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This report is one in a series resulting from the U.S. Geological
Survey’s Snake River Plain RASA (Regional Aquifer System Analysis)
study that began in October 1979.

As stated by Lindholm (1981), one purpose of the study was to
refine knowledge of the regional ground-water flow system. To do so, a
better definition of the regional geohydrologic framework was required.
Because drill-hole information was inadequate in most places, data from
geophysical studies were compiled to define the subsurface geology.

EXPLANATION
GEOPHYSICAL STUDIES CATEGORIZED BY TYPE, AND
CROSS-REFERENCED TO REFERENCES CITED

SURFACE GEOPHYSICS HAVE HELPED DETERMINE THAT THE
SNAKE RIVER PLAIN IS A GRABEN.
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GEOPHYSICAL TECHNIQUES

The science of geophysics includes the measurement of Earth s
properties to determine subsurface conditions using “a few relatively 5
simple but fundamental laws of physics” (Dobrin, 1952, p. 2). Surface
geophysics includes seismic, gravity, electrical resistivity, and magnetic
techniques that are used to obtain information on stratigraphy, structure,
and lithology. Borehole geophysics includes electric, radioactive, and
physical techniques that provide a variety of information about the
shallow subsurface.

Much of the Snake River Plain is covered by Quaternary lava flows
that mask older geologic features. Consequently, several surface
geophysical techniques have been used by various investigators to
determine the plain’s structure and evolution. These investigators include
Braile and others (1982) and Sparlin and others (1982), who used
seismic profiling to define regional structural features; Eaton and others
(1978), who used gravity methods; Mabey and others (1978), who used
magnetic methods; and Evans (1982) and Greensfelder and Kovach
(1982), who used passive seismic imaging methods.

ACTIVE METHODS
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Resistivity

The direct-current resistivity method detects vertical and horizontal
variations in the electrical properties of rock materials and contained
fluids. Electrical depth soundings are made by introducing a low-
frequency current into the ground at increasing distances between current
electrodes and observing the voltage drop between an inner pair of
potential electrodes. Although several different electrode configurations
may be used, the most common is the Schlumberger array (Zohdy, 1974,
p. 11).

Depth soundings depend, in part, on the distance between current
electrodes; horizontal variations are derived from comparisons of a series
of these soundings. Observed vertical and horizontal electrical variations
are interpreted, generally by curve-matching techniques, to determine
stratigraphy, structure, lithology, and type of contained fluid.

Resistivity surveys have been used successfully on the Snake River
Plain to define local basalt-sediment contacts. Apparent resistivities for
basalts range from 100 to greater than 1,000 ohm-meters; apparent
resistivities for saturated, unconsolidated sedimentary rocks range from 70
to 300 ohm-meters. In some areas, clay layers have apparent resistivities
of less than 50 ohm-meters.

Resistivity surveys are faster and less expensive than many
geophysical methods. As with many other geophysical methods,
interpretations are not unique, but when coupled with drill-hole data, may
vield subsurface information unobtainable by any other geophysical
method.

That information then is translated into geologic models or interpretations
of rock type, stratigraphy, and structure. The seismic method is adaptable
to local or regional studies, a variety of geologic conditions, and varying
depths of investigation. Two general types of active seismic methods are
reflection and refraction.

Seismic  Reflection.--In  seismic reflection studies, elastic waves
propagate away from energy sources, such as explosions or vibrators,
near the Earth’s surface. Upon striking an interface between rocks having
contrasting elastic properties, part of the elastic energy is reflected back
to the land surface, where it is detected by sensitive instruments near the
origin. The traveltimes and amplitudes of these reflected waves are used
to compute seismic velocities and depth to the reflecting interfaces. The
positions and geometry of these reflecting interfaces are used as an aid
in determining geologic structure

Numerous publications relate details of the seismic reflection method
and interpretation techniques; for example, Dobrin (1976), Eaton
(1974b), and Grant and West (1965).

