The Geological Survey is making a geologic atlas of the United States, which is being issued in parts, called folios. The term "folio" is used for less-mapped and geologic maps of a certain area, together with descriptive text.

THE TOPOGRAPHIC MAP.

The features represented on the topographic map are of two kinds: (1) The prominent features of surface called reliefs—slopes, plains, plateaus, valleys, hills, and mountains; (2) distribution of water, called drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroads, boundaries, villages, and cities.

Belief—All elevations are measured from mean sea level. The heights of many points are accurately determined, and those of the most important ones are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the outlines or form of all slopes, and to indicate their grade or steepness. This is done by lines each of which is drawn through points of equal elevation above mean sea level, the vertical interval represented by each space between lines being the same throughout each map. These lines are called contour lines, or more briefly, contours, and the uniform vertical distance between each two contours is the contour interval.

The features represented on the topographic map are of two kinds: (1) The prominent features of surface called reliefs—slopes, plains, plateaus, valleys, hills, and mountains; (2) distribution of water, called drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroads, boundaries, villages, and cities.

Belief—All elevations are measured from mean sea level. The heights of many points are accurately determined, and those of the most important ones are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the outlines or form of all slopes, and to indicate their grade or steepness. This is done by lines each of which is drawn through points of equal elevation above mean sea level, the vertical interval represented by each space between lines being the same throughout each map. These lines are called contour lines, or more briefly, contours, and the uniform vertical distance between each two contours is the contour interval.

The sketch represents a river valley between two hills. In the foreground is the sea, with a bay that is partly closed by a hooked sand bar. On each side of the valley is a terrace. The terrace on the right merges into a gentle hill slope; that on the left is backed by a steep ascent to a cliff, or scarp, which contrasts with the gradual slope away from its crest. In the map each of these features is indicated, directly beneath its position in the sketch, by contour lines. The map does not include all the portion of the valley. The following notes are intended to exhibit as many of the principal contour lines as possible:

1. A contour line represents a certain height above sea level. In this illustration the contour interval is 10 feet; therefore the contour lines are drawn at 0, 10, 20, 30, and 40 feet, and so on, above mean sea level. Along the contour at 250 feet lie all points of the surface that are 250 feet above the sea—that is, this contour would be the shore line if the sea were to rise 250 feet; along the contour at 200 feet are all points that are 200 feet above the sea; and so on. In the space between any two contours are all points whose elevations are above the lower and below the higher contour. Thus the contour at 250 feet falls just below the edge of the terrace, and that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 feet: less than 200 feet above the sea; and so on.

The vertical interval represented by each space between lines being the same throughout each map. These lines are called contour lines, or more briefly, contours, and the uniform vertical distance between each two contours is the contour interval.

The sketch represents a river valley between two hills. In the foreground is the sea, with a bay that is partly closed by a hooked sand bar. On each side of the valley is a terrace. The terrace on the right merges into a gentle hill slope; that on the left is backed by a steep ascent to a cliff, or scarp, which contrasts with the gradual slope away from its crest. In the map each of these features is indicated, directly beneath its position in the sketch, by contour lines. The map does not include all the portion of the valley. The following notes are intended to exhibit as many of the principal contour lines as possible:

1. A contour line represents a certain height above sea level. In this illustration the contour interval is 10 feet; therefore the contour lines are drawn at 0, 10, 20, 30, and 40 feet, and so on, above mean sea level. Along the contour at 250 feet lie all points of the surface that are 250 feet above the sea—that is, this contour would be the shore line if the sea were to rise 250 feet; along the contour at 200 feet are all points that are 200 feet above the sea; and so on. In the space between any two contours are all points whose elevations are above the lower and below the higher contour. Thus the contour at 250 feet falls just below the edge of the terrace, and that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 feet: less than 200 feet above the sea; and so on.

The vertical interval represented by each space between lines being the same throughout each map. These lines are called contour lines, or more briefly, contours, and the uniform vertical distance between each two contours is the contour interval.

The sketch represents a river valley between two hills. In the foreground is the sea, with a bay that is partly closed by a hooked sand bar. On each side of the valley is a terrace. The terrace on the right merges into a gentle hill slope; that on the left is backed by a steep ascent to a cliff, or scarp, which contrasts with the gradual slope away from its crest. In the map each of these features is indicated, directly beneath its position in the sketch, by contour lines. The map does not include all the portion of the valley. The following notes are intended to exhibit as many of the principal contour lines as possible:

1. A contour line represents a certain height above sea level. In this illustration the contour interval is 10 feet; therefore the contour lines are drawn at 0, 10, 20, 30, and 40 feet, and so on, above mean sea level. Along the contour at 250 feet lie all points of the surface that are 250 feet above the sea—that is, this contour would be the shore line if the sea were to rise 250 feet; along the contour at 200 feet are all points that are 200 feet above the sea; and so on. In the space between any two contours are all points whose elevations are above the lower and below the higher contour. Thus the contour at 250 feet falls just below the edge of the terrace, and that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 feet: less than 200 feet above the sea; and so on.

