U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

GEOLOGIC MAP OF THE VANSON PEAK QUADRANGLE, LEWIS, COWLITZ, AND SKAMANIA COUNTIES, WASHINGTON

By Russell C. Evarts and Roger P. Ashley

GEOLOGIC MAP OF THE VANSON PEAK QUADRANGLE,

LEWIS, COWLITZ, AND SKAMANIA COUNTIES, WASHINGTON

By Russell C. Evarts and Roger P. Ashley

INTRODUCTION

The Vanson Peak quadrangle is situated on the western slope of the Cascade Range in southern Washington approximately 25 km north of Mount St. Helens. Bedrock consists of Oligocene volcanic and volcaniclastic rocks and Oligocene to early Miocene shallow-level plutonic rocks forming the core of the Tertiary Cascade volcanic arc. Surficial deposits include drift representing at least two episodes of alpine glaciation and, in the southern part of the quadrangle, tephra erupted from Mount St. Helens during the past 40,000 years (Mullineaux and Crandell, 1981; Mullineaux, 1986). Bedrock exposures are generally limited owing to the extensive and heavily vegetated surficial cover, but stratigraphic sections are commonly well exposed in stream beds.

The southernmost part of the quadrangle lies within the area devastated by the May 18, 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981). A laterally directed pyroclastic-blast-surge leveled old-growth forest in this area and buried it under a stratigraphically complex blanket, as thick as 1 m, of ash, lapilli, and blocks (Hoblitt and others, 1981; Waitt, 1981; Moore and Sisson, 1981). However, much of this cover has been stripped by subsequent rapid erosion of the deforested slopes.

ACKNOWLEDGMENTS

Champion International Corporation and Weyerhaeuser Corporation freely allowed access to their timberlands in the northern and western parts of the quadrangle. We were ably assisted in the field during the early stages of mapping by Walt Avramenko, Rick Bishop, Mike Covey, Matt Evarts, Jerry Infeld, Mike Lukk, Scott Petersen, and Carolyn Peterson. Proficient laboratory support was provided by Joe Ash, Mary Caress, Mike Covey, Jerry Infeld, Rick Pietropaoli, Scott Petersen, Carolyn Peterson, and especially Rick Bishop. LedaBeth Gray, Brent D. Turrin, and James G. Smith provided the K-Ar and ⁴⁰Ar/³⁹Ar ages. We have also benefitted from logistical support provided by Bobbie Myers and the staff of the David A. Johnston Cascades Volcano Observatory. Discussions with Donald A. Swanson, Paul E. Hammond, James G. Smith, William M. Phillips, Michael A. Korosec, Virgil A. Frizzell, Donal R. Mullineaux, and William E. Scott during the course of this work contributed much to our understanding of the regional geology.

SUMMARY OF GEOLOGY

The strata exposed in the Vanson Peak quadrangle are part of a thick section of middle Tertiary subaerial volcanic rocks that underlies the Mount St. Helens area (Evarts and others, 1987). This section strikes approximately north-south and dips eastward at low to moderate angles, forming the gentle western limb of a major regional syncline whose axis lies about 15 km to the east (Walsh and others, 1987; Swanson, 1989). The strata are lithologically heterogeneous and stratigraphically complex. Distinctive marker units are absent, and, although unconformities have been recognized, their regional significance is unknown; therefore, construction of a formal stratigraphic framework was not attempted, and only lithologic or local informal units are shown on this map.

The most valuable data for regional correlation are the isotopic age determinations (table 1). Data from this and adjacent areas (Phillips and others, 1986; Evarts and others, in press) indicate that most of the volcanic rocks in the Vanson Peak quadrangle erupted during Oligocene time. Multiple age determinations indicate that the strata in the western part of the quadrangle that underlie the basalt of Goat Creek (Tgc) were deposited between 33 Ma and 27 Ma (Evarts and others, in press). The basalt of Goat Creek is approximately 25 Ma based on K-Ar and ⁴⁰Ar/³⁹Ar determinations from outcrops north of the Cowlitz River (table 1). ⁴⁰Ar/³⁹Ar analyses from the adjacent Cowlitz Falls guadrangle (Evarts and Ashley, 1993a) indicate that the age of the flat-lying section east of Goat Creek is about 24 Ma to 23 Ma, and thus extends into earliest Miocene time.

Many of the rocks of the quadrangle appear to represent near-source depositional environments characterized by abundant lava flows, pumiceous pyroclastic rocks, coarse-grained epiclastic deposits, fine-grained subvolcanic intrusions, and zones of hydrothermal alteration (Cas and Wright, 1987; Smith, in press). Remnants of a large Oligocene mafic volcano are preserved as the basalt of Goat Creek. The eroded center of this volcano is exposed in Goat Creek, where mafic flows, flow-breccia, and agglomerate (volcanic bomb) beds cut by abundant basaltic feeder dikes, gabbro plugs, and associated zones of hydrothermal alteration. The hills north of the Cowlitz River consist of thick sections of basaltic flows that formed the original flanks of the volcano. In the valley of Goat Creek, hydrothermally altered and dike-ridden rock of the volcanic core is unconformably overlain by flat-lying unaltered strata free of dikes, suggesting deep erosion of the edifice prior to deposition of the overlying strata. However, analytically indistinguishable radiometric ages of 25 Ma from the basalt of Goat Creek and an overlying andesite flow indicate that this unconformity developed during a relatively short time, probably no more than a million years. The summit of Vanson Peak is underlain by a stack of porphyritic two-pyroxene andesite flows possibly derived from an andesitic cone similar to the Miocene Tieton volcano southeast of Mount Rainier described by Swanson (1966). Epiclastic rocks in the quadrangle are predominantly coarse conglomerate and breccia that probably filled valleys on and adjacent to the lower flanks of Tertiary volcances.

Chemical analyses (table 2) show that the quadrangle contains a variety of volcanic rocks, but that basalt (less than 52 weight percent SiO₂) and basaltic andesite (between 52 and 57 weight percent SiO₂) are dominant (I.U.G.S. nomenclature of Le Bas and Streckeisen, 1991; see fig. 1). More than half of the samples are classified as calc-alkaline on the AFM plot (fig. 2) of Irvine and Baragar (1971) whereas most are tholeiitic according to the FeO*/MgO versus SiO₂ plot (fig. 3) of Miyashiro (1974). The Tertiary rocks tend to be lower in K₂O than Quaternary volcanic rocks of equi-valent SiO₂ contents in southern Washington (fig. 4).

Figure 1. Na₂O+K₂O versus SiO₂ (recalculated volatile-free) for volcanic and hypabyssal intrusive rocks from Vanson Peak quadrangle showing classification according to International Union of Geological Sciences (Le Bas and Streckeisen, 1991.)

Figure 2. AFM diagram for volcanic and hypabyssal intrusive rocks from Vanson Peak quadrangle. A, Na₂O+K₂O; F, FeO+Fe₂O₃; M, MgO. Line separating tholeiitic and calc-alkaline rocks from Irvine and Barager (1971).

Figure 3. FeO*/MgO versus SiO₂ (recalculated volatile-free) for volcanic and hypabyssal intrusive rocks from Vanson Peak quadrangle showing classification into tholeiitic and calc-alkaline rocks according to Miyashiro (1974). FeO*, total Fe as FeO.

