
EXPLANATION

Diabase dikes

Gabbro

Quartz monzonite

PALAEZOIC TRIASSIC

MILLINGPORT FORMATION:

YADKIN MEMBER (4,000-6,500 ft)—best exposed in adjacent Albemarle and Mount Pleasant quadrangles. Poorly sorted dark-greenish-gray to greenish-black volcanic sandstone interbedded with siltstone of similar composition, both of which contain quartz, plagioclase, and silt- to fine sand-sized rock fragments. The fine-grained matrix is composed of sericite, chlorite, quartz, and plagioclase. Epidote, clinozoisite, magnetite, ilmenite, and apatite are also present.

FLOYD CHURCH MEMBER (2,500-5,000 ft)—gray to greenish-gray argillite; weathers olive, gray, or brown. Lower part is moderately distinctly bedded and graded; upper part less obviously bedded. Locally, contains layers of volcanic sandstone and siltstone; in places has thin layers of calcareous siltstone. Argillite chiefly composed of quartz, feldspar, sericite, some chlorite, minor amounts of biotite, epidote, clinozoisite, pyrite, and sphene-leucoxene.

Volcaniclastic andesitic basalt (variable)—contains volcanic rock fragments of either pyroclastic or epiclastic origin.

Rhyolitic-rhyodacitic rocks (variable)—may contain volcanic rock fragments of both pyroclastic and epiclastic origin. Rhyodacite is herein used as extrusive equivalent of granodiorite.

Lentil of argillaceous tuff breccia (20-50 ft)—represents the final phases of the Flat Swamp Mountain volcanic activity as indicated by essential and reworked felsic volcanic debris and slabs of the enclosing argillite of the Floyd Church Member in an argillaceous matrix. Original shard structures have been observed.

CID FORMATION:

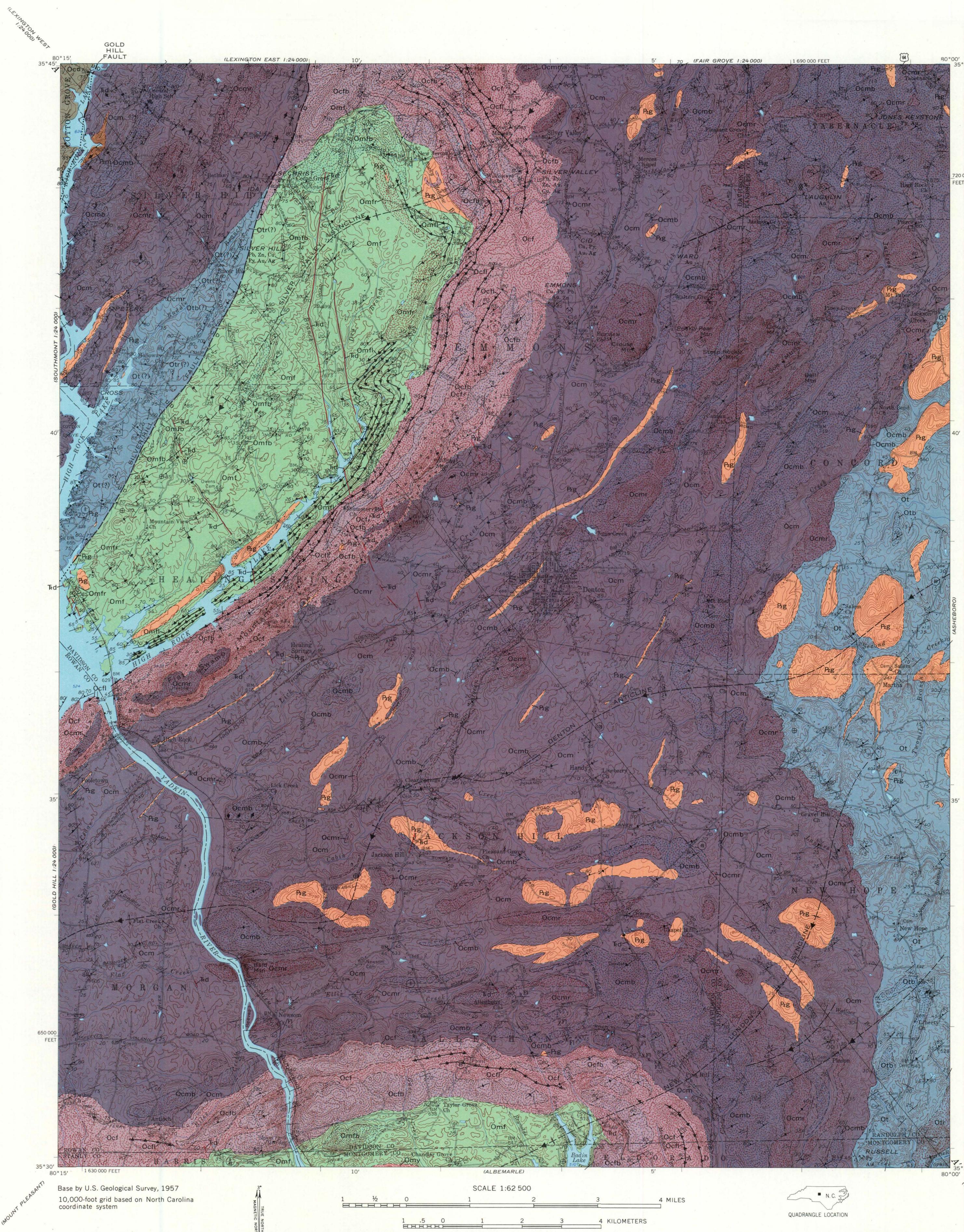
FLAT SWAMP MEMBER (2,500-4,500 ft)—chiefly vitric-crystallitic tuff breccia (ash flow), vitric tuff, and stratified tuff, all of composition intermediate between rhyolite and rhyodacite. Breccias contain laths of albite, scattered accessory aphanitic fragmets as much as 3 cm in length, elongated parallel to a crude stratification, all set in an aphanitic devitrified quartzofeldspathic matrix. Also present are scattered grains of pyrite, phyllite, magnetite, sphene-leucoxene, grains of mesoperitic biotite, chlorite, sericite, epidote, clinozoisite, and calcite. Irregular splinterly-appearing wedges as much as 25 mm long made up of microaggregates of biotite-chlorite-feldspar occur in places. On Wildcat Mountain breccias contain stretched and bent recrystallized essential lithic fragments that have distinct to obscure outlines. Tuff breccias grade vertically and horizontally into tuffs of the same composition. Transitional rocks of tuffaceous siltstone and claystone occur at the top and bottom of the member; their planocconvex layering indicates deposition in shallow water.

