

INTRODUCTION

This map of the magnetic field of the San Francisco Bay area and the companion gravity map are part of a series of regional geologic and geophysical maps designed to provide the basic data necessary for establishing a geological and tectonic framework for the region. The maps—field, base, and regional—comprise a map series planned under the joint auspices of the U.S. Geological Survey's Earthquake Hazards Reduction Program and National Geologic Mapping Program. To emphasize the relations between the magnetic field and active faults, contours of equal magnetic field intensity are shown on a false-color satellite image with earthquake epicenters highlighted for the period 1972-89 (U.S. Geological Survey, 1990).

Detailed knowledge of the Earth's local magnetic field provides a means for determining and modeling the subsurface geologic three dimensions. Rocks bearing certain magnetic minerals generate their own magnetic fields that locally distort the Earth's main field. The shapes and amplitudes of the local magnetic field distortions (magnetic anomalies) contain information about the locations, shapes, and magnetizations of the causative bodies. Quantitative values of the source body's shape, size, and magnetization can be obtained by calculating magnetic anomalies for a model body having an assumed shape and magnetization, comparing these anomalies with the magnetic anomaly actually observed, and then modifying the model body until the observed and calculated anomalies agree. The modeling results, in turn, place constraints on the types of rock and geologic structures that are concealed beneath the surface. Although an unambiguous determination of a source body's shape and magnetization is not possible on the basis of its magnetic anomaly alone (bodies with different shapes and magnetizations can sometimes generate identical magnetic anomalies), interpreting magnetic anomalies in conjunction with a knowledge of the local geology and with other geophysical information effectively reduces or eliminates interpretive ambiguity as a practical problem in most cases.

Application of aeromagnetic methods to regional investigations is particularly useful in the San Francisco Bay area because the important rock units that make up the crust of the region contain magnetic minerals. Extensive areas are underlain by pieces of former oceanic crust and upper mantle that subsequently have been partially altered to highly magnetic serpentinized rocks. Many plutonic rocks and ultramafic volcanic rocks in the metamorphic surroundings are also good sources of magnetic minerals. Rose sedimentary units containing unusual concentrations of magnetic minerals constitute a minor but potentially important source of low-amplitude magnetic anomalies. Many of the magnetic anomalies in the San Francisco Bay area are discussed by Brabb and Hanna (1981), Robbins (1971, 1982), and Griscom and Jachens (1990a).

DATA SOURCES AND REDUCTIONS

The magnetic map of the San Francisco Bay area and vicinity was compiled from eight separate aeromagnetic surveys (fig. 1) that do not have uniform specifications of flight-height, flight-line spacing, and flight-line direction (table 1).

Table 1. Aeromagnetic surveys used to compile aeromagnetic map			
Survey area	Year flown	Flight height ¹ (in meters)	Flight-line spacing
San Francisco (U.S. Geological Survey, 1971)	1950-51	305 m/agl	1.6 km E-W
Coastal California (Brabb and Hanna, 1981)	1954	914 m/cbe	1.6 km NE-SW
Sacramento Valley (Meissner and others, 1966)	1954	152 m/agl	1.6 km NE-SW
San Francisco Bay area (U.S. Geological Survey, 1974a,b,c)	1973	914 m/cbe	1.6 km NE-SW
Offshore central California (McCulloch and Chapman, 1977)	1976	610 m/cbe	1.6 km NE-SW
Northern Great Valley (California Division of Mines and Geology, 1979)	Not available	1067 m/cbe	1.6 km NE-SW
Palo Alto, California (Abrahams and others, 1991b)	1989	244 m/agl	0.4 km NE-SW
San Jose, California (Abrahams and others, 1991a)	1989	305 m/agl	0.4 km NE-WSW

¹ agl, height above ground level; cbe, constant barometric elevation.

