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In the sections that follow we explain the procedures used to reduce
the Bouguer gravity data and generate the four derivative maps. We also
describe the major anomalies and trends on the Bouguer gravity and
derivative maps. The topographic map was produced from digital terrain
data and is included as a reference; no description is included.

PROCEDURES USED IN MAP PREPARATION

DATA REDUCTION AND GRID GENERATION
Observed gravity data relative to the IGSN-71 datum (Morelli, 1974)
were reduced to the Bouguer anomaly using the 1967 gravity formula
(International Association of Geodesy, 1967) and a reduction density of
2.67 g/cm’. Standard USGS gravity reduction equations and related
formulae are discussed in Cordell and others (1982). Most terrain

(1) regional sources inherently contain a few short wavelengths that
cannot be removed without removing shallower residual effects (Dobrin,
1976), (2) anomaly amplitude can sometimes be distorted by removing
long wavelengths (Kane and Godson, 1985), and (3) some long-wavelength
anomalies can be caused by broad, shallow sources. For simplicity in the
following discussion, we ignore these leftover components and assume
that gravity data can be effectively wavelength filtered to emphasize
sources of interest.

DISCUSSION

COMPLETE BOUGUER GRAVITY ANOMALY MAP
The gravity expressions shown on the complete Bouguer gravity

anomaly map (map A) reflect variations in density. These variations in
density can be attributed to lithologic changes, primarily between different
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