Andesitic basalt (variable)—includes crystal-lithic tuff breccia, agglomeratic lapilli tuffs (0.8 mile northwest of New Jerusalem Church), flow breccia, and bedded tuff. Breccias and tuffs contain essential lithic fragments locally subrounded, and plagioclase clasts. The fine-grained matrix is altered tremolite, chlorite, epidote, calcite, and sphene-leucoxene. Accidental fragments of felsic rock occur locally.

Lentil of felsic tuffaceous breccia (20-100 ft)—contains reworked plagioclase crystals and rock fragments in a brownish matrix of shard-bearing tuff. Probably deposited from avalanches of volcanic debris triggered by intermittent eruptions from the nearby Flat Swamp volcanic highlands.

MUDSTONE MEMBER (about 8,500 ft)—siltstone and claystone that partly tuffaceous and partly poorly to moderately well bedded, locally contains interbeds of fine-grained bluish-gray blocky tuff that typically weather white. Grades upward into shale that is mined locally for flagstone (Council, 1954). The flagstone contains about 75 percent quartz and feldspar, 15-20 percent sericite, some chlorite, traces of epidote, and sphene-leucoxene. Where sheared west of the Silver Hill fault, the unit consists of cream-colored sericite schist or gray phyllite.

Andesitic basalt (variable)—includes crystal-lithic tuff breccia, agglomeratic lapilli tuff (along N.C. Route 109, 0.8 mile southeast of N.C. Route 49), tuff, bedded tuff, and vesicular lava. Pyroclastics chiefly contain essential lithic fragments and some plagioclase fragments in a matrix altered to tremolite, chlorite, epidote, calcite, and sphene-leucoxene. Vesicles are filled with quartz, chlorite, epidote, and calcite.