Because aeromagnetic maps based on surveys flown at different elevations above a magnetic source tend to portray the source's magnetic anomaly differently, an aeromagnetic map constructed by simply compositing the individual maps from surveys with different flight specifications is difficult to analyze and of limited value in solving regional problems. Therefore, to ensure the integrity of the San Andreas system, the following procedures were used to construct the map. First, the International Geometric Reference Frame (IGRF), updated to the date that the survey was flown, was removed from each survey to generate a temporally consistent set of residual magnetic data. Next, all surveys were placed in the same geographic datum and deformed 305 m above the ground surface. The San Francisco and San Jose surveys (table 1) originally were collected at a nominal height of 305 m above the surface and the Palo Alto survey was collected at a height just slightly lower, therefore none of the surveys were modified at this stage. The other surveys were numerically modified in such a way that the resulting maps approximated the magnetic field that would have been measured if the various surveys had been collected at a height of 305 m above the ground surface (Cordell 1985). Finally, the individual surveys were interpolated to a 1-km grid and the resulting data were combined by superposition where surveys overlapped. The hierarchy of superposition, based on our evaluation of each survey's quality and specifications, was as follows:

Coastal California-Northern Great Valley-Sacramento Valley-San Francisco Bay area-San Francisco-Offshore central California-San Jose-Palo Alto

Surveys to the left of the “=>” were superseded by surveys to the right wherever data overlap occurred.

DISCUSSION

The magnetic anomalies shown on the map mark subsurface boundaries across which rock magnetic properties change and may directly or indirectly indicate them. Tectonic zones and commonly occur fault zones of major strike-slip faults of the San Andreas system indicate narrow linear anomalies along the faults. Numerous hatched blocks are fault bounded and prominent anomalies are present where these faults have juxtaposed basement rocks with different magnetizations. Finally, any fault or fracture zone that has a magnetic signature is expressed in the magnetic field (for example, faults or folded sheets of sedimentary rocks) should itself as an alignment of truncated linear magnetic anomalies. Examples of each of these cases can be seen on the map by comparing the magnetic anomalies with the distribution of earthquake epicenters. Determining boundaries directly from this map is not a straightforward process because of complications introduced by the local orientation of the Earth's main field and by the geometry of the source rocks. Because the Earth's main field is not vertical in the San Francisco Bay area, magnetic anomalies will not in general be located directly above the source rocks. Instead, the anomalies high above the source body south edge of the body and a magnetic low caused by the source body will exist over the north edge and to the north of the body. Precise locations of the boundaries of the source bodies generally will require modeling the anomalies and their gradients (Weber 1983; Webley 1985), perhaps aided by automated boundary location that operate on grid data (Simpson and Simpson, 1986). However, at the scale of the present map, potentially useful approximations of boundary locations can, in some cases, be made directly from the map by applying some “rules of thumb” (fig. 2). For a steep-sided (60°), tabular body, the magnetic high will be located to the east of the San Francisco Bay area, and the north (magnetic) edge of the body will be the bottom or just south of the bottom of the northside low, whereas the south edge will be near the top or just south of the top of the magnetic anomaly high. The east and west edges will lie along the east and west magnetic gradients that bound the body. The magnetic low will be located to the west of the body. Areas over boundaries that are not oriented parallel to magnetic north-south or east-west will display characteristics intermediate to those over boundaries oriented along the cardinal directions. Many other examples (similar to those shown in fig. 2) can be found in Vacher and others (1951) and Andreasen and Zietz (1981). Vacher and others (1951) also present a graphical method for estimating the depth to the top of a magnetic source on the basis of its magnetic anomaly shape.

RELATIONS BETWEEN MAGNETIC ANOMALIES AND EARTHQUAKE EPICENTERS

Most of the strong alignments of earthquake epicenters in the San Francisco Bay area bear one of three possible consistent relations to the magnetic anomalies: (1) alignments that cross linear magnetic anomalies without offsetting them; (2) alignments that truncate linear magnetic anomalies; and (3) alignments that parallel linear magnetic anomalies. The only clear example of epicenters crossing a linear magnetic anomaly lies east of the southern tip of San Francisco Bay (fig. 1). Although there is a reduction in amplitude of the magnetic anomaly at the place where the epicenters cross it, the continuity of the anomaly suggests that only minor strike-slip motion occurred along that part of the coast, the epicenters align along the southern Calaveras Fault (fig. 2) in close association with the Calaveras Fault system. Many other examples (similar to those shown in fig. 2) can be found in Vacher and others (1951) and Andreasen and Zietz (1981). Vacher and others (1951) also present a graphical method for estimating the depth to the top of a magnetic source on the basis of its magnetic anomaly shape.