Seismic Refraction.--In seismic refraction studies, part of an elastic
energy pulse induced in the Earth is refracted (deflected) as it passes
between rock strata with different elastic properties. Traveltime analyses
of refracted energy are used to calculate depth to and velocity below the
rock interface where the elastic waves were deflected back toward the
surface. In the refraction method, in contrast to the reflection method,
seismic velocities are determined directly. A limitation of this method is
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Seismicity

Data on seismicity, or the frequency and distribution of earthquakes,
are used to locate geologic and tectonic features. There are many causes
for earth movements, such as landslides, effects of filling and draining
reservoirs, and reactions to tensional and compressional forces within the
Earth.

Established seismic networks monitor local or worldwide seismic
activity by recording the intensity and arrival times of earthquake waves,
which are used in turn to calculate hyopcenters, epicenters, magnitudes,
and other features of the events. These data commonly are used as a
relatively inexpensive reconnaissance tool for determining patterns of
earth movements in or near areas of interest.

Smith and Sbar (1974) and Vincent and Applegate (1978) found the
Snake River Plain to be relatively inactive seismically. However, there has
been some activity outside the plain's margins. The epicenter of the
October 28, 1983, Idaho earthquake, with a magnitude of 7.3 on the
Richter scale, was about 40 mi north of the plain in the Big Lost River
valley. The epicenter of the August 17, 1959, Hebgen Lake earthquake,
with a magnitude of 7.1, was centered near the northern margin of the
eastern plain in Wyoming.

Magnetic

Magnetic surveys measure the intensity of the Earth’s magnetic field.
Variations in intensities over the area of investigation reveal distortions of
the magnetic field produced by magnetic materials in the Earth’s crust.
Magnetic data can be interpreted to yield information on the general rock
type, depth of burial, and extent, structure, age, and magnetic properties
of rock units. Magnetic surveys are usually made by aircraft trailing a
magnetometer sensitive to variations in the intensity of total magnetism
of Earth materials. Airborne surveys are quick, relatively inexpensive, and
easy to interpret compared with local ground surveys. Magnetic data are
valuable as restrictive parameters in the interpretation of other
geophysical data.

In hydrologic studies, magnetic surveys commonly are used to study
basalt aquifers and to determine the configuration of basement rock
underlying water-bearing sediments (Mabey, 1974, p. 110). As is true for
gravity methods, the interpretation of magnetic data is highly dependent
on the interpreter’'s general geologic knowledge of the area.
Interpretations of magnetic data are not unique, but when supplemented
with geologic or other geophysical data, can yield valuable subsurface
information.

Aeroradioactivity

Aeroradioactivity surveys are used to determine variations in gamma
radiation from the land surface over large areas. The scintillation
equipment, installed in aircraft flown at low levels (nominally 500 ft),
records only pulses from gamma radiation with energies greater than
50,000 electron volts. The gamma-ray flux has three principal sources:
(1) Cosmic radiation, (2) radionuclides in the air, and (3) radionuclides
in the surface layer of the ground.

The first two sources can be adjusted by calibration procedures and
choosing time of survey in relation to climatic situations. Thus, the
residual radiation can be assumed to come from ground sources. The
ground sources of gamma radiation can result from naturally occurring
radionuclides and fallout radionuclides. The distribution of fallout
radionuclides from nuclear fission products, if present, is assumed to be
small and constant. Therefore, the ground component from naturally
occurring radioactive materials can be isolated.

The aeroradioactivity survey flown for the Idaho National
Engineering Laboratory covered most of the eastern plain. Differences in
surficial geologic formations correlated well with different levels of gamma

VALUES OF HEAT FLOW IN SHALLOW WELLS, WHEN COMBINED
WITH GEOLOGICAL AND GEOPHYSICAL DATA, AID IN DEFINING
GEOTHERMAL RESOURCES.