The vertical interval represented by each space between lines being the same throughout each map. These lines are called contour lines, or more briefly, contours, and the uniform vertical distance between each two contours is the contour interval.

The sketch represents a river valley between two hills. In the foreground is the sea, with a bay that is partly closed by a hooked sand bar. On each side of the valley is a terrace. The terrace on the right merges into a gentle hill slope; that on the left is backed by a steep ascent to a cliff, or scarp, which contrasts with the gradual slope away from its crest. In the map each of these features is indicated, directly beneath its position in the sketch, by contour lines. The map does not include all the portion of the valley. The following notes are intended to exhibit as many of the principal contour lines as possible:

1. A contour line represents a certain height above sea level. In this illustration the contour interval is 10 feet; therefore the contour lines are drawn at 0, 10, 20, 30, and 40 feet, and so on, above mean sea level. Along the contour at 250 feet lie all points of the surface that are 250 feet above the sea—that is, this contour would be the shore line if the sea were to rise 250 feet; along the contour at 200 feet are all points that are 200 feet above the sea; and so on. In the space between any two contours are all points whose elevations are above the lower and below the higher contour. Thus the contour at 250 feet falls just below the edge of the terrace, and that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 feet: less than 200 feet above the sea; and so on.

The vertical interval represented by each space between lines being the same throughout each map. These lines are called contour lines, or more briefly, contours, and the uniform vertical distance between each two contours is the contour interval.

The sketch represents a river valley between two hills. In the foreground is the sea, with a bay that is partly closed by a hooked sand bar. On each side of the valley is a terrace. The terrace on the right merges into a gentle hill slope; that on the left is backed by a steep ascent to a cliff, or scarp, which contrasts with the gradual slope away from its crest. In the map each of these features is indicated, directly beneath its position in the sketch, by contour lines. The map does not include all the portion of the valley. The following notes are intended to exhibit as many of the principal contour lines as possible:

1. A contour line represents a certain height above sea level. In this illustration the contour interval is 10 feet; therefore the contour lines are drawn at 0, 10, 20, 30, and 40 feet, and so on, above mean sea level. Along the contour at 250 feet lie all points of the surface that are 250 feet above the sea—that is, this contour would be the shore line if the sea were to rise 250 feet; along the contour at 200 feet are all points that are 200 feet above the sea; and so on. In the space between any two contours are all points whose elevations are above the lower and below the higher contour. Thus the contour at 250 feet falls just below the edge of the terrace, and that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 feet: less than 200 feet above the sea; and so on.

The vertical interval represented by each space between lines being the same throughout each map. These lines are called contour lines, or more briefly, contours, and the uniform vertical distance between each two contours is the contour interval.
The age of a rock is expressed by the name of the time interval in which it was formed.

Sedimentary formations deposited during a period are grouped together into a system. The principal divisions of a system are called series. Any aggregate of formations that lies a series is called a group.

Sedimentary deposits may be divided into series, which are divided into groups, which are divided into formations. The characteristics of the rocks of any formation may be determined by observing fossils, by the way they have been folded and thus their relative age may be known. The formation of the strata may be measured by using the scale of the map.

The age of a rock is expressed by the name of the time interval in which it was formed. The sedimentary formations deposited during a period are grouped together into a system. The principal divisions of a system are called series. Any aggregate of formations that lies a series is called a group.

Sedimentary deposits may be divided into series, which are divided into groups, which are divided into formations. The characteristics of the rocks of any formation may be determined by observing fossils, by the way they have been folded and thus their relative age may be known. The formation of the strata may be measured by using the scale of the map.

The age of a rock is expressed by the name of the time interval in which it was formed. The sedimentary formations deposited during a period are grouped together into a system. The principal divisions of a system are called series. Any aggregate of formations that lies a series is called a group.

Sedimentary deposits may be divided into series, which are divided into groups, which are divided into formations. The characteristics of the rocks of any formation may be determined by observing fossils, by the way they have been folded and thus their relative age may be known. The formation of the strata may be measured by using the scale of the map.

The age of a rock is expressed by the name of the time interval in which it was formed. The sedimentary formations deposited during a period are grouped together into a system. The principal divisions of a system are called series. Any aggregate of formations that lies a series is called a group.

Sedimentary deposits may be divided into series, which are divided into groups, which are divided into formations. The characteristics of the rocks of any formation may be determined by observing fossils, by the way they have been folded and thus their relative age may be known. The formation of the strata may be measured by using the scale of the map.

The age of a rock is expressed by the name of the time interval in which it was formed. The sedimentary formations deposited during a period are grouped together into a system. The principal divisions of a system are called series. Any aggregate of formations that lies a series is called a group.

Sedimentary deposits may be divided into series, which are divided into groups, which are divided into formations. The characteristics of the rocks of any formation may be determined by observing fossils, by the way they have been folded and thus their relative age may be known. The formation of the strata may be measured by using the scale of the map.

The age of a rock is expressed by the name of the time interval in which it was formed. The sedimentary formations deposited during a period are grouped together into a system. The principal divisions of a system are called series. Any aggregate of formations that lies a series is called a group.

