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MAP D— FIRST VERTICAL DERIVATIVE OF ISOSTATIC
RESIDUAL GRAVITY (Map A)
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Figure 7.—A zero mGal isostatic residual anomaly occurs over a mountain that
is completely compensated in the local Airy-Heiskanen model. The Bouguer
correction removes the attraction of the mountain range above sea level, and the
isostatic correction removes the attraction of the root, the existence of which is
inferred from the topography.

/50 by 50 by 5-km rectangular solid
dense crustal mass

(0.3 g'cm?)
Sea level =W T
26 km
Local Airy root
|(_ 50 km ___»' -0.4 g/cm’
100 —
ttraction of dense crustal mass
50
0
] Attraction of compensating root
<
O | | | |
= 50
=
=
Z
> 100 —
<
o
Q
50 —
Isostatic residual anomaly
0
- | | | 1 l | | |
=100 —-75 -50 -25 0 25 50 75 100

DISTANCE, IN KILOMETERS

Figure 8.—A large, nonzero isostatic residual anomaly occurs over the center of a
dense shallow rectangular mass in the crust even though it is completely compen-
sated by a local Airy-Heiskanen root. In this case, there is no Bouguer correction
because there is no topography above sea level, and there is no isostatic correc-
tion for a root, even though one may exist, because the usual isostatic correction
only considers the compensating masses to topographic loads. In this case the
amount of excess mass in the dense, shallow body is compensated by an equal
deficiency of mass in the root. However, the greater depth of the root greatly
smooths the gravity low that accompanies the mass deficiency. Thus, when the
low is subtracted from the gravity high produced by the dense body, the high
remains quite evident in the residual, even though by Gauss’s theorem both the
low and the high anomalies must have equal but opposite volumes under their
mathematical surfaces.

Longer wavelength anomalies do not provide much information about iso-
static equilibrium either. Many long-wavelength anomalies are probably caused
by sources in the mantle below the depth of compensation and below the isostatic
system. Other long-wavelength anomalies can be modeled by geologically rea-
sonable density contrasts confined to the crust and upper mantle and assumed
to be in complete isostatic equilibrium.

Thus, individual isostatic residual anomalies do not reveal much about the
local presence or absence of isostatic equilibrium. Isostatic anomalies do, how-
ever, tell quite a lot about the lateral distribution of geologically interesting
masses in the crust and mantle.

THE FIRST-VERTICAL-DERIVATIVE MAP

Map D shows the first vertical derivative of the isostatic residual gravity
field also upward continued 10 km to suppress some of the short-wavelength
noise generated by the derivative. The first vertical derivative (Hildenbrand,
1983) enhances the shorter wavelengths and suppresses the longer wavelengths.
This derivative is accomplished in practice by multiplying the Fourier transform
of a potential field map by the wavenumber k. The effect is to sharpen anomalies
caused by abrupt lateral changes in near-surface densities at the expense of
broader anomalies caused by deeper or more gradual density changes. For this
reason, the map is of interest in attempts to correlate anomalies with geologic
bodies exposed at the surface. Suppression of longer wavelengths also aids in
comparing and distinguishing trends and anomaly fabrics in various domains.
The work of Hildenbrand and others (1977, 1982) in defining the Mississippi
Embayment graben provides an excellent example of the enhancements offered
by applying vertical derivatives to potential field data.

Applying the first vertical derivative is also equivalent to a pseudomag-
netic transform: the first-vertical-derivative value is proportional to the magnetic
anomaly that would be observed if dense material were replaced by magnetic
material in exact proportion, and if the magnetization direction and the local
geomagnetic field direction were oriented normal to the Earth’s surface. Because
of this property, the map can be usefully compared with aeromagnetic anomaly
maps (for example Zietz, 1982). Several important rock groups can be distin-
guished by the coincidence (or lack of coincidence) of aeromagnetic and gravity
anomalies. For example, mafic rocks are commonly both dense and magnetic.
For map D, the constant of proportionality used to make the gravity-to-magnetic
conversion is 149.9: when the values of the first vertical derivative in mGal/km
are multiplied by 149.9, the resultant number is the value in gammas (nT) that
would be observed if materials of density contrast 0.1 g/cm® were replaced by
magnetic material of magnetization 0.001 emu/cm3.
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k = (kq,ky) is the counterpart wavenumber vector. A general position vector
7= (z,y, 2) can be represented also as ¥ = (&,z). The point at which gravity is
observed is indicated by the subscript zero as in 75 = (@, 20). Note that in the
derivation here, z increases downward.

If g, is the vertical component of the gravitational attraction from the crust
between sea level and the bottom of the root, and p is the density of the root,

then
gz(ro)=—/vffap%dv (2)

where V' is the volume between z = 0 and z = h(&) within a radius R =166.7
km of observation point 7). This can be rewritten as
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where
0 forz>1
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For observations at sea level (20 = 0), g, becomes a function of only the
horizontal variables (zo, %) = @ so that a two-dimensional Fourier transform
of g, yieldls:
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Changing variables within the inner double integral by using @ = @, — @ and
2’ = 2y — z, converting the double integral to polar coordinates, and using the
relation
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from Bracewell (1965, p. 247), we get
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where a' = |@'|, R = 166.7 km, and J, is the zero order Bessel function. The
integral from 0 to R in this expression can be rewritten

The integral I; from 0 to oo, when substituted back into equation (8) yields
Parker’s result for the Fourier transformed g,:
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More details for this part of the derivation are given by Parker (1972) and Blakely
(1981).

The second integral I from R = 166.7 km to oo can be evaluated with the
help of a series expansion:
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When this expansion is substituted into equation (8), the z integration can be
performed yielding
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which can be reorganized to give
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The integral of Jy can be simplified slightly for numerical integration to
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For root depths small compared to 166.7 km, the series in (13) converges
rapidly. For example, for z = 40 km the second term is approximately 4 percent
of the first, and since the attraction beyond 166.7 km is probably less than 25
percent of the whole in most cases (Woollard, 1966), using only the first term
in the expansion would result in an error for a flat root with its base at 40 km
of approximately 1 percent (1 to 2 mGal). Thus, convergence is expected to be
rapid for all but the most extreme cases.
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Figure 6.—Isostatic regional gravity field in mGal at sea level. This is the grav- ‘ Figure 9.—Geometry of the Airy-Heiskanen root out to 166.7 km showing sym-
itational attraction of the compensating masses (roots) in the Airy-Heiskanen bols used in the Appendix. Symbols are: 7, observation point at height z,
model with same parameters as in figure 5. This attraction is subtracted from above sea level; 7, mass point; h(@), depth to bottom of root under point @; and
— 40° the Bouguer gravity field as an isostatic correction to give the isostatic residual d,, depth to bottom of root for topographic elevations at sea level.
gravity (map A). Hachures on closed contours point toward low regional values.
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For the enhancement and interpretation of anomalies caused by shallow vidual isestatic residual anomalies imply local isostatic balance or imbalance. Bowie, William, 1912, Effect of topography and isostatic compensation upon the
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