Figure 4. K₂O versus SiO₂ (recalculated volatile-free) for voncanic and hypabyssal intrusive rocks from Vanson Peak quadrangle. Low-, medium-, and high-potassium fields from Gill (1981, p. 6). Shaded area encompasses compositions of Quaternary volcanic rocks, exclusive of major stratovolcanoes, of southern Washington Cascade Range from Hammond and Korosec (1938). Trendlines shown for Quaternary stratovolcanoes Mount Rainier, Mount St. Helens, and Mount Adams based on data in Condie and Swenson (1973), Hildreth and Fierstein (1985), and Smith and Leeman (1987).

A general westward coarsening of textures in the Spirit Lake pluton (informal name) suggests that it has been tilted to the east along with its host rocks, so folding of the Tertiary section must postdate crystallization of the pluton at 21 Ma (Evarts and others, 1987). The age of folding is otherwise poorly constrained, and folding may have taken place over an extended period (Evarts and others, 1987).

Faults and shear zones are scarce. Those that have been observed are subvertical and typically exhibit offsets of only a few meters. Generally, the rocks on both sides of faults are identical and the sense of offset cannot be determined. Most faults are flanked by zones of hydrothermally altered rocks. Many of the faults are probably relatively old and may represent local small-scale adjustments to movements of magma within Tertiary volcanic centers rather than responses to regional tectonic stresses.

SPIRIT LAKE PLUTON

The Spirit Lake pluton is one of several large, epizonal, multiphase, granitic intrusions of Miocene age in the Washington Cascade Range (Fiske and others, 1963; Tabor and Crowder, 1969; Hammond, 1979; Evarts and others, 1987). It underlies an area of about 120 km², most of which lies east and south of the Vanson Peak quadrangle (Evarts and Ashley, 1993a, b, c). The pluton consists of three phases, all of which have yielded radiometric ages between 20 and 23 Ma. In the upper reaches of Goat Creek, the quartz diorite phase (Tsgd) forms a complex of altered porphyritic dikes and sills separated by screens of black recrystallized volcanic rocks. Field relations suggest that this is the oldest part of the pluton. This inference is supported by a 23.2-Ma K-Ar age for hydrothermal alteration which overprints the quartz diorite phase but not the main or granite phases. The slightly younger fission-track age of 22.0±0.6 Ma obtained from a quartz diorite in Goat Creek (table 1) is believed to reflect reheating during emplacement of the main phase and consequent partial annealing of tracks. The coarser grained and more massive main phase (Tsm), which is texturally and modally variable but has an average composition of granodiorite, constitutes most of the pluton. The granite phase (Tsgr) crops out chiefly near the top of the pluton in the Cowlitz Falls and Spirit Lake East guadrangles to the east and southeast (Evarts and Ashley, 1993a, b).

METAMORPHISM

Tertiary volcanic and intrusive rocks throughout the southern Washington Cascade Range have been overprinted by zeolite-facies burial metamorphism (Fiske and others, 1963; Wise, 1970; Hammond, 1980). Volcanic glass is nearly everywhere replaced by ironbearing smectites that give the rocks their characteristic green colors. Olivine phenocrysts are generally replaced by clots of limonite+smectite, microcrystalline quartz, and (or) carbonate. Orthopyroxene is commonly converted to smectite+titanite, but clinopyroxene typically remains fresh. Recrystallization of plagioclase is more variable both in extent and mineralogy; partial replacement by albite, calcite, laumontite, stilbite, and various clay minerals is widespread.

A contact-metamorphic aureole extends as far as 4 km beyond the Spirit Lake pluton. Despite thorough mineralogic reconstitution, primary macroscopic textures are commonly well preserved and permit identification of protoliths. The aureole can readily be subdivided in the field into an inner zone of black, flinty, aphanitic amphibole-bearing hornfels and an outer zone of green epidote-bearing hornfels (see sketch map).

HYDROTHERMAL ALTERATION AND MINERALIZATION

The effects of hydrothermal alteration and mineralization directly related to volcanism or to later plutonic activity are present throughout the Vanson Peak quadrangle. The most conspicuous type of alteration in the volcanic and sedimentary rocks consists of local areas $(<1 \text{ km}^2)$ that contain erratically distributed bleached limonitic rocks. These altered areas tend to occur chiefly along faults, shear zones, and dikes; in detail, the alteration was controlled by fractures and permeable clastic beds, and some unaltered rock remains within the areas of hydrothermal alteration shown on this map. Primary igneous minerals in the altered rocks have been totally replaced by carbonate+clay assemblages composed of some combination of kaolinite, montmorillonite, illite, calcite, siderite, dolomite, ankerite, quartz, and limonite.

The distribution and mineralogy of these intensely altered areas suggest that they are products of low-temperature, shallow-level, acidic geothermal systems penecontemporaneous with Tertiary volcanism.

Pervasive silicification and argillic to advanced argillic alteration are found inand adjacent to the Spirit Lake pluton along the east edge of the guadrangle, contiguous with a much larger altered area in the Cowlitz Falls quadrangle to the east (Evarts and Ashley, 1993a). The altered rocks range in appearance from dense and massive to brecciated to porous; most are white or pale gray, but orange to brown limonite is common along fractures. They have been intensely leached by acidic solutions that destroyed most primary textures and produced assemblages of fine-grained quartz, pyrophyllite or sericite, limonite, rutile, and minor local andalusite, alunite, diaspore, and topaz(?). Purite is generally absent from outcrops of these rocks but its former presence is indicated by bright-red limonite that forms surficial crusts and cements modern gravels in streams draining this area. The iron in this limonite is probably being liberated by oxidation of abundant sulfides in the shallow subsurface. The intense alteration obscures the protolith, but vague porphyritic textures suggest volcanic or quartz diorite phase (Tsqd) precursors. A K-Ar age of 23.2±0.4 Ma was determined on alunite collected from the altered area in the Cowlitz Falls quadrangle (Evarts and Ashley, 1993a).

REFERENCES CITED

- Barnosky, C.W., 1984, Late Pleistocene and early Holocene environmental history of southwestern Washington State, U.S.A.: Canadian Journal of Earth Sciences, v. 21, p. 619-629.
- Cas, R.A.F., and Wright, J.V., 1987, Volcanic successions: modern and ancient: London, Allen and Unwin, 528 p.
- Cobbing, E.J., and Pitcher, W.S., 1972, The coastal batholith of central Peru: Journal of the Geological Society of London, v. 128, p. 421-460.
- Colman, S.M., and Pierce, K.L., 1981, Weathering rinds on andesitic and basaltic stones as a Quaternary age indicator, western United States: U.S. Geological Survey Professional Paper 1210, 56 p.
- Condie, K.C., and Swenson, D.H., 1973, Compositional variation in three Cascade stratovolcanoes: Jefferson, Rainier, and Shasta: Bulletin Volcanologique, v. 37, p. 205-230.
- Crandell, D.R., 1987, Deposits of pre-1980 pyroclastic flows and lahars from Mount St. Helens, Washington: U.S. Geological Survey Professional Paper 1444, 91 p.
- Crandell, D.R., and Miller, R.D., 1974, Quaternary stratigraphy and extent of glaciation in the Mount Rainier region, Washington: U.S. Geological Survey Professional Paper 847, 59 p.
- Dethier, D.P., 1988, The soil chronosequence along the Cowlitz River, Washington: U.S. Geological Survey Bulletin 1590-F, p. F1-F47.
- Evarts, R.C., and Ashley, R.P., 1993a, Geologic map of the Cowlitz Falls quadrangle, Lewis and Skamania Counties, Washington: U.S. Geological Survey Geologic Quadrangle Map GQ-1682, scale 1:24,000.

