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A—A' Line of cross section—See figure 1
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INTRODUCTION

A Bouguer gravity anomaly map of southwestern Wyoming, north-
eastern Utah, and northwestern Colorado was compiled from gravity data
collected at 4,420 stations. These gravity data, constrained by stratigraphic
information from borehole logs, were used to prepare a model of the
subsurface structure in southwestern Wyoming along a profile that is
320 km long' and trends west along latitude 41°36’ N. This investigation
was supported, in part, by the Western Gas Sands Project of the U.S.
Department of Energy, which has been administered by C.W. Spencer and
B.E. Law of the U.S. Geological Survey (Interagency Agreement
DE-AI21-83MC20422).

GRAVITY ANOMALY MAP
PREPARATION OF MAP

The data used to prepare the Bouguer gravity anomaly map were
either collected by the U.S. Geological Survey (Bankey and others, 1989)
or extracted from the Defense Mapping Agency gravity data base. All
these observed gravity data are relative to the IGSN-71 datum (Morelli,
1974) and were reduced to the Bouguer anomaly using the 1967 gravity
formula (International Association of Geodesy, 1971) and a reduction
density of 2.67 g/cm?. Terrain corrections were made radially from each
station to a distance of 166.7 km using the computer method of Plouff
(1977). The latitudes and longitudes of gravity stations were transformed
into map coordinates using a Lambert conformal conic projection with a
central meridian of longitude 109° W. The data were converted to a 2-km
grid using a computer program by Webring (1981) based on minimum
curvature (Briggs, 1974). The gridded data were contoured at an interval
of 2 mGal (milligals) using a program by Godson and Webring (1982). The
Bouguer gravity anomaly map was plotted using color software and
equipment from Applicon, Inc.

GEOLOGIC INTERPRETATION OF MAP

The Phanerozoic strata in this region of southwestern Wyoming,
northeastern Utah, and northwestern Colorado are probably more than
9,150 m thick in the deepest basins (Jensen, 1972) and are composed
mainly of siliciclastic and carbonate rocks. These rocks were deposited in
marine and continental environments during Paleozoic, Mesozoic, and
Cenozoic time; the only period not represented in the stratigraphic record
is the Silurian.

The major north-trending structural features in the map area are,
from west to east: the Wyoming salient of the overthrust belt, which
encompasses Fossil basin and the Absaroka and Darby-Hogsback thrust
faults, in the eastern part of the Sevier orogenic belt; the Green River
basin, which surrounds the Moxa arch; and the Rock Springs uplift. The
area adjoining the east side of the Rock Springs uplift includes, from north
to south, the Great Divide basin, the west-trending Wamsutter arch, the
Washakie basin, the west-trending Cherokee Ridge arch, and the Sand
Wash basin. Along the eastern edge of the map area are, from north to
south, the Rawlins uplift and the Sierra Madre uplift, which both trend
approximately northwest. Major structural features near the northern
border of the region are the Wind River Range and Granite Mountains
uplifts of west-central Wyoming. In the southwestern part of the region,
the Uinta Mountains uplift trends west across northeastern Utah and
northwestern Colorado. South of the Uinta Mountains, the northernmost
part of the Uinta basin is shown on the map.

In the overthrust belt of southwestern Wyoming and adjoining parts
of Idaho and Utah, the surface traces of the thrust faults are subparallel
and generally trend north, and the major faults are successively younger
from west to east (Armstrong and Oriel, 1965; Royse and others, 1975).
For several thrusts in that area, displacements have been assigned to Late
Jurassic, Early Cretaceous, Late Cretaceous, and early Tertiary time
(Wiltschko and Dorr, 1983). East of the overthrust belt, some of the major
uplifts in the map area apparently arose in temporal succession. The Moxa
arch, a peripheral upwarp that strikes generally north near the eastern
edge of the overthrust belt, was intermittently uplifted mainly during the
Late Cretaceous (Thomaidis, 1973; Stearns and others, 1975; Wach,
1977, Stockton and Hawkins, 1985; Garing and Tainter, 1985). East of
the Moxa arch, the north-trending Rock Springs uplift was rising in Late
Cretaceous and early Tertiary (Paleocene and Eocene) time (Stearns and
others, 1975; Stockton and Hawkins, 1985; Garing and Tainter, 1985).
These structures arose almost contemporaneously with successive
eastward movements of plates in the overthrust belt (Thomaidis, 1973;
Merewether and Cobban, 1986). The southern end of part of the
overthrust belt as well as both the Moxa arch and the Rock Springs uplift
terminate on the northern flank of the west-trending Uinta Mountains,
which are aligned with Precambrian structures and were rising in Late
Cretaceous through middle Tertiary (early Oligocene) time (Hansen,
1984).

