part of the Pocono formation, and is encountered at intervals of 1831 to 1886 feet below the Pittsburg coal. At least one well (Gilmore) encountered considerable gas in the Big Injun sand in the upper Pocono at 1371 feet above the coal. The record below gives the succession and thickness of the beds encountered by the wells of the Masontown field as reported by the drillers.

'The supply from the Masontown wells has held out fairly satisfactorily. The gas has been piped to Uniontown, about 12 miles to the east, and was the principal source of supply for that town for some time.

S. T. Gray well.—Well No. 17 of Economic Geology sheet. On farm of S. T. Gray, Cats Run, three-quarters of a mile southeast of Masontown. Elevation, 880 feet. Well mouth 15 feet below Pittsburg coal. (Second Geological Survey of Pennsylvania, Report I⁵, pp. 322-323.)

Record of S. T. Gray well, on Cats Run.

	Thickness in feet.	Depth in feet.
Unrecorded		375
Sandstone, gray, hard		390
Shale, black		450
Sandstone		485
Shale and limestone	20	505
Shale, dark		550
Sandstone (Mahoning)		600
Shale, black	40	640
Sandstone, gray		648
Shale, black		683
Sandstone, gray		701
Shale, dark		731
Sandstone, dark		756
Shale, black		796
Shale, gray		802
Shale, black		818
Sandstone, white	15	833
Sandstone, dark	30	863
Sandstone, white	7	870
Sandstone, soft, white (Pottsville)	108	978
Shale and coal	4	982
Sandstone, soft	18	1000
Sandstone, white, hard	36	1036
Limestone, shaly		1060
Limestone, shary		1130
Limestone, greenish and shaly		1140
Limestone, red, soft		1200
Limestone, sandy, white		1232
Limestone, shaly		1275
Limestone, sandy, white		1292
Limestone, saldy, white		1303
Limestone, sandy		1380
Sandstone, white (oil show)		1421
		1455
Shale, sandy		1465
Sandstone, gray		1480
Slate, sandy		1490
Shele deals	50	1540
Shale, dark		1635
Sandstone, gray, soft		
Shale, dark		1765
Sandstone, gray		1780
Shale, dark	85	1865
"Gantz sand" (gas at 1894 feet)		1900
Shale		1905
"Fifty-foot sandstone"		1965
Slate and shells		2150
"Gordon sand"		2155
Shale, sandy, red.		2382
Sandstone		2397
Slate, sandy	53	2450
Slate to bottom	75	2525

GAS FIELD NEAR OLD FRAME.

A group of wells somewhat over a mile west of Old Frame, in Nicholson Township, marks the position of Masontown and Uniontown.

another small gas pool. The gas is said to be obtained from the Big Injun at a depth of about 1350 feet below the Pittsburg coal. The record of one of the wells of this pool is given below.

David Gans well.—Well No. 22 of Economic Geology sheet. Located 1 mile west of Old Frame, Nicholson Township. Elevation, 1040 feet. Well mouth about 80 feet below Pittsburg coal. Finished December 16, 1899. Authority, J. W. Shay, Washington, Pa.

Rec. of David Gans well, near Old Frame.

*/	Thickness in feet.	Depth in feet.
Conductor	12	12
Limestone	13	25
Sand	25	50
Unrecorded	35	85
Limestone (water)	10 +	95 +
Slate	65	160
Sandstone	30	190
Slate	40	230
Sandstone	30	260
Red rock	30	290
Slate and limestone	90	380
"Little Dunkard sand"	15	395
Slate	55	450
"Big Dunkard sand" (show of oil at	;	
465 feet)	30	480
Bottom of limestone		580
"Lower Dunkard" (Mahoning)	40	620
Slate and limestone	140	760
"Gas sand"	55	815
Slate and shells.	50	865
"Salt sand")	80	945
Slate { (Pottsville) }	25	970
Sandstone)	20	990
Slate	25	1015
Red rock.	40	1055
Limestone (Greenbrier)	60	1115
Red rock.	30	1145
Limestone	55	1200
"Keener sand"	20	1220
Unrecorded	35	1255
Top "Big Injun sand")		1255
Gas		1261
Bottom of well		1265
<u> </u>	_ : .	

The well is located about $1\frac{1}{2}$ miles northeast of the axis of the Fayette anticline, which is here flattened until the dips do not exceed 80 or 90 feet per mile.