- ——1993b, Geologic map of the Spirit Lake East quadrangle, Skamania County, Washington: U.S. Geological Survey Geologic Quadrangle Map GQ-1679, scale 1:24,000.
- ——1993c, Geologic map of the Spirit Lake West quadrangle, Skamania and Cowlitz Counties, Washington: U.S. Geological Survey Geologic Quadrangle Map GQ-1681, scale 1:24,000.
- Evarts, R.C., Ashley, R.P., and Smith, J.G., 1987, Geology of the Mount St. Helens area: record of discontinuous volcanic and plutonic activity in the Cascade arc of southern Washington: Journal of Geophysical Research, v. 92, p. 10,155-10,169.
- Evarts, R.C., Gray, L.B., Smith, J.G., and Tosdal, R.M., in press, Isotopic and fission-track ages of volcanic and plutonic rocks in the Spirit Lake 15-minute quadrangle and adjacent areas, southwestern Washington: Isochron West.
- Gill, J.B., 1981, Orogenic andesites and plate tectonics: New York, Springer-Verlag, 390 p.
- Fiske, R.S., Hopson, C.A., and Waters, A.C., 1963, Geology of Mount Rainier National Park, Washington: U.S. Geological Survey Professional Paper 444, 93 p.
- Hammond, P.E., 1979, A tectonic model for evolution of the Cascade Range, in Armentrout, J.M., Cole, M.R., and TerBest, Harry, Jr., eds., Pacific Coast Paleogeography Symposium 3: Cenozoic paleogeography of the western United States: Pacific Section of the Society of Economic Paleontologists and Mineralogists, Los Angeles, Calif., p. 219-237.
- Hammond, P.E., and Korosec, M.A., 1983, Geochemical analyses, age dates, and flow-volume estimates for Quaternary volcanic rocks, southern Cascade Mountains, Washington: Washington Division of Geology and Earth Resources Open-File Report 83-13, 36 p.
- Hildreth, W., and Fierstein, J., 1985, Mount Adams: eruptive history of an andesite-dacite stratovolcano at the focus of a fundamentally basaltic volcanic field, *in* Guffanti, M., and Muffler, L.J.P., eds., Proceedings of the Workshop on geothermal resources of the Cascade Range, May 22-23, 1985, Menlo Park, Calif.: U.S. Geological Survey Open-File Report 85-521, p. 44-50.
- Hoblitt, R.P., Miller, C.D., and Vallance, J.W., 1981,
 Origin and stratigraphy of the deposit produced by the May 18 directed blast, *in* Lipman, P.W., and Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington: U.S. Geological Survey Professional Paper 1250, p. 401-419.
- Irvine, T.N., and Baragar, W.R.A., 1971, A guide to the chemical classification of the common igneous rocks: Canadian Journal of Earth Sciences, v. 8, p. 523-548.

- Jackson, L.L., Brown, F.W., and Neil, S.T., 1987, Major and minor elements requiring individual determination, classical whole rock analysis, and rapid rock analysis, in Baedecker, P.A., ed., Methods for geochemical analysis: U.S. Geological Survey Bulletin 1770, p. G1-G23.
- Le Bas, M.J., Streckeisen, A.L., 1991, The IUGS systematics of igneous rocks: Journal of The Geological Society of London, v. 148, p. 825-833.
- Lipman, P.W., and Mullineaux, D.R., eds., 1981, The 1980 eruptions of Mount St. Helens, Washington: U.S. Geological Survey Professional Paper 1250, 844 p.
- Miyashiro, A., 1974, Volcanic rocks series in island arcs and active continental margins: American Journal of Science, v. 274, p. 321-355.
- Moore, J.G., and Sisson, T.W., 1981, Deposits and effects of the May 18 pyroclastic surge, *in* Lipman, P.W., and Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington: U.S. Geological Survey Professional Paper 1250, p. 421-438.
- Mullineaux, D.R., 1986, Summary of pre-1980 tephrafall deposits erupted from Mount St. Helens, Washington state, U.S.A.: Bulletin of Volcanology, v. 48, p. 17-26.
- Mullineaux, D.R., and Crandell, D.R., 1981, The eruptive history of Mount St. Helens, in Lipman, P.W., and Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington: U.S. Geological Survey Professional Paper 1250, p. 3-15.
- Phillips, W.M., Korosec, M.A., Schasse, H.W., Anderson, J.L., and Hagen, R.A., 1986, K-Ar ages of volcanic rocks in southwest Washington: Isochron West, no. 47, p. 18-24.
- Shapiro, Leonard, 1975, Rapid analysis of silicate, carbonate, and phosphate rocks—revised edition: U.S. Geological Survey Bulletin 1401, 76 p.
- Smith, D.R., and Leeman, W.P., 1987, Petrogenesis of Mount St. Helens dacitic magmas: Journal of Geophysical Research, v. 92, p. 10,313-10,334.
- Smith, J.G., in press, Geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington: U.S. Geological Survey Miscellaneous Studies Map I-2005, scale 1:500,000.
- Swanson, D.A., 1966, Tieton volcano, a Middle Miocene eruptive center in the southern Cascade Mountains, Washington: Geological Society of America Bulletin, v. 77, p. 1293-1314.
- ——1989, Geologic maps of the French Butte and Greenhorn Buttes quadrangles, Washington: U.S. Geological Survey Open-File Report 89-309, scale 1:24,000.
- Tabor, R.W., and Crowder, D.F., 1969, On batholiths and volcanoes—Intrusion and eruption of Late Cenozoic magmas in the Glacier Peak area, north Cascades, Washington: U.S. Geological Survey Professional Paper 604, 67 p.

- Taggart, J.E., Jr., Lindsay, J.R., Scott, B.A., Vivit, D.V., Bartel, A.J., and Stewart, K.C., 1987, Analysis of geological materials by wavelength-dispersive X-ray fluorescence spectrometry, in Baedecker, P.A., ed., Methods for geochemical analysis: U.S. Geological Survey Bulletin 1770, p. E1-E19.
- Walsh, T.J., Korosec, M.A., Phillips, W.M., Logan, R.L., and Schasse, H.W., 1987 Geologic map of Washington—southwest quadrant: Washington Division of Geology and Earth Resources Map GM-34, scale 1:250,000.
- Waitt, R.B., Jr., 1981, Devastating pyroclastic density flow and attendant air fall of May 18—Stratigraphy and sedimentology of deposits, in Lipman, P.W., and Mullineaux, D.R., eds., The 1980 eruptions of Mount St. Helens, Washington: U.S. Geological Survey Professional Paper 1250, p. 439-458.
- Wise, W.S., 1970, Cenozoic volcanism in the Cascade Mountains of southern Washington: Washingon Division of Mines and Geology Bulletin 60, 45 p.