In the northern part of the region, the northwest-trending Wind River
Range and the west-trending Granite Mountains were also rising during
the Late Cretaceous and Tertiary (Keefer, 1970; Reynolds, 1976; Gries,
1983). The west-trending southern flanks of the Wind River Range and
the Granite Mountains were faulted during the Eocene and locally during
the Oligocene (Pipiringos, 1955; Reynolds, 1976; Steidtmann and
Middleton, 1986). Gries (1983) proposed that the major movements of
the west-trending uplifts were generally later than the movements of the
north-trending uplifts. However, after regional studies of the Laramide
uplifts and basins in most of the western interior, Hamilton (1988) and
Dickinson and others (1988) concluded that the various major structural
trends developed almost simultaneously.

Most major structural features discussed here exhibit a predictable
gravity response on the Bouguer gravity anomaly map. The Green River,
Great Divide, Washakie, Sand Wash, Uinta, and Fossil basins correspond
to negative gravity anomalies caused by low-density sedimentary rocks.
The Wind River Range, Sierra Madre, Granite and Uinta Mountains,
Wamsutter and Cherokee Ridge arches, and Rock Springs and Rawlins
uplifts correspond to positive gravity anomalies caused by denser
sedimentary, metamorphic, and igneous rocks that have been uplifted.

DETERMINING ROCK DENSITIES

The bodies in our model (fig. 1B) were initially defined as discrete,
simplified lithologic units but are actually units of constant density. This is
important to remember if the reader compares cross sections published
elsewhere with the cross section of this report (fig. 1B). The bodies’
boundaries were selected so that density contrasts and mappable
lithologic contacts coincide as much as possible. However, body density is
not always homogeneous, especially where the lateral extent of the body is
great or where the density of buried, compacted sediments increases with
depth. The model must somehow account for such density variations.
Hurich and Smithson (1982, p. 1553) reported densities from borehole
logs of sedimentary rocks in the Green River basin that show a density
increase of as much as 0.35 g/cm?® per kilometer of depth. Compaction
and density increase are most evident in the uppermost 2 km of the
sedimentary sequence. Equivalent lithologic units were divided into
separate bodies (denoted with subscripts such as bodies 1 and 1p) that
have different densities which represent different burial depths. The
densities were commonly confirmed using data from the density logs of
boreholes. This procedure was used for rocks of the Sierra Madre, for
strata in the Washakie basin, and for rocks of the overthrust belt. The
densities used in the model are listed in table 3.

In addition, body densities vary laterally in the model. One significant
area where this variation was recognized is the Green River basin. In that
area, the calculated gravity response to a homogeneous and less-dense
basin fill does not match the measured response. Only a model that
includes denser basin fill near the edge of the overthrust plates matches
the measured gravity. Bodies 1 and 1b, although simplified, approximate
the density changes that occur both horizontally and with depth.

Wagoner (1985), in preparing gravity models of the overthrust belt,
compared rock densities of formations using several data sources (table 4).
The range of values is great even for the small area of his report, and the
increase in formation density with increased depth was not considered.
Each body defined in our report encompasses many stratigraphic units.
This simplification cannot duplicate the structural detail described in
Wagoner's report, because individual thrust sheets can exclude most of
the formations that comprise the bodies and can have densities that differ
widely from the averages we used. As a general guideline, the thrust sheets
are less dense than rocks of the same age in the basins. This could be
caused by differences in the depth of burial, by increased porosity of units
before thrusting as suggested by Rubey and Hubbert (1959), or by
fracturing of rocks during thrusting.

The density of Precambrian basement rocks at depth is unknown. In
our model, the density assigned to Precambrian igneous and metamorphic
rocks of this region is 2.71 g/cm?. Gravity models described in previous
publications have used a surprisingly large range of 2.67-2.80 g/cm*®—
Smithson and others (1978), Behrendt and Thiel (1963), and Malahoff
and Moberly (1968) used 2.67 g/cm?®, whereas Mabey and Oriel (1970)
and Morel (1977) used 2.80 g/cm?® Hurich and Smithson (1982)
collected and measured the densities of 25 samples from outcrops of
Precambrian rocks in the Wind River Range. The samples of granodiorites,
quartz monzonites, granites, gneisses, and migmatites average between
2.70 and 2.73 g/cm®. Hurich and Smithson assigned a value of 2.73 g/cm?
to Precambrian rocks in and north of the Wind River Range. New,
unpublished density values from D.M. Kulik (oral commun., 1985) for 15
outcrop samples of Precambrian granitic, dioritic, and amphibolitic rocks
in Wyoming, Idaho, and Montana, include only one density value greater
than 2.65 g/cm?; consequently 2.80 g/cm? is probably too high. Figure 2
shows the gravity values for our model using various densities for
Precambrian basement. This figure suggests the problems caused by using
a different density for basement rocks; densities of the overlying bodies
could be decreased or increased (beyond measured and acceptable
values) to better match the observed anomaly amplitude. A density of
2.67 g/cm’® for basement rock does not account for the magnitude of the
anomaly over the Rock Springs uplift. In the Wind River Range just north
of the Rock Springs uplift, Smithson and others (1978) have included a
wedge of denser material, raised into the lower crust from the upper
mantle, to balance their model. Hurich and Smithson (1982) generalized
that other Laramide uplifts are cored by similar material near the lower
crust-upper mantle interface. Our model does not consider uplifts at

" depth.

