USGS logo

 

According to this theory, the Earth's surface is made up of a patchwork of about a dozen large plates that move relative to one another at speeds from less than one centimeter to about ten centimeters per year (about the speed at which fingernails grow). These rigid plates, whose average thickness is about 80 kilometers, are spreading apart, sliding past each other, or colliding with each other in slow motion on top of the Earth's hot, pliable interior. Volcanoes tend to form where plates collide or spread apart, but they can also grow in the middle of a plate, as for example the Hawaiian volcanoes.

 Pacific/Juan de Fuca Plates

The boundary between the Pacific and Juan de Fuca Plates is marked by a broad submarine mountain chain about 500 km long, known as the Juan de Fuca Ridge. Young volcanoes, lava flows, and hot springs were discovered in a broad valley less than 8 km wide along the crest of the ridge in the 1970's. The ocean floor is spreading apart and forming new ocean crust along this valley or "rift" as hot magma from the Earth's interior is injected into the ridge and erupted at its top.

In the Pacific Northwest, the Juan de Fuca Plate plunges beneath the North American Plate. As the denser plate of oceanic crust is forced deep into the Earth's interior beneath the continental plate, a process known as subduction, it encounters high temperatures and pressures that partially melt solid rock. Some of this newly formed magma rises toward the Earth's surface to erupt, forming a chain of volcanoes above the subduction zone.

<https://pubs.usgs.gov/gip/volcus/page08.html>
Maintained by John Watson
Updated 06.24.97

back start of book next page