Map No.	Field sample no.	Loc Latitude	ation Longitude	Map unit	Rock type	Material dated	Method	Age (Ma) ± 1σ error	Comments
1	S82-A3-E32	46°23'44"	122°14'22"	Ta ₁	Basaltic	Plagioclase	K-Ar	35.0±2.0	
					andesite	Plagioclase	K-Ar	28.5±1.1	
						Plagioclase	⁴⁰ Ar/ ³⁹ Ar	33.5±0.4	Laser-fusion age
2	S80-A1-S02	46°27'56"	122°13'26"	Tt ₁	Dacitic ash-flow tuff	Plagioclase	K-Ar	28.5±0.9	
3	S78-A1-E209A	46°27'01"	122°13'21"	Tvs	Hornblende andesite	Hornblende	K-Ar	27.1±2.0	
4	S78-B2-R46	46°26'30"	122°09'40"	Tgc	Basaltic andesite	Plagioclase	⁴⁰ Ar/ ³⁹ Ar	22.9±3.6	Laser incremental heating age; large error
5	S80-BI-L28	46°29'55"	122°08'16"	do	Porphyritic basalt	Plagioclase	⁴⁰ Ar/ ³⁹ Ar	25.0±1.4	Laser-fusion age
6	BP0516851	46°29'07"	122°10'52"	do	Basaltic andesite	Whole-rock	K-Ar	24.4±1.2	From Phillips and others (1986); mean of two concordant determinations
						Whole-rock	K-Ar	25.2±0.6	Determined on split of above sample at U.S.G.S., Menlo Park, Calif.
7	S78-B2-E49A	46°24'45"	122°09'19"	Ta ₂	Pyroxene	Plagioclase	K-Ar	24.7±3.5	
					andesite	Plagioclase	⁴⁰ Ar/ ³⁹ Ar	25.1±0.4	Laser-fusion age
8	S78-A2-R128	46°26'18"	122°12'45"	Tia	do	Whole-rock	K-Ar	8.6±0.3	Probable Ar loss; minimum age
9	S79-B3-E149D	46°24'04"	122°08'02"	Tsqd	Porphyritic granodiorite	Zircon	FT	22.0±0.6	Partially reset by main phase of pluton; minimum age

 Table 1. Summary of fission-track (FT) and isotopic age determinations, Vanson Peak quadrangle

 [Source from Evarts and others (in press) except where otherwise noted]

Table 2. Chemical analyses and modes of volcanic and hypabyssal intrusive rocks, Vanson Peak quadrangle

[Oxides in weight percent. For modal analyses, secondary minerals counted as primary mineral replaced except for interstitial chlorite (chl) in 5E36; tr: trace. Rock-type names assigned in accordance with I.U.G.S. system of Le Bas and Streckeisen, 1991; (applied to recalculated analyses for volcanic rocks.) Methods: RR, single-solution rapid rock analysis as described by Shapiro (1975); analysts, J. Gillison, and H. Smith. XRF, X-ray fluorescence analysis using methods described by Taggart and others (1987), analysts: J. Baker, A.J. Bartel, D. Fey, D. Siems, K. Stewart, J.E. Taggart, and J.S. Wahlberg; FeO, H₂O, and CO₂ determined by methods detailed in Jackson and others (1987); analysts, E. Engelman, L. Espos, S. Neil, H. Neiman, and S. Pribble. Texture: first term describes overall rock texture; second term (where appropriate) describes groundmass.