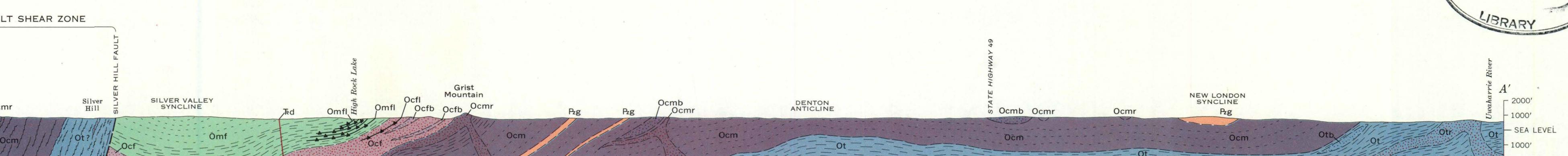
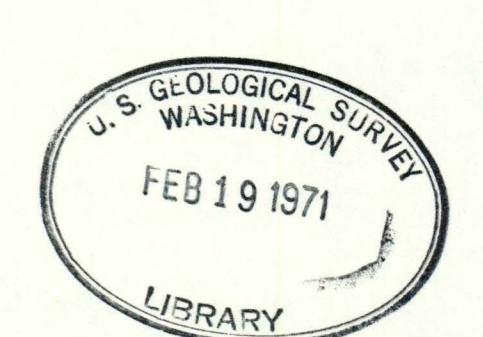

Rhyolitic-rhyodacitic rocks (variable)—includes feldspar porphyry, vitrophyre, and vitric crystal tuff. Many steep hills and ridges consist largely of vitrophyre and may be volcanic plugs and fissure fillings; examples are Crouse Mountain and Steep Rock Mountain. On Bald Mountain flow banding occurs as conspicuous varicolored swirls; elsewhere in the quadrangle flow banding is recognized on weathered surfaces as discontinuous ridges a few millimeters high and apart. Volcanics are medium gray and contain albitite or fragments as large as 3 mm set in an aphanitic groundmass. Some albite grains contain patches of intergrowths of microcline making up 5-90 percent of the grain. Secondary quartz is present locally as amygdalites and as mosaic patches and veins. Most rocks contain disseminated biotite and leucoxene, scattered grains of pyrite, pyrrhotite, and magnetite; a few contain stilpnomelane. West of the Silver Hill fault these units are sheared to form sericitic schists and blocky schists—some with chalky-feldspar and elongated rock fragments (for example, west end of Jerusalem road).

MUDSTONE MEMBER OF CID FORMATION AND INTRUSIVE ROCKS—undifferentiated rocks located northwest of the Gold Hill fault include quartz-sericite schist, chlorite-epidote and plagioclase-rich greenschist, and small bodies of quartz monzonite, diorite, and gabbro. We think that except for the intrusives, these rocks belong to Cid Formation.

TILLERY FORMATION (10,000 ft ±)—bluish- to greenish-gray siltstone and claystone that are varvelike or thinly laminated. Laminations range in thickness from less than 0.1 mm to about 8 mm and average 1-3 mm; they grade upward from silt to clay displaying a corresponding increase in the relative abundance of sericite and chlorite over quartz and feldspar. Flakes of spongy reddish-brown biotite with ragged but roughly hexagonal cross sections lie randomly across the laminations; some consist of sericite and chlorite with remnants of biotite. Flakes may be altered metacrysts.

ANDESITIC BASALT (variable)—includes vesicular lava and crystal lithic tuff.

RHYOLITIC-RHYODACITIC ROCKS (variable)—comprises feldspar porphyry, vitrophyre, and aphanitic crystal tuff. Spherulites occur in places.

1 2
3 4

INDEX TO GEOLOGIC MAPPING

1. A. A. Stromquist, 1955-58, 1964; W. P. Schulhoff, 1955; P. W. Choquette, 1956-58; and H. W. Sundelius, 1964.
2. A. A. Stromquist, 1961-64; and A. M. White, 1961.
3. A. A. Stromquist, 1959, 1961-62.
4. A. A. Stromquist, 1959, 1961, 1963-64; and H. W. Sundelius, 1964.

¹ Two lead-alpha age determinations (White and others, 1963) made on zircon concentrates from felsic volcanic rocks below the Albemarle Group in the adjacent Albemarle quadrangle yielded similar ages of 1,000-1,100 m.y. On this basis the Albemarle Group in the Denton quadrangle is still thought to be probably Ordovician, even though it is possibly Cambrian to Devonian age. Recently a trilobite of probable Cambrian age was found in rocks of the Albemarle Group in Stanly County (St. Jean, 1966).

GEOLOGIC MAP OF THE DENTON QUADRANGLE, CENTRAL NORTH CAROLINA

By
Arvid A. Stromquist, Philip W. Choquette, and Harold W. Sundelius
1971

North Carolina (Denton quad.) Geol. 1:62,500. 1971.

cap. 2.

USGS LIBRARY - RESTON

3 1818 00095413 9

For sale by the U.S. Geological Survey, price \$1.00

M(200)
Anqa

no. 872