NEW GENEVA GAS FIELD.

The development of the New Geneva gas field is of recent date and little is known regarding it, except that four wells located within a mile of the village derive their supply of gas from the Big Injun sand, and others a little farther away from the town find a good flow of gas in the "Fifty-foot" sand.

MISCELLANEOUS WELLS.

A considerable number of other wells have been drilled within the limits of the quadrangle, but have rarely met with success. The records of two of these wells are given below.

Smithfield well.—Well No. 23 of Economic Geology sheet. Located on west side of Yorks Run, 1 mile north of Smithfield. Elevation, 970 feet. Well mouth about 100 feet below Pittsburg coal. Authority, E. L. Geer, Masontown, Pa.

Record of Smithfield well.

•	Thickness in feet.	Depth in feet.
Conductor		15
Shale, soft blue	. 10	25
Hard, dark iron ore	. 2	27
Coal	. 1	28
Shale, light	. 15	43
Shaly sandstone, blue, hard	. 30	73
Sandstone, hard, gray		93
Sandstone, white, very hard	. 22	115
Sandstone, white, pebbly	. 14	129
Shale, light	. 6	135
Coal	. 1	136
Shale, black	. 7	143
Shale, dark, gritty	. 13	156
Ore, dark, very hard	. 4	160
Shale, blue	. 16	176
Coal		178
Shale, blue	. 17	195
Shale, red	. 6	201
Shale, light		226
Shale, red		242
Sandstone, hard, blue		248
Shale, red		258
Shale, light		298
Shale, dark		318
Limestone, dark		322
Shale, light		337
Shale, red		352
Sandstone, greenish gray		385
Shale, black		400
Sandstone, gray, very hard	. 5	405
Shale, black	. 30	435
Shale and sandstone, hard	. 10	445
Shale and limestone, blue		490
"Lower Dunkard" sandstone, oper		1
gray (Mahoning)	. 30	520
Shale, black, loose		526
Sandstone, hard, gray		596
Shale, black and coal		611
Limestone, hard, brown		661
Shale, black		671
Shale, hard and soft alternating		686
Sand, dark gray, hard spots		701
Shale, black, and coal	. 12	713
Shale, soft, light		748
Shale, sandy, dark		760
Coal, hard		764
Shale, light		776
Sandstone, close, brown		811
Name and the first of the first	. 50	

	Thickness in feet.	Depth in feet.
Sandstone, white to brown	60	871
Shale, dark	35	906
Sandstone, dark, very hard Potts- ville)	8	914
Shale, black, loose	22	936
Sandstone, hard, gray	52	988
Shale, red, (some lime)	94	1082
Shale, dark	40	1122
Limestone shells, soft	24	1146
Limestone, dark, hard	67	1213
Limestone, gray, hard	10	1223
Limestone, dark	16	1239
Sandstone, light, hard (some lime; show	•	
of oil)	21	1260
Limestone, hard, gray	4	1264
Sandstone, light, hard (some lime)	20	1284
Sandstone, light, (hard salt water)	36	1320
Sandstone, white, hard (some lime)	70	1390
Shale, dark	20	1410
Sandstone, gray, hard	10	1420
Shale, dark, sandy		1465
Sandstone, gray, hard (some gas)	82	1547
Shale, dark	10	1557
Sandstone, gray, hard	28	1585
Shale, dark shells	100	1685
Sandstone, gray, hard	10	1695
Shale, dark	39	1734
Sandstone, gray, hard	20	1754
Shale, blue		1788
"Gantz sand," hard, white	12	1800
Shale, blue	30	1830
Sandstone, hard, gray (show of gas)	28	1858
Finished in dark shale and sandstone.		

Stoner well.—Well No. 24 of Economic Geology sheet. Located 2½ miles southeast of New Geneva, on branch of George Creek 1 mile south of the main creek. Elevation, 920 feet. Well mouth about 200 feet below Pittsburg coal. Drilled by Greensboro Natural Gas Company. Authority, J. W. Shay, Washington, Pa.

Record of Stoner well, near New Geneva.