Ped sample number 3E64		Map No.	1	2	3	4	5	6	7	8	9
Limitaries Longitude 46:27:33: 122:10:40 46:26:47: 122:09:47 46:27:52: 122:09:10' 122:09:10' 122:09:10' 122:09:10' Morunit Tgc Tgb Tgc Tgb Tgc Tgb Tg Tgc Tgb Tg Tgc Tgb Tg Tgc Tgb Tg		Field sample	3E64 · ·	5E36	·· 0E59	8M44	0E14	8R132A	5E10	5E55B	0L28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		number Latitude Longitude	46°27'33" 122°11'00"	46°26'46" 122°09'34"	46°26'57" 122°08'49"	46°26'42" 122°08'41"	46°27'52" 122°07'32"	46°26'13" 122°11'49"	46°23'28" 122°12'22"	46°25'38" 122°09'05"	46°29'56" 122°08'16"
Rock type Basalt Gabbro Basalt Gabbro Basalt Gabbro Basalt Basa		Map unit	Tgc	Tgb	Tgc	Tb ₂	Tgb	Tgc	Tib	Tia	Tgc
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Rock type	Basalt	Gabbro	Basaltic andesite	Basalt	Gabbro	Basalt	Basalt	Basaltic andesite	Basalt
		Method	XRF	XRF	RR	RR	RR	RR	XRF	XRF	RR
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		SiO ₂	48.3	49.4	49.9	50.1	50.2	50.3	50.4	50.7	50.8
FeG 381 293 37 42 38 57 33 352 38 MnO 0.14 0.11 0.12 0.16 0.16 0.15 0.15 0.12 0.18 MoO 6.86 7.48 4.9 7.4 5.8 4.6 4.58 7.20 6.7 NayO 2.49 2.41 2.6 2.1 2.9 3.4 2.7 2.06 2.7 KQO 0.40 0.30 0.17 0.15 0.42 0.33 0.20 0.40 KQO 2.94 2.07 1.67 0.70 0.60 0.76 0.73 1.35 1.44 0.16 KQO 2.94 2.07 1.02 0.24 0.03 0.122 1.80 Co 2.94 2.07 1.02 0.24 0.021 1.024 0.10 Co 2.94 2.07 1.02 9.85 100.22 9.85 9.944 992.7 10.04 100.72<		HO ₂ Al ₂ Ô ₂	1.03	0.92	1.1 17.4	0.95	1.2	1.2	1.41	0.78	1.0 17 1
		Fe ₂ O ₃	3.81	2.93	3.7	4.2	3.8	3.7	3.3	3.52	3.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		FeO	5.54	5.27	4.8	5.0	5.7	6.3	6.76	4.82	5.1
Các 9 26 1070 1074 1074 1075 32 1074 1150 104 NapO 229 241 26 21 29 34 27 206 27 KÓ 0.40 0.30 0.17 0.15 0.12 0.29 0.44 0.33 0.20 0.40 PyOc, 0.15 0.13 0.20 0.16 0.18 0.27 0.18 0.14 0.16 HO 2.07 1.67 0.90 0.60 0.76 0.73 1.36 1.46 0.10 HO 2.84 2.07 1.8 2.1 0.64 0.97 0.53 1.12 1.4 Cot 0.06 -0.13 0.91 0.36 0.08 0.21 0.04 0.52 0.88 Total 99.85 100.22 98.90 99.48 99.41 99.27 100.64 100.41 100.72 Total 99.85 10.23 51.25 51.66		MnO MaO	0.14	0.11	0.12	0.16	0.16	0.15	0.15	0.12	0.18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CaO	9.46	10.00	10.4	10.6	5.8 9.7	4.0 9.2	4.56	11.50	10.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Na ₂ O	2.29	2.41	2.6	2.1	2.9	3.4	2.7	2.06	2.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		K₂O	0.40	0.30	0.17	0.15	0.42	0.24	0.33	0.20	0.40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.15	0.13	0.20	0.16	0.18	0.27	0.18	0.14	0.16
CO2 LO3 LO3 <thlo3< th=""> <thlo3< th=""> <thlo3< th=""></thlo3<></thlo3<></thlo3<>		н ₂ 0+ н С	2.07	1.67	0.90	0.60	0.76	0.73	1.36	1.46	0.10
Total 99.85 100.22 98.90 99.48 99.44 99.27 100.64 100.44 100.72 Analyses recalculated volatile-free and normalized to 100 percent SiO2 50.91 51.27 52.37 51.96 51.25 51.66 51.06 52.09 51.66 TO2 1.09 0.95 1.15 0.99 1.22 1.23 1.43 0.80 1.02 AlgO3 17.81 18.06 18.26 16.18 18.27 18.49 18.74 16.75 17.39 FeO3 5.84 5.47 50.46 5.19 5.82 6.47 6.85 4.95 5.19 MnO 0.15 0.11 0.13 0.17 0.16 0.15 0.15 0.12 0.18 MgO 7.23 7.76 5.14 7.67 5.92 4.72 4.64 7.40 6.81 MgO 0.14 0.13 0.18 0.16 0.43 0.25 0.33 0.21		CO.	0.04	0.13	0.91	0.36	0.04	0.97	0.03	0.52	0.88
Analyses recalculated volatile-free and normalized to 100 percent SiO2 50.91 51.27 52.37 51.96 51.25 51.66 51.06 52.09 51.66 AL203 17.81 18.06 18.26 16.18 18.27 18.49 18.74 16.75 17.39 Fe/O3 4.02 3.04 3.88 4.36 3.88 3.80 3.34 3.62 3.86 Fe/O 5.84 5.47 5.04 5.19 5.82 6.47 6.85 4.95 5.19 MnO 0.15 0.11 0.13 0.17 0.16 0.15 0.12 0.18 GaO 9.97 10.38 10.91 10.99 9.90 9.45 10.54 11.81 10.58 Na ₂ O 2.41 2.50 2.73 2.18 2.96 3.49 2.74 2.12 2.75 K _Q O 0.16 0.13 0.21 0.17 0.18 0.28 0.18 0.14 0.16		Total	99.85	100.22	98.90	99.48	99.44	99.27	100.64	100.44	100.72
Analyses recalculated volatile-free and normalized to 100 percent SiO_2 50.91 51.27 52.37 51.96 51.25 51.66 51.06 52.09 51.66 TO_2 1.09 0.95 1.15 0.99 1.22 1.23 1.43 0.80 1.02 AlQ_0 17.81 18.06 18.26 16.18 18.27 18.49 18.74 16.75 17.39 Fe/O_3 4.02 3.04 3.88 4.36 3.88 3.80 3.34 3.62 3.86 MnO 0.15 0.11 0.13 0.17 0.16 0.15 0.12 0.18 MgO 7.23 7.76 5.14 7.67 5.92 4.72 4.64 7.40 6.81 Na_O 2.41 2.50 2.73 2.18 2.96 3.49 2.74 2.12 2.75 Na_O 0.42 0.13 0.21 0.17 0.18 0.28 0.18 0.14 0.16 <t< th=""><th></th><th></th><th></th><th></th><th>· · · · · · · · · · · · · · · · · · ·</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>					· · · · · · · · · · · · · · · · · · ·						
$ \frac{SiQ_2}{PiQ_3} = \frac{50.91}{1.09} = \frac{51.27}{0.95} = \frac{52.37}{1.15} = \frac{51.96}{0.99} = \frac{51.25}{1.22} = \frac{51.66}{1.23} = \frac{51.06}{1.43} = \frac{51.06}{0.80} = \frac{52.09}{1.02} = \frac{51.66}{1.02} = \frac{51.06}{1.43} = \frac{51.06}{1.22} = \frac{51.66}{1.43} = \frac{51.06}{1.43} = $		10 f		Ana	alyses recalcula	ted volatile-free	e and normalized	l to 100 perce	nt		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	67.7		·····	······						
$ \begin{array}{c ccccc} $TO_2 & 1.09 & 0.95 & 1.15 & 0.99 & 1.22 & 1.23 & 1.43 & 0.80 & 1.02 \\ $Al_2O_3 & 17.81 & 18.06 & 18.26 & 16.18 & 18.27 & 18.49 & 18.74 & 16.75 & 17.39 \\ $Fe_O_3 & 4.02 & 3.04 & 3.88 & 4.36 & 3.88 & 3.80 & 3.34 & 3.62 & 3.86 \\ $FeO & 5.84 & 5.47 & 5.04 & 5.19 & 5.82 & 6.47 & 6.85 & 4.95 & 5.19 \\ $MnO & 0.15 & 0.11 & 0.13 & 0.17 & 0.16 & 0.15 & 0.15 & 0.12 & 0.18 \\ $MgO & 7.23 & 7.76 & 5.14 & 7.67 & 5.92 & 4.72 & 4.64 & 7.40 & 6.81 \\ $Na_2O & 2.41 & 2.50 & 2.73 & 2.18 & 2.96 & 3.49 & 2.74 & 2.12 & 2.75 \\ $Na_2O & 2.41 & 2.50 & 2.73 & 2.18 & 2.96 & 3.49 & 2.74 & 2.12 & 2.75 \\ $Na_2O & 2.41 & 2.50 & 2.73 & 2.18 & 2.96 & 3.49 & 2.74 & 2.12 & 2.75 \\ $Na_2O & 0.42 & 0.31 & 0.18 & 0.16 & 0.43 & 0.25 & 0.33 & 0.21 & 0.41 \\ $P_2O_5 & 0.16 & 0.13 & 0.21 & 0.17 & 0.18 & 0.28 & 0.18 & 0.14 & 0.16 \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ $		SiO ₂	50.91	51.27	52.37	51.96	51.25	51.66	51.06	52.09	51.66
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		TiO ₂	1.09	0.95	1.15	0.99	1.22	1.23	1.43	0.80	1.02
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Al ₂ O ₃	17.81	18.06	18.26	16.18	18.27	18.49	18.74	16.75	17.39
MnO 0.15 0.11 0.13 0.17 0.16 0.15 0.15 0.12 0.18 MgO 7.23 7.76 5.14 7.67 5.92 4.72 4.64 7.40 6.81 CaO 9.97 10.38 10.91 10.99 9.90 9.45 10.54 11.81 10.58 Na/O 2.41 2.50 2.73 2.18 2.96 3.49 2.74 2.12 2.75 K/O 0.42 0.31 0.18 0.16 0.43 0.25 0.33 0.21 0.41 P ₂ O ₅ 0.16 0.13 0.21 0.17 0.18 0.28 0.18 0.14 0.16 Modes Modes Modes 1.3 4.4 6.4 4.4 6.4 Plagioclase 18.3 57.2 18.8 15.2 62.7 36.8 33.0 20.8 23.7 Olityne 8.2 1.3 0.3 5.7 1.7 2.9 1.3 4.4 6.4 Olityne 8.2 1.3 0.3 <th< th=""><th></th><th>Fe₂O₃</th><th>4.02</th><th>3.04</th><th>3.88</th><th>4.36</th><th>3.88</th><th>3.80</th><th>3.34</th><th>3.62</th><th>3.86</th></th<>		Fe ₂ O ₃	4.02	3.04	3.88	4.36	3.88	3.80	3.34	3.62	3.86
MgO 723 776 514 767 592 472 4.64 740 6.81 CaO 9.97 10.38 10.91 10.99 9.90 9.45 10.54 11.81 10.58 Na2O 2.41 2.50 2.73 2.18 2.96 3.49 2.74 2.12 2.75 KO 0.42 0.31 0.18 0.16 0.43 0.25 0.33 0.21 0.41 P ₂ O ₅ 0.16 0.13 0.21 0.17 0.18 0.28 0.18 0.14 0.16 Modes		reO MnO	0.15	5.47	0.13	5.19 0.17	5.82	0.47	0.85	4.95	0.19
CaO 9.97 10.38 10.91 10.99 9.90 9.45 10.54 11.81 10.58 Na ₂ O 2.41 2.50 2.73 2.18 2.96 3.49 2.74 2.12 2.75 K2O 0.42 0.31 0.18 0.16 0.43 0.25 0.33 0.21 0.41 P ₂ O ₅ 0.16 0.13 0.21 0.17 0.18 0.28 0.18 0.14 0.16 Modes Modes Plagioclase 18.3 57.2 18.8 15.2 62.7 36.8 33.0 20.8 23.7 Clinopyroxene 13.7 7.4 0.4 Orthopyroxene 13.7 8.2 1.8 Orthopyroxene 1.8 2.9 1.3 4.4 6.4 Fe-Ti oxide 1.8 <th></th> <th>MgÖ</th> <th>7.23</th> <th>7.76</th> <th>5.14</th> <th>7.67</th> <th>5.92</th> <th>4.72</th> <th>4.64</th> <th>7.40</th> <th>6.81</th>		MgÖ	7.23	7.76	5.14	7.67	5.92	4.72	4.64	7.40	6.81
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CaO	9.97	10.38	10.91	10.99	9.90	9.45	10.54	11.81	10.58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.41	2.50	2.73	2.18	2.96	3.49	2.74	2.12	2.75
Modes Plagioclase 18.3 57.2 18.8 15.2 62.7 36.8 33.0 20.8 23.7 Clinopyroxene 15.0 0.2 3.2 12.5 7.4 0.4 Orthopyroxene 13.7 1.8 1.8 Olivine 8.2 1.3 0.3 5.7 1.7 2.9 1.3 4.4 6.4 Hornblende <th></th> <th>P₂O₂</th> <th>0.42</th> <th>0.13</th> <th>0.21</th> <th>0.17</th> <th>0.18</th> <th>0.28</th> <th>0.18</th> <th>0.14</th> <th>0.16</th>		P ₂ O ₂	0.42	0.13	0.21	0.17	0.18	0.28	0.18	0.14	0.16
Modes Plagioclase 18.3 57.2 18.8 15.2 62.7 36.8 33.0 20.8 23.7 Clinopyroxene 15.0 0.2 3.2 12.5 7.4 0.4 Orthopyroxene 13.7 1.8 1.8 Olivine 8.2 1.3 0.3 5.7 1.7 2.9 1.3 4.4 6.4 Fe-Ti oxide 2.6		- 2-3									
Plagioclase 18.3 57.2 18.8 15.2 62.7 36.8 33.0 20.8 23.7 Clinopyroxene 15.0 0.2 3.2 12.5 7.4 0.4 Orthopyroxene 13.7 8.2 7.4 0.4 Olitone 8.2 1.3 0.3 5.7 1.7 2.9 1.3 4.4 6.4 Fe-TI oxide 2.6 Quartz 4.7 0.7 Quartz 4.7 0.7 Quartz 4.7 0.7 Quartz 4.7 75.9 11.6 60.3 65.7 65.6 69.5 No. of points 813 625 637 778 767 731 630 630 739 079 030 630 <		Modes									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Plagiaglasa	19.2	E7 9	19.9	15.9	62.7	26.0	33.0	20.8	
Orthopyroxene 13.7 8.2 1.8 Olivine 8.2 1.3 0.3 5.7 1.7 2.9 1.3 4.4 6.4 Fe-Ti oxide 1.8 2.6 Hornblende 4.7 0.7 Quartz 4.7 0.7		Clinopyroxene	10.5	15.0	0.2	3.2	12.5	30.8		20.8	23.7 0.4
Olivine 8.2 1.3 0.3 5.7 1.7 2.9 1.3 4.4 6.4 Fe-Ti oxide 1.8 2.6 <		Orthopyroxene		13.7			8.2			1.8	
Hornblende 1.0 2.0		Olivine ForTi ovido	8.2	1.3	0.3	5.7	1.7	2.9	1.3	4.4	6.4
Quartz 4.7 0.7 0.7 Groundmass 73.5 chl 6.3 80.7 75.9 11.6 60.3 65.7 65.6 69.5 No. of points 813 625 637 778 767 731 630 630 739 counted porphyritic/ hypidiomorphic/ seriate/ porphyritic/ hypidiomorphic/ seriate/ porphyritic/ Texture porphyritic/ intergranular intergranular intergranular intergranular intergranular		Hornblende		1.0			2.0				
Groundmass 73.5 chl 6.3 80.7 75.9 11.6 60.3 65.7 65.6 69.5 No. of points 813 625 637 778 767 731 630 630 739 counted Texture porphyritic/ hypidiomorphic/ seriate/ porphyritic/ hypidiomorphic/ seriate/ porphyritic/ seriate/ porphyritic/ intergranular granular intergranular granular intergranular intergranular intergranular intergranular intergranular		Ouerte									
counted Texture porphyritic/ hypidiomorphic/ seriate/ porphyritic/ hypidiomorphic/ seriate/ porphyritic/ seriate/ porphyritic/ intergranular granular intergranular intergranular granular intergranular intergranular intergranular intergranular		Quartz		4.7			0.7				
Texture porphyritic/ hypidiomorphic/ seriate/ porphyritic/ hypidiomorphic/ seriate/ porphyritic/ seriate/ porphyritic/ intergranular granular intergranular intergranular granular intergranular intergranular intergranular intergranular		Groundmass	73.5	4.7 chi 6.3	80.7	75.9	0.7 11.6 767	60.3	65.7	65.6	69.5 720
		Groundmass No. of points counted	 73.5 813	4.7 chi 6.3 625	80.7 637	 75.9 778	0.7 11.6 767	60.3 731	65.7 630	65.6 630	69.5 739