Sedimentary deposits may be divided into series, which are divided into groups, which are divided into formations. The characteristics of the rocks of any formation may be determined by observing fossils, by the way they have been folded and thus their relative age may be known. The formation of the strata may be measured by using the scale of the map.

The age of a rock is expressed by the name of the time interval in which it was formed. The sedimentary formations deposited during a period are grouped together into a system. The principal divisions of a system are called series. Any aggregate of formations that lies a series is called a group.

Sedimentary deposits may be divided into series, which are divided into groups, which are divided into formations. The characteristics of the rocks of any formation may be determined by observing fossils, by the way they have been folded and thus their relative age may be known. The formation of the strata may be measured by using the scale of the map.
PUBLISHED GEOLOGIC FOLIOS

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of folio</th>
<th>State</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1107</td>
<td>Newcadia</td>
<td>Wyoming-South Dakota</td>
<td>50¢</td>
</tr>
<tr>
<td>1087</td>
<td>Elkhorn</td>
<td>South Dakota-North Dakota</td>
<td>50¢</td>
</tr>
<tr>
<td>1099</td>
<td>Gopherwood Plain</td>
<td>Kansas</td>
<td>50¢</td>
</tr>
<tr>
<td>1110</td>
<td>Latrobe</td>
<td>Pennsylvania</td>
<td>50¢</td>
</tr>
<tr>
<td>1111</td>
<td>Gibson</td>
<td>Arkansas</td>
<td>50¢</td>
</tr>
<tr>
<td>1112</td>
<td>Bissell (reprint)</td>
<td>Arizona</td>
<td>50¢</td>
</tr>
<tr>
<td>1115</td>
<td>Hermes</td>
<td>South Dakota</td>
<td>50¢</td>
</tr>
<tr>
<td>1114</td>
<td>De Smet</td>
<td>South Dakota</td>
<td>50¢</td>
</tr>
<tr>
<td>1113</td>
<td>Kittlesing</td>
<td>South Dakota</td>
<td>50¢</td>
</tr>
<tr>
<td>1116</td>
<td>Newport</td>
<td>North Carolina-Tennessee</td>
<td>50¢</td>
</tr>
<tr>
<td>1117</td>
<td>Generous-Flora</td>
<td>North Carolina-Missouri</td>
<td>50¢</td>
</tr>
<tr>
<td>1118</td>
<td>Greenbriar</td>
<td>Tennessee-North Carolina</td>
<td>50¢</td>
</tr>
<tr>
<td>1119</td>
<td>Peavineyard</td>
<td>Arkansas-Missouri</td>
<td>50¢</td>
</tr>
<tr>
<td>1120</td>
<td>Upland</td>
<td>South Dakota</td>
<td>50¢</td>
</tr>
<tr>
<td>1121</td>
<td>Butte Special</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1122</td>
<td>Downieville</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1123</td>
<td>Nevada City Special</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1124</td>
<td>Three Forks</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1125</td>
<td>Nomini</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1126</td>
<td>Tenmile District Special</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1127</td>
<td>Richmond</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1128</td>
<td>Buckhannon</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1129</td>
<td>Briceville</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1130</td>
<td>Pyramid Peak</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1131</td>
<td>Absaroka</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1132</td>
<td>Three Forks</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1133</td>
<td>Montana Out-lying District</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1134</td>
<td>Ely</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1135</td>
<td>Hwy</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1136</td>
<td>Weiser</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1137</td>
<td>Chippewa</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1138</td>
<td>Shoshone</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1139</td>
<td>Brundage</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1140</td>
<td>Virginia-Maryland</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1141</td>
<td>Virginia-North Carolina</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1142</td>
<td>Virginia-West Virginia</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1143</td>
<td>West Virginia-Maryland</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1144</td>
<td>Idaho-Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1145</td>
<td>Idaho-Nebraska</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1146</td>
<td>Idaho-Oregon</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1147</td>
<td>Idaho-Washington</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1148</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1149</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1150</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1151</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1152</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1153</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1154</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1155</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1156</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1157</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1158</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1159</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1160</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1161</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1162</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1163</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1164</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1165</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1166</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1167</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1168</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1169</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1170</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1171</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1172</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1173</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1174</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1175</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1176</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1177</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1178</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1179</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1180</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1181</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1182</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1183</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1184</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1185</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1186</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1187</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1188</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1189</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1190</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1191</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1192</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1193</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1194</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1195</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1196</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1197</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1198</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1199</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
<tr>
<td>1200</td>
<td>Montana</td>
<td>Montana</td>
<td>50¢</td>
</tr>
</tbody>
</table>

* Price list as of October 1, 1900.*
* All folios are out of stock.*
* The table and nomenclature-series maps of the Geologic Survey, and Jackson folios, when available, have been reprinted and published as a single title. (See note below: 1, 2, and 11, the prices of which is 80¢.)

* All folios are out of stock.*
* The table and nomenclature-series maps of the Geologic Survey, and Jackson folios, when available, have been reprinted and published as a single title. (See note below: 1, 2, and 11, the prices of which is 80¢.)