Record of Stoner well, near New 6	teneva.	
· ·	Thickness in feet.	Depth in feet.
	in reet.	in feet.
ConductorLimestone	16 29	45
Unrecorded	65	110
Red rock	80	190
White slate	30	220
Coal	5	225
Hard sandstone	40	265
Slate	8.	273
Hard sandstone	113	386
Slate	20	406
Sandstone	70	476
Limestone	30	506
Coal (light gas)	6	512
Slate	65	577
Sandstone	87	664
Coal	6	670
Hard sandstone} (Pottsville)	198	868
	10	878
White slate	5	883
Fine shale	5	888
Red rock	9	897
Red limestone	139	1036
White slate	14	1050
Red limestone	22	1072
Sandstone	8	1080
Limestone	66	1146
Sandstone	15	1161
Limestone	20	1181
Red sand	16	1197
Big Injun sand (light gas at 1245, 1258,		
1277)	160	1357
Slate.	88	1390
Sandstone	140	1530
Slate.	15	1545
Limestone	55	1600
Slate	76	1676
Sandstone	19	1695
Slate	35	1730
Sandstone (light gas at 1832)	120	1850
, , ,	6	1856
Slate	19	1875
Sandstone	19 49	1875 1924
Sandstone	11	1935
Slate	8	1943
Red rock	32	1975
Sand	15	1990

Red rock...... 52 PETROLEUM.

Slate.....

In the Masontown quadrangle no large pools of oil have so far been discovered, but there are three distinct districts from which some oil has been obtained.

MOUNT MORRIS-MANNINGTON OIL FIELD.

The most southerly district is the great Mount Morris-Mannington field, which is so extensively developed in West Virginia. This field extends a few miles into Pennsylvania, terminating in the valley of Dunkard Creek near the southern line of the Masontown quad-

This valley has experienced two periods of production. were closed.

425 feet below the Pittsburg coal. The "pay streak" is at variable depths, ranging from 425 to 463 feet below | in the field, but the difficulty is now remedied by proper this horizon. The sandstone is usually regarded as casing. A number of wells are still active in this field. equivalent to the Mahoning sandstone of Allegheny Valley, but the interval between it and the Pittsburg coal on the Gregg farm, just south of Whiteley Creek, is given is considerably smaller than in adjacent regions, and the in the following record: sandstone is separated from the Freeport coal by the

abnormally large interval of 60 to 70 feet, as shown in some of the well records from near this field. Presumably it has been classed as Mahoning on account of the coarseness of the sand, but in southwestern Pennsylvania many of the beds above the Mahoning horizon are equally coarse, and sometimes conglomeratic, so that it is possible, as is frequently shown at the surface, for the Mahoning sandstone to disappear and be replaced by a coarse bed a little higher in the series.

The second period of development in the valley followed the discovery of oil in the Mount Morris-Mannington field in 1886. The producing sandstone in this field is known to the drillers as the Big Injun sand, and corresponds with some part of the Pocono formation. The field has yielded a large amount of oil, but the productive territory probably does not extend into this quadrangle. The character and succession of the rocks are shown in the following section, which is the record of one of the early wells drilled near Mount Morris, in Greene County:

Core well, No. 2.—Near Mount Morris, Greene County, Pa. (Bull. Geol. Soc. Am., Vol. III, p. 189.) Record kept by Mr. John Garber, contractor.

Record of Core well No. 2, near Mount Morris, Greene County.

	in feet.	in feet.
Conductor	21	21
Slate	104	125
Sandstone (Waynesburg)	45	170
Coal (Waynesburg)	10	180
Limestone and shale	120	300
Sandstone	25	325
Limestone (Great limestone)	85	410
Black slate	10	420
Coal (Sewickley ?)	10	430
Limestone	85	515
Coal (Pittsburg)	10	525
Slate	70	59 5
Sandstone	5 5	650
Red shale	35	685
Sandstone	15	700
Red shale	10	710
Blue shale	25	735
Sandstone (Morgantown)	55	790
Blue slate	40	830
Blue and red slate	20	850
Limestone and hard beds	80	930
Red slate	5	935
Sandstone	25	960
Dark slate	60	1020
Sandstone (Mahoning)	30	1050
Slate, light gray	60	1110
Sandstone (Freeport)	80	1190
Dark slate	25	1215
Limestone	40	1255
Dark slate	40	1295
Sandstone, hard	5	1300
Slate	60	1360
Salt sand)	150	1510
Slate	10	1520
Limestone (?) (Pottsville)	20	1540
Slate	10	1550
Dark pebbly sand.	20	1570
Light-colored sandstone	9 5	1665
Limestone, hard	22	1687
Red shale	13	1700
Dark slate	45	1745
Red shale.	3	1748
Limestone (Greenbrier)	56	1804
Big Injun sand (Pocono) (oil)	101	1905
The rulan sand (r ocono) (on)	TOT	1000

WHITELEY CREEK FIELD.