				C	ontinued				
		ء • • • • • • • • • • • • • • • • • • •							
		• ·						•	÷ .
Man No	10	11	12	13	14			17	
Field sample	3E57	2E18	8R107	5E03B	2E32	5E37	6N42A	8R46	2E34
Latitude Longitude	46°28'08" 122°11'36"	46°22'33" 122°14'02"	46°25'53" 122°14'26"	46°27'49" 122°12'26"	46°23'44" 122°14'21"	46°26'51" 122°09'08"	46°29'08" 122°10'53"	46°26'30" 122°09'40"	46°23'34" 122°14'03"
Map unit	Tgc	Та,	Та ₁	Ta,	Ta,	Tgc	Tgc	Tgc	Ta,
Rock type	Basalt	Basaltic andesite	. Basaltic andesite	Basaltic andesite	Basaltic andesite	Basaltic andesite	Basaltic andesite	Basaltic andesite	Basaltic andesite
Method	XRF	XRF	RR	XRF	XRF	XRF	XRF	XRF	XRF
$\begin{array}{c} {\rm SiO}_2 \\ {\rm Al}_2{\rm O}_3 \\ {\rm Fe}_2{\rm O}_3 \\ {\rm Fe}_2{\rm O}_3 \\ {\rm Fe}0 \\ {\rm MnO} \\ {\rm MgO} \\ {\rm CaO} \\ {\rm MgO} \\ {\rm CaO} \\ {\rm CaO} \\ {\rm K}_2{\rm O} \\ {\rm K}_2{\rm K} \\ {\rm K} \\ {\rm K}_2{\rm K} \\ {\rm K}$	51.0 1.37 17.3 3.32 6.20 0.16 5.99 9.46 2.87 0.44 0.22 0.70 0.75 0.06 99.84	51.1 1.55 16.0 3.33 6.28 0.17 4.77 9.24 2.66 0.63 0.38 1.72 0.44 1.50 99.77	51.3 1.5 17. 3.8 5.6 0.13 4.0 9.6 3.3 0.84 0.48 0.52 1.2 0.02 99.29	51.3 1.27 17.9 4.31 3.97 0.14 4.12 10.10 3.17 0.74 0.10 0.81 1.32 0.93 100.18	51.6 1.58 16.8 2.80 5.87 0.13 3.71 8.74 3.21 0.86 0.28 0.84 0.46 3.50 100.38	51.7 1.14 18.1 2.76 5.42 0.13 4.93 10.00 2.80 0.35 0.19 1.25 1.48 0.15 100.40	51.8 1.51 17.9 4.68 4.18 0.12 4.68 9.16 3.14 0.55 0.25 0.66 1.69 0.13 100.45	51.9 0.85 19.5 3.67 3.39 0.11 4.70 10.30 2.81 0.36 0.14 1.02 1.46 0.11 100.32	52.6 1.27 16.5 3.36 5.55 0.14 5.04 9.12 2.97 0.49 0.20 1.10 1.45 0.05 99.84 4.4
		An	alyses recalcula	ted volatile-free	and normalized	to 100 perce	nt		·· ··· ·· ·· ·· ·· · · · · · · · · · ·
$\begin{array}{c} SiO_2 \\ SiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ FeO \\ M_3O \\ CaO \\ CaO \\ CaO \\ K_2O \\ K_2O \\ F_2O_5 \end{array}$	51.87 1.39 17.59 3.38 6.31 0.16 6.09 9.62 2.92 0.45 0.22	53.17 1.61 16.65 3.46 6.53 0.18 4.96 9.61 2.77 0.66 0.40	52.59 1.54 17.43 3.90 5.74 0.13 4.10 9.84 3.38 0.86 0.49	52.82 1.31 18.43 4.44 4.09 0.14 4.24 10.40 3.26 0.76 0.10	53.98 1.65 17.58 2.93 6.14 0.14 3.88 9.14 3.36 0.90 0.29	53.01 1.17 18.56 2.83 5.56 0.13 5.06 10.25 2.87 0.36 0.19	52.87 1.54 18.27 4.78 4.27 0.12 4.78 9.35 3.21 0.56 0.26	53.11 0.87 19.95 3.76 3.47 0.11 4.81 10.54 2.88 0.37 0.14	54.09 1.31 16.97 3.46 5.71 0.14 5.18 9.38 3.05 0.50 0.21
				M	lodes				
Plagioclase Clinopyroxene Otthopyroxene Olivine Fe-Ti oxide Hornblende Quartz Groundmass	30.5 5.7 	1.6 0.4 0.5 3.8 		13.9 1.2 2.0 82.9	31.2 0.7 2.3 0.4 	30.3 2.1 5.6 	9.6 0.1 tr 1.0	36.8 0.8 0.7 2.8 	17.7 3.4 0.4 2.5
No. of points counted Texture	770 seriate/ intergranular	771 porphyritic/ hyaloophitic	aphyric/ intersertal	584 porphyritic/ intergranular	725 porphyritic/ intergranular	630 seriate/ intergranular	700 porphyritic/ pilotaxitic	707 seriate/ intergranular	797 porphyritic/ pilotaxitic