INTERPRETATION OF PROFILE AND MODEL

The anomalies of the Bouguer gravity profile are labelled A-E (fig. 1A).
These anomalies will be discussed in succession from west to east along
the profile and on the gravity anomaly map.

Anomaly A is a 13-mGal positive anomaly associated with the Darby-
Hogsback thrust plate. The structure shown on figure 1B for this area of
the overthrust belt is based on Lamerson’s cross section (1982) across the
same area. Lamerson’s cross section shows thrust plates of sedimentary
rocks overlying a smooth, Precambrian basement surface that dips
westward at a low angle (Lamerson, 1982; Dixon, 1982; Blackstone,
1977). Gravity data are not abundant enough to elaborate on the
structure of this part of the overthrust belt. Even though densities of
sedimentary rocks within this part of the overthrust belt are less than those
of equivalent units buried in the Green River basin, the shallow depths of
high-density Paleozoic rocks in the thrust sheet account for the shape and
magnitude of anomaly A. The westward decrease in amplitude of anomaly
A is caused by low-density Mesozoic siliciclastic rocks in Fossil basin.

The gravity map shows anomaly A as a north-northeast-trending
linear feature that is 130 km long and terminates at the Uinta Mountains
uplift to the south. Additional gravity stations south of the profile would
better define the shape of the anomaly; it is probably not as broad as
shown in areas of no data, because it is associated with the edge of the
thrust sheet. The negative anomaly associated with Fossil basin is as
extensive as positive anomaly A and parallels it.

East of the overthrust belt, between the peak of positive anomaly A at
35 km and the trough of negative anomaly B at 105 km, the gravity field
calculated in early models, using a homogeneous density for the entire
Green River basin, was lower than the observed gravity field. Assuming
that the basic structure as shown in the model is correct, the density of the
Tertiary basin fill nearest the thrust fault for our model must be
significantly increased. When the model is changed so that basin fill
density gradually decreases from west to east, which is approximated in
the model by bodies 1 and 1b, the calculated values more closely match
the observed values. More gravity data are needed in this area to show
details of the contact between the thrust plate and the basin and to reveal
deeper structures.

The Moxa arch, east of the Darby-Hogsback thrust fault, extends from
the north flank of the Uinta Mountains to La Barge, Wyo., where it is
overlain by the Darby-Hogsback thrust plate. Denser Precambrian rocks
and overlying formations are closer to the surface along the crest of the
arch, where they should generate a positive gravity anomaly rather than
the flat gravity field shown on the profile and gravity map. Some possible
reasons for this apparent lack of gravity response follow.

SUMMARY

The Bouguer gravity anomaly map exhibits generally predictable
gravity anomalies: negative anomalies are associated with low-density
sedimentary rocks in the major basins, and positive anomalies are
associated with denser sedimentary, igneous, and metamorphic rocks of
uplifts and mountain ranges. Two unexpected features of the gravity map,
however, make interpretations more challenging: the lack of gravity
expression for the Moxa arch, and the lack of geological expression for a
large east-trending gravity anomaly herein named the Blue Rim—Red
Desert gravity anomaly.

The positive gravity anomaly expected from the Moxa arch could be
superimposed on a negative gravity anomaly caused by a thick unit of low-
density Tertiary rocks, resulting in no net gravity anomaly. Lateral density
decrease from west to east could also mask the expected positive
anomaly. Westward thrusting of the arch might have caused a westward
offset of the expected anomaly.

The Blue Rim-Red Desert gravity anomaly is likely caused by a buried
uplift related to west-trending Precambrian structures that were reactivated
and formed structural highs in the Late Cretaceous and Tertiary.

A model of subsurface structure along a profile at latitude 41°37" N.
shows observed and calculated gravity curves. This structural model was
constrained by stratigraphic data from borehole logs, from published
seismic profiles,”and from Lamerson’s profile of the overthrust belt
(Lamerson, 1982). Rock densities were determined from borehole logs
and were adjusted for depth and horizontal position on the profile.
Because gravity modeling cannot yield a unique structural solution, these
stratigraphic data were required to construct reasonable subsurface
structures.
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IMetric measurements used herein are expressed as U.S. units in table 1.

Figure 1. A, Bouguer gravity anomaly profile along A-A’, and B, Bouguer gravity
anomaly model of major structures along A-A’.
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