The Whiteley Creek field, in the eastern part of Greene Township, is the most important of the oil fields lying entirely within the limits of the Masontown quadrangle. Though never so productive as the Dunkard Creek field, it contains a great many wells, some of which produced as high as 100 barrels or more a day at the start. This field is confined to the immediate vicinity of Whiteley Creek. Its eastern limit is probably not far from the Greene-Monongahela township line, from which point it extends westward along the creek to beyond the limits of the quadrangle.

The Whiteley Creek field is located west of the Fayette anticline. The general geologic structure is flat, but near the oil field there is a shallow local basin, with its center about three-quarters of a mile east of Willow Tree. From this point the rocks rise gently in all directions, the most marked rise being to the west and extending beyond the limits of the quadrangle. The wells of the Whiteley Creek field are located upon this westward rise, the altitudes of the rock strata varying from 30 to 60 feet above their position at the center of the basin.

In the area of the Whiteley Creek field, as here defined, oil has been obtained only from the upper sands. Thus at Vance's mill, on Whiteley Creek about a mile southeast of Willow Tree, oil was reported at horizons of 120, 368, and 395 feet below the Pittsburg coal. On the Gregg farm, half a mile south of Willow Tree, a number of wells have been sunk to the "Dunkard" sand, which The first exploitation for oil dates back so many years | here lies at a depth of 480 feet below the coal. Many of that little information can be obtained regarding it. these were successful, some yielding as high as 100 bar-According to Professor Stevenson's report on Greene rels a day at the start. The oil of the upper horizon is County, which was published in 1876, the field had then heavy and is not fit for illuminating purposes. The oil been so long abandoned that the majority of the wells from the Dunkard and the immediately overlying sandstones is lighter, having a gravity of about 40 degrees. The top sand from which the oil was derived lies about | As in the Dunkard Creek district, the caving of the soft shales was a constant source of trouble in early operations

The succession of rocks encountered in the wells drilled

Gregg well.—Well No. 20 of Economic Geology sheet.

On Gregg farm, one-half mile south of Willow Tree, Greene Township, Greene County. Elevation, 980 feet. (Record above Dunkard or Mahoning sandstone is new. Record below that horizon is adjusted from record on p. 316 of Report I⁵ of Second Geological Survey of Pennsylvania.)

Record of Gregg well.

Thickness Depth

	Thickness in feet.	Depth in feet.
Limestone	60	60
Slate and slaty sandstone	30	90
Mapletown coal	5	95
Limestone with slaty partings	60	155
Black shale and cannel coal	20	175
Coarse sandstone	50	225
Pittsburg coal	9	234
Slate	30	264
Limestone shells	20	284
Slate	40	324
Sandstone, coarse (water)	20	344
Slate	50	394
Sandstone, "First Dunkard"	80	474
White slate	70	544
Red rock	70	614
White slate	15	629
Sandstone	15	644
White slate	40	684
"Dunkard sand"	30	714
Slate	10	724
Sandstone, white. (Mahoning)	66	790
Sandstone, black.)	16	806
Slate and shells	86	892
Sandstone, white	32	924
Slate and shells	120	1044
Slate	20	1064
Sandstone, black (oil show)	17	1081
Coal	8	1089
Sandstone, white (salt)		
water at 1109)	50	1139
Slate	3 5	1174
Sandstone, white (salt		
water at 1209)	90	1264
Red rock	145	1409
Sandstone, white (gas and salt water at		
1587 and 1629)	320	1729
Slate and shells	15	1744
Slate	30	1774
Sandstone, red (oil show)	39	1813
Slate and sand shells	140	1953
Sandstone, gray	36	1989
Slate and shells	95	2084
Sandstone, brown	30	2114
Slate and pebbles	15	2129
Sandstone, gray, supposed to be the	05	0151
Gantz sand	25	2154

BLACKSHIRE POOL.

