<table>
<thead>
<tr>
<th>System</th>
<th>Series</th>
<th>Age</th>
<th>Group</th>
<th>Formation</th>
<th>Rocks Description</th>
<th>Orientation & Soil Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambrian</td>
<td></td>
<td></td>
<td></td>
<td>Tonoloway</td>
<td>Massive dark-blue and thin-bedded gray limestones, weathering nodular, and calcareous shale; contains much chert at the top and a thick calcareous sandstone in eastern part of area.</td>
<td>Wooded uplands, deeply trenched by talus, ascending gently back to northeast-southwest near level. Sandy soil, shiny clay, and over the highest ridges.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clinton</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tuscumbia</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ordovician</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silurian</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Devonian</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carboniferous</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mississippian</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pennsylvanian</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Permian</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Triassic</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jurassic</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cretaceous</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tertiary</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quaternary</td>
<td>This fossiliferous shale with crumbly gray fossiliferous shale, with greenish to drab fissile shale and very thin beds of fine sandstone at the base.</td>
<td>Mostly rocky ridges and clay soil, largely covered by sporadic clays and low clay loams.</td>
</tr>
</tbody>
</table>
PLATE I.—POTOMAC RIVER ABOVE CACAPON MOUNTAIN.
Looking west from the Silica sand mine on Cacapon Mountain. Sideling Hill gap in the distance; Tonoloway Ridge on the right.
High terraces shown on both sides of the river.

PLATE II.—POTOMAC RIVER GAP IN SIDELING HILL, FROM PROSPECT ROCK ON CACAPON MOUNTAIN.
A remnant of the Harrisburg peneplain forms the terrace to the left of the gap. Tonoloway Ridge on the left and long oxbow of Great Cacapon River in the middle foreground.

PLATE III.—THE 900-FOOT TERRACE WEST OF WOODMONT.
Looking west. Sideling Hill gap in the distance. The terrace is the remnant of the Harrisburg peneplain shown in Plate I.

PLATE IV.—POTOMAC RIVER AND LEVEL-TOPPED RIDGES NEAR MAGNOLIA, W. VA., FROM SIDELING HILL.
The ridges preserve remnants of the Harrisburg peneplain. Town Hill in the distance.

PLATE V.—WALL-LIKE OUTCROP OF KEENER SANDSTONE MEMBER OF THE MCKENZIE FORMATION.
Top of knob at Picket Rocks, west of Great Cacapon.

PLATE VI.—PURSLANE SANDSTONE CLIFFS, EXPOSED ON THE DEVIL'S NOSE BY MEADOW BRANCH NEAR NORTH END OF SLEEPY CREEK MOUNTAIN.
The beds are nearly horizontal in the bottom of the syncline.

PLATE VII.—DETAILS OF THE STRUCTURE IN THE TUSCARORA SANDSTONE CLIFF AT EADES FORT WEST OF CACAPON MOUNTAIN.
Horizontal beds at the right connect the minor overturned anticline at the left with the major anticline of Cacapon Mountain to the right of the view, as shown in Plate VIII.

PLATE VIII.—EADES FORT, ON GREAT CACAPON RIVER.
The river has cut into these hard sandstone rocks and separated this mass from the main body of Tuscarora sandstone forming Cacapon Mountain at the right. Details of structure shown in Plate VII.

PLATE IX.—HIGH TERRACES AT THE GAP OF FIFTEENMILE CREEK IN TOWN HILL, FROM TOP OF KEENAN RIDGE.
Level top of Keenan Ridge in the foreground and other level terraces and ridges in the middle ground are remnants of the Harrisburg peneplain. Sideling Hill in the distance.
PLATE X.-GENERAL VIEW OF FLUTED ROCKS, NEAR MOUTH OF GREAT CACAPON RIVER.
Looking north. The resistant beds are the Keefer sandstone member of the McKenzie formation. The folds are largely concealed by summer foliage.

PLATE XI.-CLOSELY FOLDED THIN-BEDDED CRYS.
TALLINE LIMESTONE AND SHALE OF THE McK.
ENZIE FORMATION.
In the Western Maryland Railway cut opposite Great Cacapon. Looking north.

PLATE XIII.-RECTILINEAR JOINTING IN SANDY SHALE OF THE JENNINGS FORMATION.
In southwestern part of Hancock quadrangle, 1 1/2 miles west of Stotlers Crossroads. Looking down on the surface of a horizontal bed.

PLATE XV.-CREEP IN ROMNEY SHALE.
Exposed in Western Maryland Railway cut northwest of Great Cacapon. The nearly vertical beds have been bent to 45° E. dip by the creep of the surface layers down the westward slope.

PLATE XVIII.-PECULIAR MARKINGS RESEMBLING BURROWS IN THE FINE MUD ROCK OF THE WILLS CREEK SHALE.
Exposed in the Western Maryland Railway cut 1 mile east of Great Cacapon. Narrow light-colored bands or filled channels lead diagonally downward across the mud-rock layer to a knotty contorted calcareous layer.

PLATE XI.-DETAIL OF THE MOST PROMINENT ANTICLINE AND ADJACENT SYNCLINES OF THE FLUTED ROCKS ON GREAT CACAPON RIVER.

PLATE XII.-CLOSELY FOLDED THIN-BEDDED CRYS.
TALLINE LIMESTONE AND SHALE OF THE McK.
ENZIE FORMATION.
In the Western Maryland Railway cut opposite Great Cacapon. Looking north.

PLATE XIV.-DETAILS OF STRUCTURE OF THE FLUTED ROCKS, ON GREAT CACAPON RIVER, AS SEEN IN THE LATE FALL UNOBSERVED BY POULAR.

PLATE XVI.-SUN-CRACKED CALCAREOUS BEDS OF THE WILLS CREEK SHALE.
At mouth of cement-rock tunnel, Potomac, Md., 20 miles west of this area.

PLATE XVII.-SYMMETRICAL ANTICLINE OF BLOOMSBURG RED SANDSTONE MEMBER OF THE WILLS CREEK SHALE.
In bank of Chesapeake & Ohio Canal east of old cement works at Roundtop, Md. Looking north.

PLATE XV.-CROSS-BEDDING IN THE SANDSTONES OF THE ROCKWELL FORMATION EXPOSED IN MEADOW BRANCH AT THE NORTH END OF SLEEPY CREEK MOUNTAIN.

PLATE XX.-RECENTLY FORMED CUT-OFF ON SLEEPY CREEK AT JOHNSONS MILL.
Looking downstream through the cut bank of rock above which the channel is now taking into the ponded water of the old channel.