Heat is produced in the Earth from the decay of radioactive minerals
and gravitational collapse. To maintain temperature equilibrium between
the Earth’s interior and surface, heat flows to the surface and is radiated
to space. A heat-flow study measures the heat flowing from the Earth’s
surface. To obtain values of heat flow, geothermal gradients and thermal
conductivity of rock units must be known

The geothermal gradient is calculated from the relation of

radiation. The use of passive seismic data is generally the only means by which About 450 mi of resistivity profiling was completed from 1980 to that, for accurate thickness estimates, materials in each succeeding layer temperature change with depth. Thermal conductivity measurements can
Magnetotelluric.--“Telluric currents (Cagniard, 1956; Berdichevskii, the deep crustal system of the Earth can be studied (for example, see 1982 as part of the Snake River Plain regional aquifer study. The surveys must have a seismic velocity greater than that in the layer above. The be made in the laboratory on samples of rock materials representing

Gravity 1960; Kunetz, 1957) are natural electric currents that flow in the Earth’s Evans, 1982). were made by R. J. Bisdorf (U.S. Geological Survey, written commun., refraction method has been used successfully in hydrologic studies to those in the field.
Gravity surveys determine lateral wvariations in the Earth’s crust in the form of large sheets, and that constantly change in intensity 1983). Results are presented in a report by Whitehead (1984). define valleys in bedrock that are filled with low-velocity, unconsolidated A major problem in heat-flow determinations is the lack of
gravitational field owing to the subsurface distribution of rocks of varied and in direction” (Zohdy, 1974, p. 5). Their origin is believed to be in Self-Potential aquifer materials. information on porosity of rocks in the borehole, which can affect

Seismic

“Applied seismology has, as its basis, the timing of artificially
generated pulses of elastic energy propagated through the ground and
picked up by electromechanical transducers operating as detectors”
(Eaton, 1974b, p. 67). Of interest in seismic studies is the elapsed time
of transmission of an energy pulse and the geometry of the travel path.

Self-potential, or spontaneous polarization, methods involve
measurement of electrical potentials developed locally in the Earth by
electrochemical activity, electrofiltration activity, or both (Zohdy, 1974, p.
8). Relatively simple equipment can be used to measure the potentials,
which are generally no larger than a few tens of millivolts. However,
extraneous sources of potential often obscure the natural potentials.

Interpretations are usually qualitative. The technique has been used
in Idaho chiefly for geothermal exploration (Williams and others, 1975,

the ionosphere, where charged particles from the Sun become trapped
by the Earth’s magnetic field. “The magnetotelluric method consists of
measuring the geoelectric field strength at the ground surface in one
horizontal direction and the geomagnetic field intensity in the horizontal
direction at right angles to the first” (Grant and West, 1965, p. 461).
From these measurements, an apparent resistivity for a particular signal
frequency is calculated and apparent resistivities at multiple frequencies
are usually inverted for depth-resistivity models. The magnetotelluric

densities. Preliminary gravity data must be corrected for effects of
topography, latitude, and tidal influences that mask lithologic and
structural anomalies. Additional corrections to gravity data may be
necessary to remove regional geologic effects.

In hydrogeologic studies, gravity surveys are used most often to
determine valley or basin bedrock geometry (Eaton, 1974a, p. 100).
Interpretation of gravity data is highly dependent on the interpreter’s
general geologic knowledge of the area. Although interpretations of

estimates of thermal conductivity. Another problem is that- geothermal
gradients may be disturbed by topographic features, water circulation, air
temperature changes in unsaturated zones, and geological and structural
changes

The Snake Plain aquifer, a large mass of cool freshwater masks the
local geothermal gradient. In addition, an unusual disturbance caused by
deep (as much as 300 ft) air circulation in unsaturated vesicular basalts
has been recorded. However, heat-flow determinations were useful in

gravity data are not unique, if coupled with known geologic information, method has been used in the western plain to delineate zones of thermal p. 24). defining the geothermal resources along the margins of the eastern plain
they yield useful information about regional subsurface conditions. water (Hoover and Tippens, 1975). and in much of the western plain.
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