The Blackshire pool, the wells of which draw their supply from the Big Injun sand at depths of from 1250 to 1350 feet below the Pittsburg coal, is a pool of very limited area situated on Whiteley Creek at the point where it is crossed by the direct road between Mapletown and Sigsbee, in Monongahela Township. The original Blackshire well gave 100 barrels or more a day at the start, and was the incentive for the sinking of a number of other wells surrounding the first, but only one or two produced oil, and these only in small quantities. The production of the original well rapidly declined and soon

The pool is located on the outer portion of the western slopes of the Fayette anticline. The dips are very gentle, though the rocks still show a perceptible pitch to the northwest. In the immediate vicinity of the wells there appears to be a local flattening, which interrupts the general northwestward dip, and may account for the occurrence of oil at this point.

OTHER WELLS AND PROSPECTS.

A well starting about 150 feet below the outcrop of the Pittsburg coal and about 30 feet above the river was sunk by Williams and Ruppert near the pottery works at Greensboro, about 3 miles southeast Well near Greensboro.

of the Blackshire pool. The Mahoning sandstone was encountered at 300 feet, and it is said to have yielded about a barrel a day. The drilling was continued to a depth of 1300 feet. The Big Injun sand was entered at 1107 feet and yielded some gas and a show of oil. The quantity of oil is so slight, however, that the presence of a pool can not be considered as established.

A number of wells have been drilled for gas near Masontown and in the region between this place and Monongahela River and Browns Run. Several of these wells encountered indications Wells near of oil, and two or three produced slight amounts from the Big Injun (Pocono) group of sands at depths of from 1250 to 1375 feet below the Pittsburg coal. It does not appear, however, that anything which could be termed an oil pool exists at this point, the sand being barren except at a few scattered localities, where

The position of the producing wells is upon the westward flank of the Fayette anticline. Near Masontown there is a somewhat marked flattening of the dip, from 200 feet to the mile just east of the town to 75 or 100 feet per mile in the vicinity of the wells. It is presumably this flattening of the dip which has been the cause of the retention of the oil in the sandstone at this point. Little or no oil is now produced, and very little drilling is going | industry, but has been very successfully earried on not | on in the region.

it has given, at the most, only a few barrels a day.

west flank of the Fayette anticline from Masontown north- derive their supply are located about 1 mile south of New as the Bolivar clay, from the town on Coneeastward along its course, the region can not be said to Geneva and at an altitude of about 96 feet above river maugh River at which clay works have been Clay beneath the Upper have been thoroughly exploited, and it is possible that | level. The workable clay is of a bluish-white color. It | extensively developed. In the type locality Freeport coal. future drilling may develop new pools at other points is 6 to 8 feet thick and is associated with the ordinary the clay bed is 10 to 20 feet below the coal, along the anticline to the northeast.

Flat dips, such as characterize the Blackshire, White- | doned channels throughout this territory. Similar clay | Valley, in Fayette County, the Bolivar fire clay is well ley, and Dunkard Creek fields, present much more favorprevailing northeast of Masontown. Flat dips hinder that just described south of New Geneva. and steep dips facilitate the loss of the oil by its upward passage through the porous rocks or along the bedding planes toward the surface. The presence or absence of | They occur at several horizons, and the oil in the more steeply dipping beds along the anticline, however, can be determined only by actual drilling.

DEPTH OF PRODUCING SAND.

The following table shows the depth at which the producing sand was struck in the various wells listed in the

The geographic extent of this bed is not Clay under Brookville Clarion coal

Cl Masontown quadrangle:

was formerly obtained on the west side of the river | developed below the Freeport limestone, and a small bed able conditions for the retention of oil than the steep dips | back of Greensboro, but the quality is not so good as |

The so-called fire-clays of the region are largely confined in their occurrence to the Allegheny formation. thickness and quality of the clay are fre- occurrence of fire clays quently such as to make the deposits of great

beneath the Brookville-Clarion coal bed. known, but recent openings were seen on

economic importance. The lowest horizon at which an

important clay bed has been discovered is directly

Elevation and product of wells in the Masontown quadrangle and depths of sands struck.

(Compiled from data furnished by operators and from published reports).