Alignments of earthquake epicenters parallel to magnetic anomalies are common in the San Francisco Bay area. Along the Hayward Fault (3 on fig. 3), the epicenters are aligned beneath a linear magnetic anomaly for a distance of more than 40 km. Although the spatial correlation between the magnetic anomalies and the epicenters is not well understood, the precise locations between the source body and the distribution of seismic hypocenters will require detailed modeling. Epicenters along the San Andreas Fault near the south edge of the map (4 on fig. 3) parallel a magnetic anomaly (peak amplitude 200 nT) whose source body lies southwest of the fault. The hypocenters do not lie beneath the inferred northwest end of the body (see example in fig. 2), but actually trend toward the southwest end. This apparent discrepancy could be explained by a dipping fault plane (steeply to the southwest) as has been proposed for the San Andreas Fault near here by Pavlakis and Spratt (1981). Epicenters northwest along the San Andreas Fault offshore from San Francisco (5 on fig. 3) are scattered throughout the San Francisco Bay area, and the epicenters appear to be scattered throughout San Francisco Bay. Perhaps the diffuse nature of the hypocenter distribution indicates that the earth is not aligned to the major faults, or perhaps the fact that the epicenters caught between them is being obscured. Finally, in the south part of the map near the junction of the San Andreas and Calaveras Faults (6 on fig. 3) a number of unusual epicenter alignments occur that are not easily explained by known faults. However, these alignments are parallel to the local magnetic anomalies, suggesting that there are linear subsurface structures associated with the earthquakes.

REFERENCES CITED

Abrams, G.A., Kucke, R.P., and Beskin, R.E., 1991a, Aeromagnetic gridded data for a portion of the San Jose 1° x 2° quadrangle, California: U.S. Geological Survey Open-File Report 91-30, 5 p., 1:5-1:4-inch grid disk.

—, 1991b, Aeromagnetic map of Palo Alto and vicinity, California: U.S. Geological Survey Open-File Report 91-336, 1 sheet, 1:62,500.

Andreasen, G.E., and Zietz, Isidore, 1969, Magnetic fields for a 4-km² area in the San Francisco Bay area: Geophysics, v. 34, p. 661-670.

Blakely, R.J., and Thompson, R.W., 1986, Approximate edge source bodies from magnetic or gravity anomalies: Geophysics, v. 51, p. 1494-1498.

Brabb, E.E., and Hanna, W.F., 1981, Maps showing aeromagnetic anomalies, faults, and seismic zones rocks in the northern San Francisco Bay region, California: U.S. Geological Survey Geophysical Investigations Map GP-932, 2 p., 3 sheets, scale 1:125,000.

Briggs, I.C., 1974, Machine contouring using minimum curvature: Geophysics, v. 39, p. 39-48.

California Division of Mines and Geology, 1970, Aeromagnetic map of the north half of the Great Valley, California Division of Mines and Geology Open-File Report 78-13D, SAC, scale 1:25,000.

Cordell, Lindström, 1985, Techniques, applications and problems of analytical continuation of New Mexico aeromagnetic data between arbitrary sources of high order: International symposium on aeromagnetic fields in rugged topography, Proceedings, Abstracts with Program, Institut de Géophysique, Université de Lausanne, Switzerland, Bulletin 7, p. 96-101.

Griscom, Andrew, and Jachens, R.C., 1990a, Crustal and lithospheric structure from gravity and magnetic studies, in Wallace, R.E., ed., The San Andreas Fault System: U.S. Geological Survey Professional Paper 1515, p. 238-259.