9

Table 2. Chemical analyses and modes of volcanic and hypabyssal intrusive rocks, Vanson Peak quadrangle-Continued

Map No.	19	20	21	22	23	24	25	26	27	
Field sample number	9E125	5E74	7E18B	8W21	5E03A	7E15B	9E133	8R128	7E10	
Latitude Longitude	46°24'16" 122°13'56"	46°27'52" 122°09'56"	46°24'04" 122°13'06"	46°25'54" 122°08'37"	46°27'49" 122°12'26"	46°25'26" 122°13'59"	46°24'35" 122°14'46"	46°26'18" 122°12'45"	46°27'04" 122°08'17"	
Map unit	Tia	Tgc	Ta ₁	Tgc	Таı	Ta ₁	Tia	Tia	⊤a₂	
Rock type	Basaltic andesite	Basaltic andesite	Basaltic andesite	Basaltic andesite	Basaltic andesite	Basaltic andesite	Basaltic andesite	Basaltic andesite	Basaltic andesite	
Method	RR	XRF	XRF	RR	XRF	XRF	RR	RR	XRF	
$\begin{array}{c} SiO_2\\TiO_2\\Al_2O_3\\Fe_2O_3\\FeO\\MnO\\MgO\\CaO\\Na_2O\\K_2O\\F_2O_5\\H_2O^+\\H_2O^-\\CO_2\\Total\end{array}$	52.7 1.3 16.4 3.2 7.5 0.19 3.9 8.4 2.9 0.46 0.3 0.97 0.89 0.02 99.13	52.8 1.15 19.2 3.56 4.78 0.15 4.12 9.65 2.98 0.13 0.17 0.67 1.04 0.07	$53.2 \\ 1.28 \\ 17.6 \\ 3.06 \\ 6.08 \\ 0.18 \\ 4.06 \\ 9.57 \\ 2.87 \\ 0.36 \\ 0.20 \\ 1.02 \\ 0.65 \\ 0.37 \\ 100.50 \\ 100.50 \\ 0.0$	53.3 1.0 18.2 3.2 5.1 0.15 4.4 8.7 3.2 0.56 0.18 0.50 0.90 0.32 99.71	53.9 1.53 16.5 2.82 6.56 0.15 3.90 7.31 3.70 0.88 0.29 0.65 0.84 0.84 99.87	54.0 1.16 19.2 2.96 4.34 0.07 3.45 9.04 3.20 0.65 0.18 0.73 1.06 0.04 100.08	54.5 1.0 17.2 2.9 5.3 0.16 4.2 8.7 3.3 0.38 0.32 1.1 0.81 0.02 99.89	$54.7 \\ 1.5 \\ 15.8 \\ 3.3 \\ 6.1 \\ 0.19 \\ 3.3 \\ 7.4 \\ 3.5 \\ 1.5 \\ 0.55 \\ 1.5 \\ 0.64 \\ 0.06 \\ 100.04$	55.1 1.2 16.0 3.62 5.63 0.15 4.28 8.54 3.2 0.79 0.16 0.66 0.72 0.22 100.27	
			Analyses recalc	ulated volatile-fi	ree and normal	ized to 100 per	cent			
SiO2 TiO2 Al2O3 FeO MnO MgO CaO CaO Na2O K2O P2O5	54.19 1.34 16.86 3.29 7.71 0.20 4.01 8.64 2.98 0.47 0.31	53.50 1.17 19.45 3.61 4.84 0.15 4.17 9.78 3.02 0.13 0.17	54.03 1.30 17.88 3.11 6.18 0.18 4.12 9.72 2.91 0.37 0.20	54.39 1.02 18.57 3.27 5.20 0.15 4.49 8.88 3.27 0.57 0.18	55.26 1.57 16.92 2.89 6.73 0.15 4.00 7.49 3.79 0.90 0.30	54.96 1.18 19.54 3.01 4.42 0.07 3.51 9.20 3.26 0.66 0.18	55.59 1.02 17.58 2.96 5.42 0.16 4.29 8.89 3.37 0.39 0.33	$55.91 \\ 1.53 \\ 16.15 \\ 3.37 \\ 6.23 \\ 0.19 \\ 3.37 \\ 7.56 \\ 3.58 \\ 1.53 \\ 0.56 \\ \end{array}$	55.84 1.22 16.22 3.67 5.71 0.15 4.34 8.66 3.24 0.80 0.16	
	Modes									
Plagioclase Clinopyroxene Orthopyroxene Olivine Fe-Ti oxide Hornblende Quartz Groundmass No. of points counted Texture	7.2 0.4 0.6 91.8 791 porphyritic/ pilotaxitic	26.4 1.1 2.0 70.5 658 porphyritic/ intergranular	23.9 1.9 2.2 72.0 649 porphyritic/ intergranular	18.3 4.0 77.7 776 porphyritic/ pilotaxitic	35.9 1.9 1.3 60.9 776 porphyritic/ intergranular	36.8 1.2 3.3 1.2 0.2 57.3 674 porphyritic/	30.4 5.4 3.2 1.4 0.5 59.1 776 porphyritic/ intersertal	0.7 0.1 99.2 610 aphyric/ pilotaxitic	0.3 0.2 99.5 576 aphyric/ intergranular	

.

4 (j. 4

.