	No. on map.	Eleva- tion above sea.	Name of well.	Product.	Producing sand.	Depth to pay streak.	Depth of pay streak below Pitts- burg coal.	Depth to Big Injun sand.	Depth to Gantz sand.
	1	Feet.	Hugh Thompson	Gas		Feet.	Feet.	Feet. 870	Feet.
	2	1150	Thompson	Gas		530		1110	
·				Gas	Big Injun.	1200			
		-		Gas	Gantz	1700			
	4	1020	Parshal	Small gas	Big Injun.				
	5	980	T. A. Hoover	Small oil		1730	1376	1590	2213
	6	1020	Hess	Large gas	Gantz	2228	1839		2228
	7	960	J. E. McWilliams	Big gas	Gantz	2161	1840		2161
	8	1100	J. V. Hoover	Small oil	Big Injun.			1673	2313
				Large gas	Gantz	2313	1886		
	9	1100	Gilmore	Good gas	Big Injun.	1830	1371	1690	2327
	10	940	Lardin	Šmall gas	Big Injun.	1570	1390	1430	2055
	11	1040	Louck	Brine	Big Injun.	1610	1391	1470	
	12	1020	David Coffman	Small gas	Big Injun.	1213	1423	1073	
	13	·800	Keener-Durr North	Gas		 .		1422	1980
	14	800	Keener-Durr South	Light gas	Gantz				
	15		J. B. Sterling	Large gas	Gantz	2110	1850		
	16	1010	E. W. Sterling	Oil, 3 bbls	Big Injun.	1610	1376	1470	2096
	17	880	S. T. Gray	Small gas	Gantz	1894	1909		1865
	18	800	Shay	Good gas	Gantz				
	19	880	Blackshire	Oil, 100 bbls	Big Injun.				
	20	980	Gregg	Oil, 5-100 bbls	Dunkard .	714	480		
	21	810	Williams & Reppert	Oil show	Dunkard .	300	470	1107	
				Gas	Big Injun.	1132	1302		
	22	1040	David Gans	Oil show	Dunkard .	465	545	1255	[.
		Ì		Gas	Big Injun.	1261	1341		
	23	970	Smithfield	Oil show		1239	1339	1240	1788
				Brine		1284	1384		
				Show of gas		1465	1565		
	,			Show of gas	1	1830	1930		
	24	920	Stoner	Show of gas	l .	1245	1445	1197	
				Show of gas		1258	1458		
				Show of gas	Big Injun.	1277	1477		
			·	Show of gas		1832	2032		

CLAY.

The clay interests in the Masontown and Uniontown quadrangles are of considerable importance. This is particularly true of the more refractory clays which are used in the manufacture of fire brick for the construction of coke ovens. Since the number of coke ovens in this territory exceeds 7000, there is a demand for fire brick for their constant repair and for the construction of new ovens. Aside from the demand for highly refractory clays there are also a number of plants producing ordinary red brick, vitrified paving brick, and pottery ware.

two classes. The first class, or regularly bedded with beds of coal. These have received the general dari deposits, usually occur in association the general designation fire clays, although they vary greatly in their refractoriness, or, in other words, in their ability to withstand intense heat. The second class is made up of residual surface clays and of deposits in the abandoned channels of Monongahela River.

The surface clays are used almost exclusively in the manufacture of ordinary red brick. Plants for their manufacture are located at Fairchance and Uniontown. Since the demand for this class the surface of structural material depends upon the general development of the country, the increase in demand is likely to be slow, and the future for this industry is not particularly promising.

In the vicinity of New Geneva and Greensboro, beds of very good plastic clay occur in the material filling the old abandoned channels of Monongahela River. Since 1854 this clay has been utilized for the manufacture of blue stoneware, such as jugs, jars, etc. It is only a small only at New Geneva but at Greensboro, on the west side Although many wells have been sunk for gas along the of the river. The clay pits from which the potteries

Laurel Ridge east of Mount Braddock, and also on Tucker Run, where it has been dug for use in the firebrick works near the Dunbar furnace. An excellent exposure of this bed is seen in the Mount Braddock pits, thickness of 8 to 10 feet. It is a flint clay of excellent | Ohiopyle. quality and is well adapted to the manufacture of fire brick, the purpose for which it is used. Near the head of Tucker Run this bed has been extensively developed. It shows a thickness of from 4 to 14 feet of excellent flint clay, and its position is within 20 feet of the top of the Pottsville sandstone.