—, 1990b, Tectonic history of the San Francisco Bay area beneath the San Andreas fault system, in Wallace, R.E., ed., The San Andreas fault system: Inferred from gravity and magnetic anomalies, Journal of Geophysical Research, v. 94, p. 3089-3099.

McCulloch, D.S., and Chapman, R.H., 1977, Maps showing residual magnetic intensity along the California coast, Lat. 37°30' N. to Lat. 34°30' N.: U.S. Geological Survey Open-File Report 77-079, 14 sheets, scale 1:125,000.

Meuschke, J.L., Pitkin, J.A., and Smith, W.C., 1966, Aeromagnetic map of Sacramento and vicinity, California: U.S. Geological Survey Geophysical Investigations Map GP-574, 1 sheet, scale 1:250,000.

Pavon, Nancarrow, and a structural model for the San Andreas zone along the northeast side of the Golden Range, in Riesch, R.L., and Van Amon, eds., Proceedings of the conference on tectonic problems of the San Andreas fault system, Stanford, Calif., Stanford University Publications in the Geological Sciences, v. 13, p. 259-267.

Robbins, S.L., 1971, Gravity and magnetic data in the vicinity of the Calaveras, Hayward, and Silver Creek faults near San Jose, California: U.S. Geological Survey Professional Paper 750-B, p. B128-B139.

—, 1982, Complete Bouguer gravity, aeromagnetic, and generalized topographic map of the Hollister 15-minute quadrangle, California: U.S. Geological Survey Geophysical Investigations Map GP-945, 2 sheets, scale 1:62,500.

Saltus, R.W., and Blakely, R.J., 1983, Hypermag: An interactive, two-dimensional gravity and magnetic modeling program: U.S. Geological Survey Open-File Report 83-241, 91 p.

Spiehli, M.A., 1981, Two detailed seismic studies in central California. Part I: Earthquake clustering and crustal structure studies of the San Andreas Fault near San Juan Bautista. Part II: Seismic velocity structure along the Sierra foothills near Oroville, California: Stanford, Calif., Stanford University Publications in the Geological Sciences, v. 17, p. 1-170.

U.S. Geological Survey, 1971, Aeromagnetic map of the southern part of the San Francisco Bay region, California: U.S. Geological Survey Open-File Report 71-294, 1 sheet, scale 1:125,000.

—, 1974a, Aeromagnetic map of the San Jose, Santa Cruz, and San Francisco 1° x 2° quadrangles, California: U.S. Geological Survey Open-File Report 74-079, 1 sheet, scale 1:125,000.

—, 1974b, Aeromagnetic map of parts of the San Jose, Santa Rosa, and Sacramento 1° x 2° quadrangles, California: U.S. Geological Survey Open-File Report 74-080, 1 sheet, scale 1:125,000.

—, 1974c, Aeromagnetic map of parts of Santa Rosa and San Francisco 1° by 2° quadrangles, California: U.S. Geological Survey Open-File Report 74-081, 1 sheet, scale 1:125,000.

—, 1990, San Francisco Bay area contoured: U.S. Geological Survey, paper, scale approx. 1:286,500.

Vaquer, Victor, Steenland, N.C., Hougham, R.G., and Zietz, Isidore, 1951, Interpretation of aeromagnetic maps: Geological Society of America Memoir 47, 151 p.

Weber, Michael, and SARI, A Fortran program for generalized linear inversion of gravity and magnetic data: U.S. Geological Survey Open-File Report 85-122, 28 p.

