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INTRODUCTION

The aerial radiometric data used to produce these maps were obtained from
the U.S. Department of Energy (DOE) and are part of the data base obtained
during the DOE National Uranium Resource Evaluation Program (NURE). Tapes
containing digital data were assembled from the following 2° quadrangles: Canton
(DOE, 1980a), Charleston (DOE, 1980c), Cincinnati (DOE, 1981d), Clarksburg
(DOE, 1980b), Cleveland (DOE, 1982), Columbus (DOE, 1981h), Fort Wayne
(DOE, 1981b), Huntington (DOE, 1981e), Louisville (DOE, 1981c), Marion
(DOE, 1981g), Muncie (DOE, 1981a), and Toledo (DOE, 1981f). These data were
measured by several different contractors using high-sensitivity gamma-ray
spectrometers with 2000-3000 cubic inches of sodium-iodide detector crystals.
The nominal survey altitudes were 400 feet above the ground surface. The flight
lines were flown east-west at a nominal spacing of 6 miles with north-south tie
lines spaced 15 miles apart. The data were fully corrected for background
radiation, altitude variations, and airborne Bi-214 radiation. Using the DOE
calibration pads at Grand Junction, Colorado (Ward, 1978) and the DOE dynamic
test strip at Lake Meade, Arizona (Geodata International, Inc., 1977), the gamma-
ray systems were calibrated so that the measurements could be expressed as the
apparent surface concentrations of equivalent uranium (ppm eU), equivalent
potassium (percent K), and equivalent thorium (ppm eTh).

Prior to preparation of the maps, the data were further processed. The
processing steps were: (1) filtering of the flight-line data using a Gaussian filter
with a standard deviation of 10 measurement points, (2) level and sensitivity
corrections to remove differences between the measurement systems used by
different contractors, (3) gridding the data using a minimum curvature algorithm
(Briggs, 1974), and (4) low-pass filtering of the gridded data to remove
wavelengths less than 25 kilometers. The flight-line data were filtered to reduce
nose and high-frequency variations of the data prior to gridding. Level corrections
were made by adding or subtracting constant values to limited parts of the data
sets. Problems with data levels were usually within a single data set and can be
caused by small gain shifts in the spectra, the use of different background
corrections, differences in soil water content as the result of rain, and errors in data
processing by the contractors. Sensitivity corrections were made by multiplying an
entire data set by a constant factor and were made necessary because the different
contractor systems sometimes did not give the same results over the same
materials. Because the systems were calibrated using the same calibration sources,
these sensitivity differences should not occur. The reasons for their occurrence is
unknown at this time. The low-pass filtering of the gridded data using a fast
Fourier technique was done to remove small-wavelength features that are not
consistent with the flight-line spacing and the map scale.

Because of the wide flight-line spacing, the 2-mile-grid interval, and the low-
pass filters applied, these maps are regional maps and should only be used in a
regional context. The accuracies of the concentration values are estimated to be
better than 20 percent in a relative sense and from 50 to 100 percent in an
absolute sense. By relative sense | mean the comparison of data from different
parts of these maps. By absolute sense I mean the comparison of these
concentration values obtained from other sources such as ground or laboratory
measurements.

After the final gridded data sets were obtained for each of the three
elements—uranium, potassium, and thorium—these data sets were converted to
a composite color image using the techniques described by Duval (1983). The
individual pixels in the image have side dimensions equal to the 2-mile-grid
interval. For this conversion, the data are mapped to a scale of 0-255 such that
the first 2 percent of the data (as determined from a cumulative frequency
histogram) are assigned a value of 1, the last 2 percent a value of 255. The
remaining data are linearly mapped from 2 to 254. Each data set is then
transferred to film using a red, green, or blue filter to selectively expose the red-,
green-, or blue-sensitive emulsions of a color film. The amount of exposure is
proportional to the magnitude of the data. For this particular presentation,
uranium was exposed with the red filter, potassium with the green filter, and
thorium with the blue filter. Because of the complexities of color combinations, the
reader should not, however, attempt to interpret the relative amounts of the
elements from the observed colors. The value of this map is to provide a synthesis
of the radiometric data that reflects a partial geochemical picture of the surface
materials. As such, this map should be interpreted on the basis of color patterns
and their correlation with other data such as geologic maps.
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MAP EXPLANATION
(For color composite only)
This map represents the combination of radiometric data for equivalent uranium
(eU), potassium (K), and equivalent thorium (eTh) using a different primary color
for each of the elements. The intensity of the colors varies in proportion to the
value of the data and the resulting color depends upon the mixture of the primary
colors. The preparation of the map was done such that:
1) Dark colors reflect higher overall radioactivity in all three elements with approx-
imate values on the order of 5 ppm eU, 2 percent K, and 9 ppm eTh.
2) Light colors approaching white reflect lower overall radioactivity in all three ele-
ments with approximate values on the order of 0.5 ppm eU, 0.4 percent K, and
2 ppm eTh. )
3) Greenish colors reflect relatively low potassium concentrations (0.8 percent K)
with moderate uranium (2 ppm eU) and thorium (5 ppm eTh).
4) Pinkish colors reflect relatively low uranium concentrations (1.5 ppm eU) with
moderate potassium (1 percent K) and thorium (6 ppm eTh).
Blueish colors reflect relatively high thorium concentrations (8 ppm eTh) with
moderate uranium (2 ppm eU) and potassium (1 percent K).
Because the complexities of color combinations, further quantification of the col-
ors is not practical. The reader should use this map to define areas of similar colors
or color patterns as a reflection of the radiometric character of a given surface ma-
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