The Kittanning group of coals frequently contains important beds of fire clay in this district. They have been noted along the west side of Laurel The clays of this district may be divided into Ridge from the West Virginia line to near Clays associ-Youghiogheny River. A bed of highly Kittanning

> refractory fire clay occurs on Drague Run, in Springhill Township, a short distance south of the Masontown quadrangle. The clay has a thickness of in outcrop. Nearly all of its beds are good enough for from 4 to 6 feet and has been used for the manufacture of fire brick. It occurs about 80 feet below the Upper Freeport coal, and consequently belongs to the upper part of the Kittanning group. The same bed shows 90 feet below the Upper Freeport coal on Dunbar Creek, farming land than that which is formed from the where it has a thickness of about 6 feet. Since these exposures occur on opposite sides of the quadrangle, it | reous material. seems probable that the bed is constantly present along the west base of Laurel Ridge, but there is no evidence to show that it maintains its highly refractory character throughout the territory.

Several of the fire-brick works in this region derive between Indian Creek and Ohiopyle. Below Stewarton the clay from the Kittanning horizon is being mined at two localities, one about a mile below the station and bed occurs about 150 feet above the Pottsville sandstone, bed from 15 to 18 inches in thickness.

The most important clay bed in this territory underlies the Upper Freeport coal bed and is generally known

occurs just beneath the Upper Freeport coal, but the former is of very much greater importance than the latter. In the Cucumber Run section the fire clay below the limestone is well exposed by the roadside. Owing to the weathered condition of this outcrop it is difficult to state the exact thickness of the flint clay, but presumably it varies from 12 to 15 feet. A small exposure of clay was noted that probably occurs just below the Upper Freeport coal, although the latter bed does not show in outcrop in this section. Clay beds at the Bolivar horizon have been opened on the east side of Youghioghen'y River just north of Bear Run, or from 1 to 2 miles north of Ohiopyle. From the imperfect exposures at this point it was difficult to determine the exact horizon of this bed, but presumably it corresponds with the thick bed of fire clay exposed in the Cucumber Run section. At the pits on the east side of the river the flint clay is overlain in places by from 2 to 4 feet of plastic clay and from 10 to 18 inches of coal. The clay from these pits is shipped by rail to Connellsville and other points in the coke region and is used almost exclusively for the manufacture of fire brick.

The clay beds associated with the Freeport coals appear to be generally present along the west side of Laurel Ridge, but the quality and thickness of the beds are variable, and they have not been prospected thoroughly enough to determine their exact condition. In the region just south of the Masontown quadrangle the clay bed underlying the Upper Freeport coal has a thickness of about 6 feet. The character of the clay is variable, but in its best development is used to some extent in the manufacture of glass pots. According to Prof. T. C. Hopkins the analysis of a sample of this clay from Wymp Gap is as follows:

Analysis of clay from Wymp Gap.

Loss on ignition	11.94
Alumina (Al ₂ O ₃)	32.80
Silica (SiO ₂)	54.23
Oxide of iron	
Total	99.18

A bed at about this horizon is reported from the vicinity of Wharton Furnace, where it has an exposed thickness of about 10 feet. The clay appears to be generally present over this region in the outcrop of the Allegheny formation, but its quality can be determined only by examination.

There are doubtless many beds of shale in the coalbearing series of this territory that might be utilized in the manufacture of vitrified brick, but up to the present time they have been developed to only a small extent.

STONE.

Sandstone.—Many of the prominent sandstone beds in this region yield building stone of fair quality for rough work, but they have been utilized only for local purposes.

The Homewood sandstone is the most massive bed, and it is probably best adapted for furnishing stone of large which are situated on the crest of Laurel Ridge about 3 | dimensions. A considerable amount has been quarried miles east of Percy. At this point the clay shows a and shipped from this bed at Bear Run, 2½ miles below

Generally at some point within the territory the prominent sandstones of the Conemaugh formation yield a good quality of building stone, but they have not been used except for local needs.

Limestone.—This portion of the Appalachian coal field is particularly well provided with beds of limestone, for the enrichment of its soils and for building purposes, The Great limestone is perhaps the largest source of supply, but the smaller beds of the coal bearing series are frequently quarried, and the Greenbrier limestone is the main dependence of Ligonier Valley.