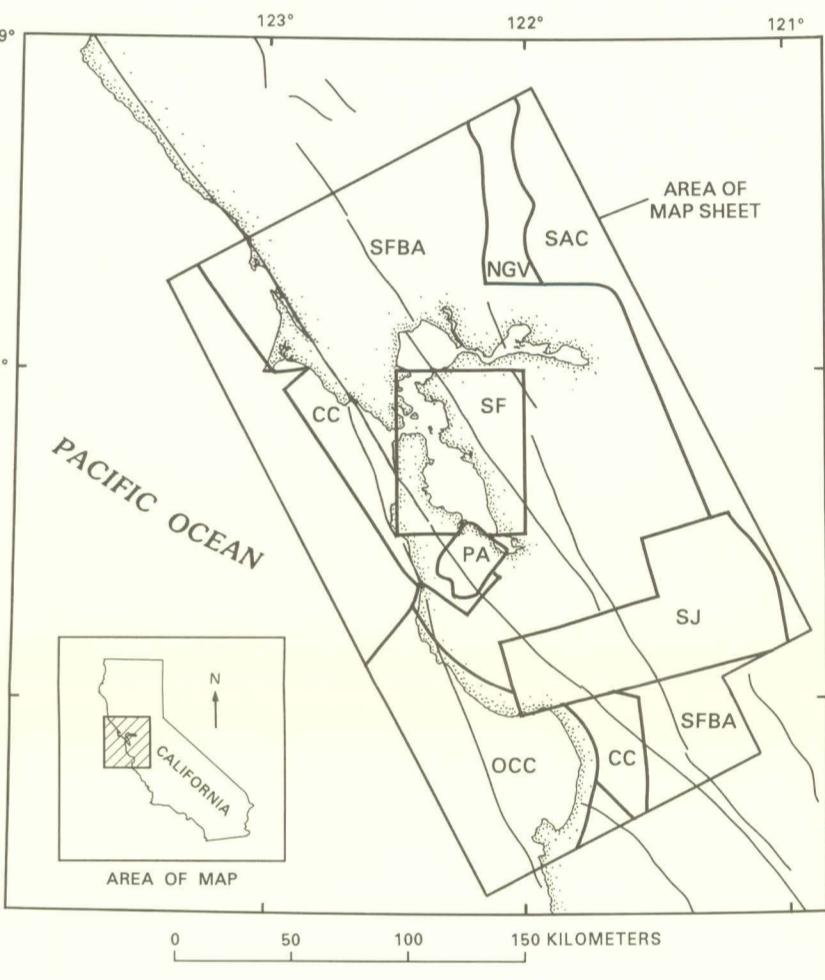


Figure 1. Boundaries of aeromagnetic surveys used to compile aeromagnetic map of San Francisco Bay area, California. Symbols: CC, Coastal California; NGA, Northern Great Valley; OCC, Offshore central California; SF, San Francisco; SAC, Sacramento Valley; SF, San Francisco; SFBA, San Francisco Bay area; SJ, San Jose. Thin lines, major faults.