10

Map No.	28	29	30	31	32	33	34	35	36
Field sample number	8E49A	8E211	5E02	7E14	8M24	5E39	2E35B	7E11	5E05A
Latitude Longitude	46°24'45" 122°09'20"	46°26'32" 122°12'53"	46°29'39" 122°12'53"	46°27'11" 122°14'06"	46°26'58" 122°08'44"	46°26'45" 122°08'45"	46°23'31" 122°14'25"	46°27'02" 122°08'18"	46°26'22" 122°13'51"
Map unit	Та ₂	Та	Tia	Tia	Ta ₂	Ta ₂	Tia	Ta ₂	Та,
Rock type	Basaltic andesite	Andesite	Andesite	Andesite	Andesite	Andesite	Andesite	Andesite	Andesite
Method	RR	RR	XRF	XRF	XRF	XRF	XRF	XRF	XRF
SiO_2 TiO_2 Al_2O_3 Fe_2O_3 Fe_0O_3 Fe_0O_3 MnO_0 MgO_0 CaO_0 Na_2O K_2O_5 H_2O^+ H_2O^- CO_2 Total	55.7 1.1 16.7 4.5 3.8 0.14 3.6 7.7 3.1 1.2 0.22 0.70 1.1 0.25 99.81	55.7 1.1 16.4 3.9 3.9 0.13 3.6 7.2 3.1 1.1 0.32 1.1 1.5 0.04 99.09	$\begin{array}{c} 56.2 \\ 1.42 \\ 16.9 \\ 3.01 \\ 4.93 \\ 0.13 \\ 3.14 \\ 7.33 \\ 3.67 \\ 0.69 \\ 0.26 \\ 1.96 \\ 0.91 \\ 0.04 \\ \hline 100.59 \end{array}$	56.5 1.50 16.1 4.70 3.62 0.13 2.49 6.32 3.54 1.31 0.31 1.09 2.31 0.05 99.97	$56.6 \\ 1.14 \\ 16.1 \\ 3.03 \\ 5.07 \\ 0.14 \\ 3.88 \\ 8.47 \\ 3.06 \\ 0.29 \\ 0.18 \\ 1.76 \\ 0.45 \\ 0.03 \\ 100.20 \\ 10$	57.1 1.12 15.8 2.93 5.12 0.14 3.87 7.54 3.13 0.98 0.18 0.36 1.26 0.21 99.74	57.2 1.63 15.1 2.46 5.62 0.14 2.36 5.74 3.76 0.77 0.41 3.14 1.06 0.07 99.46	57.4 1.23 15.7 4.37 4.57 0.15 3.40 7.18 3.46 1.11 0.18 0.43 0.64 0.01 99.83	57.6 1.83 15.3 4.28 4.21 0.11 2.38 5.44 4.06 1.48 0.40 0.86 1.35 0.57 99.87
		A	nalyses recalc	ulated volatile-f	ree and normali	ized to 100 per	cent		
$\begin{array}{l} SiO_{2} \\ TiO_{2} \\ Al_{2}O_{3} \\ Fe_{2}O_{3} \\ Fe_{2}O \\ MnO \\ MgO \\ CaO \\ Na_{2}O \\ Na_{2}O \\ K_{2}O \\ K_{2}O \\ P_{2}O_{5} \end{array}$	56.98 1.13 17.08 4.60 3.89 0.14 3.68 7.88 7.88 3.17 1.23 0.23	57.75 1.14 17.00 4.04 0.13 3.73 7.47 3.21 1.14 0.33	57.53 1.45 17.30 3.08 5.05 0.13 3.21 7.50 3.76 0.71 0.27	58.54 1.55 16.68 4.87 3.75 0.13 2.58 6.55 3.67 1.36 0.32	57.78 1.16 16.44 3.09 5.18 0.14 3.96 8.65 3.12 0.30 0.18	58.32 1.14 16.14 2.99 5.23 0.14 3.95 7.70 3.20 1.00 0.18	60.09 1.71 15.86 2.58 5.90 0.15 2.48 6.03 3.95 0.81 0.43	58.13 1.25 15.90 4.43 4.63 0.15 3.44 7.27 3.50 1.12 0.18	59.33 1.88 15.76 4.41 4.34 0.11 2.45 5.60 4.18 1.52 0.41
				Ν	lodes				
Plagioclase Clinopyroxene Orthopyroxene Olivine Fe-Ti oxide Hornblende Quartz Groundmass No. of points counted Texture	29.2 5.1 5.1 0.6 60.0 811 porphyritic/ hyslopilitic	23.2 3.4 4.2 0.5 0.4 68.3 805 porphyritic/ hypidiomorphic	7.7 0.2 0.4 91.7 505 seriate/ intersertal	8.9 0.4 90.7 530 seriate/ intersertal	10.3 4.9 2.9 0.2 0.1 81.6 814 porphyritic/ hyalopilitic	9.9 5.2 2.5 tr 0.2 82.2 629 porphyritic/ pilotaxitic	0.2 tr tr 99.8 562 aphyric/ felty	3.1 0.5 96.4 672 microporphyritic/ microgranular	 100.0 pilotaxitic

Table 2. Chemical analyses and modes of volcanic and hypabyssal intrusive rocks, Vanson Peak quadrangle-Continued

·				•
Map No.	37	38	39	40
Field sample No.	8R124	0E52	6E02	9M20A
Latitude Longitude	46°27'09" 122°14'58"	46°29'55" 122°14'46"	46°26'34" 122°07'54"	46°29'48" 122°12'19"
Map unit	' Tia	Та,	Td ₂	Td,
Rock type	Andesite	Andesite	Andesite	Dacite
Method	RR	RR	XRF	XRF
SIO ₂ TIO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O Na ₂ O Na ₂ O Na ₂ O H ₂ O ⁺ H ₂ O ⁺ H ₂ O	$57.9 \\ 1.1 \\ 16.2 \\ 3.8 \\ 3.4 \\ 0.13 \\ 4.2 \\ 6.6 \\ 3.6 \\ 1.6 \\ 0.25 \\ 0.60 \\ 1.2 \\ 0.09$	59.6 1.0 16.6 3.5 2.8 0.06 2.3 4.7 4.7 1.5 0.53 1.1 1.6 0.06	60.7 1.24 14.8 2.17 5.17 0.14 2.06 5.46 3.50 1.73 0.35 1.91 0.94 <0.10	67.4 0.61 13.9 1.73 2.95 0.11 0.76 2.28 4.47 1.99 0.14 0.71 0.29 2.69
Total	100.67	100.05	100.17	100.03
	Analyses recalcul	ated volatile-free and norma	alized to 100 percent	
SIO ₂ TIO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O K ₂ O P ₂ O ₅	58.62 1.11 16.40 3.85 3.44 0.13 4.25 6.68 3.64 1.62 0.25	61.26 1.03 17.06 3.60 2.88 0.06 2.36 4.83 4.83 1.54 0.54	62.37 1.27 15.21 2.23 5.31 0.14 2.12 5.61 3.60 1.78 0.36	69.96 0.63 14.43 3.06 0.11 0.79 2.37 4.64 2.07 0.15
		Modes		
Plagioclase Clinopyroxene Orthopyroxene Olivine Fe-Ti oxide Hornblende Quartz Groundmass No. of points counted Texture	26.5 4.2 8.3 1.0 60.0 695 porphyritic/ hyalopilitic	0.8 tr 99.2 566 aphyric/ felty	6.3 0.8 0.6 92.1 635 porphyritic/ hyalopilitic	3.3 0.7 0.1 95.9 674 porphyritic/ hyalopilitic

* U.S. G.P.0.:1993-301-077:80033