The Great limestone is available in almost all parts of the territory where the Monongahela formation shows agricultural uses, but only a few yield a good, strong lime for building purposes. The weathering of these beds produces a very rich soil, and consequently the outcrop of this formation is characterized by much better Conemaugh rocks, which are relatively barren of calca-

In addition to the Great limestone, the Monongahela formation carries some smaller beds that locally are of considerable importance. The Waynesburg limestone lies a few feet below the coal bed of the same name. In thickness it varies from 8 to 35 feet, and everywhere it yields their supply of clay from pits along Youghiogheny River | a lime of superior quality. The Fishpot limestone, lying below the Sewickley coal, is generally persistent, but its quality is not equal to that of the beds above the coal horizon and consequently it is not much used for the another half a mile farther down the stream. The clay | manufacture of lime. The Redstone limestone, immediately underlying the Redstone coal, yields lime of a and in thickness it ranges from 10 to 12 feet. It is an much better quality. It was quarried extensively for excellent flint clay, and it immediately underlies a coal | flux years ago, when the iron furnaces flourished along the western base of Laurel Ridge, and at the present time it is used for enriching the land.

In the Allegheny formation the Upper Freeport limestone furnishes lime for farm use, especially in Ligonier Valley, where such material is not so abundant as it is west of Laurel Ridge. The most important bed of limestone in the mountainous part of this territory is the sand and clay deposits that are common to these aban- and it varies in thickness from 6 to 25 feet. In Ligonier Greenbrier limestone in the Mauch Chunk formation.

This is associated with considerable calcareous shale, | South Connellsville, but work is suspended. The only | limestone. At the upper plant an extensive quarry has | shale beds of the Mauch Chunk formation. The ore was widely used for fertilizing purposes.

this region are not utilized in the construction of good roads. With the exception of the National Pike and a are no macadamized roads.

Cement.—At Uniontown the upper horizon of the immediately underlies the Uniontown coal.

and also in the Chestnut-Laurel ridge. A crushing Mauch Chunk formation. The rock is strongly calcareplant was formerly in operation near the waterworks in ous, but only in its uppermost layers does it resemble a underlying the Pittsburg coal and from the uppermost

Masontown and Uniontown.

but the better portion yields an excellent lime, which is crusher in operation at present is located on Dunbar been opened along the face of the hill and the crushed extensively stripped, and at the present time the hill-Creek just above the furnace. The Homewood is quar-It is unfortunate that the great beds of limestone in | ried on the north side of the valley, and the quarry face extends from the bottom to the top of the ridge.

Sand for glass making has been obtained from deposits few roads in the vicinity of the larger coke plants, there in the abandoned channels of Monongahela River, but at present none of these are being utilized.

Rock ballast.—The rock of the uppermost beds of Great limestone has been quarried extensively for cement, | the Pocono sandstone, including the siliceous limestone, which was used in constructing the locks on Mononga- is crushed for railroad ballast on Youghiogheny River hela River. The bed has a thickness of 10 feet, and it above Connellsville. Two plants are in operation, one located at railroad level about a mile above the

This bed of rock is utilized for ballast at several places, beds in the Uniontown region. along the Chestnut-Laurel ridge. Two crushing plants are in operation in the Loyalhanna gap near Latrobe, and ended the supremacy which this section held in the extensive operations of a similar character are carried manufacture of iron. The native ores were abandoned, on in the Conemaugh gap on the main line of the Penn- and at the present time their existence is almost forsylvania Railroad.

IRON ORE.

The discovery of iron ore in this region dates back to before 1792, when the first furnace for its reduction was Glass sand.—The best rock for glass sand in this part waterworks, and the other on the hillside farther up built in the vicinity of Fairchance. For nearly one of Pennsylvania is the Homewood sandstone, which is the stream and about 400 feet above railroad grade. hundred years after the establishment of this furnace acter and occurrence of the ores and the history of the used for this purpose on Youghiogheny River, where it | The quarry face at the lower plant has a height of about | the iron industry which flourished in this part of the | development of the industry. cuts through the Fayette anticline west of Connellsville 50 feet, and it is overlain by bright-red shale of the State depended upon native ores for its support. These ores were obtained principally from the shale bed closely

rock is lowered to the railroad on an inclined tram road. sides are seamed and gashed along the outcrop of these

The advent of rich Lake Superior ores effectually gotten. Of all the furnaces built in this region Dunbar alone is still in existence, and long ago it ceased to use the native ores.

The subject is full of historic interest, but it has been treated in great detail in Professor Stevenson's report, to which reference is made for a fuller account of the char-

May, 1902.