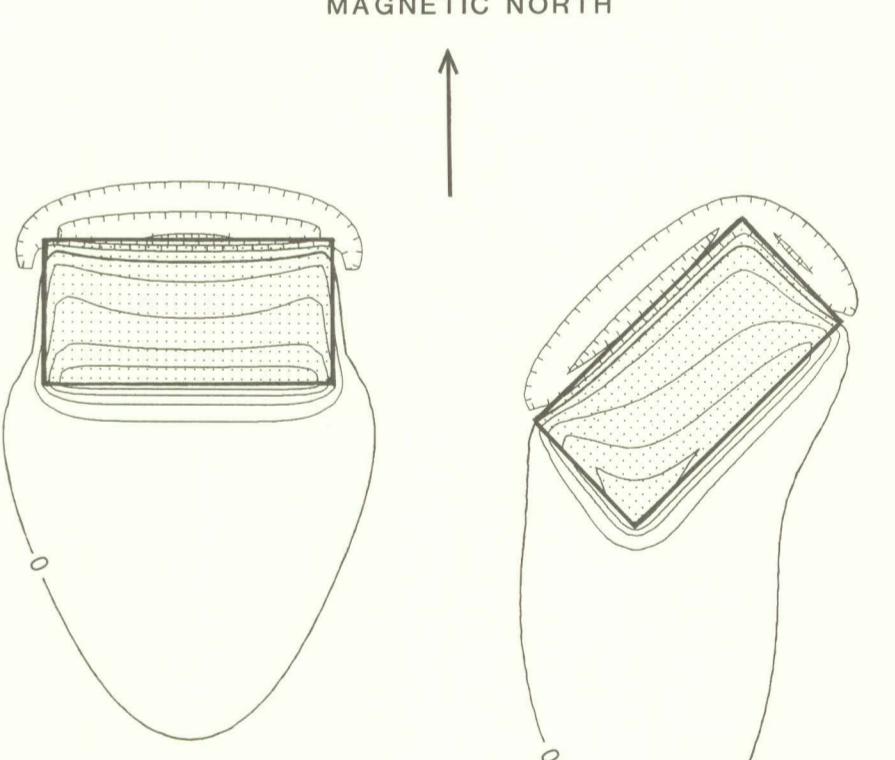


Figure 2. Theoretical magnetic fields over ideal rectangular source bodies. Model parameters: Main field inclination, 60°; Magnetic susceptibility, 0.001 cgs; Body (shaded), 12 km long, 6 km wide, 3 km thick; Survey height, 305 m above top of body. Plot is at scale of map. Contour interval 100 nT. Hachures indicate closed lows.

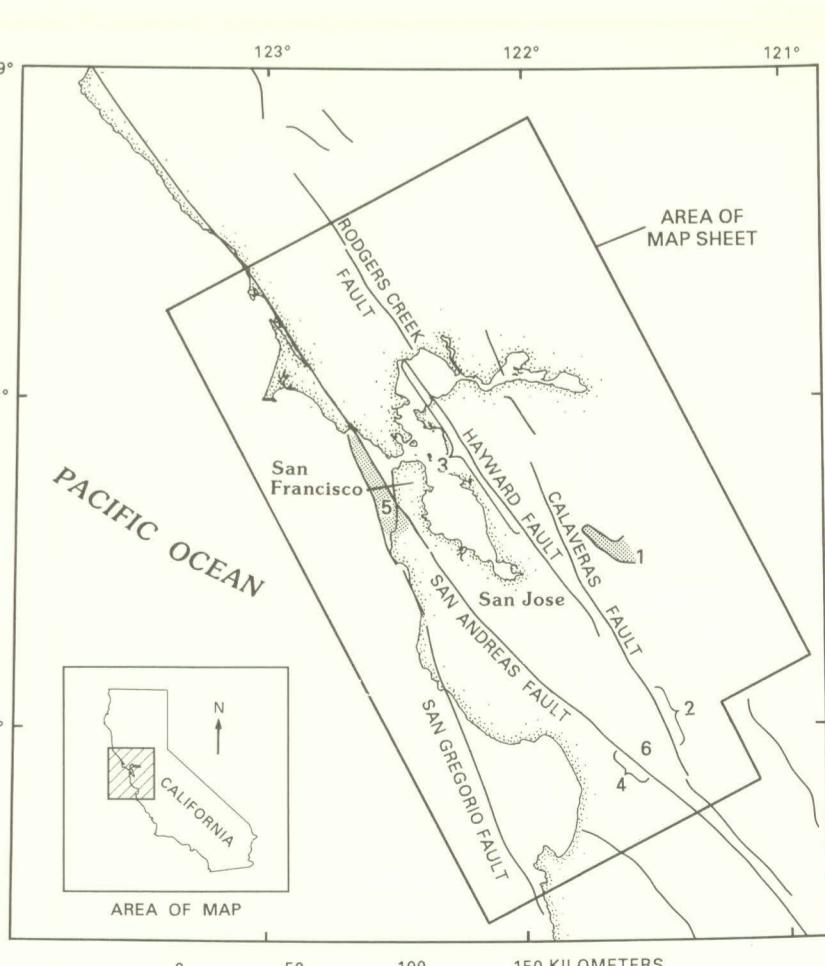


Figure 3. Major faults in San Francisco Bay area. Numbers indicate locations of anomalies discussed in the text. Shaded areas represent magnetic highs.