FLOODS ON SCOTIO RIVER AND PAINT CREEK AT CHILLICOTHE, OHIO, IN 1880

Hydrologic data pertaining to the extent and frequency of flooding along the Scioto River and Paint Creek in the vicinity of Chillicothe, Ohio, are presented in this atlas. The map and flood data provide a basis for making land-use decisions designed to minimize flood damage. Methods for developing streamflow yearbooks and for land-use regulations are made and conclusions of existing flood problems are presented.

The approximate area inundated by the flood of January 23, 1876, is shown on a topographic map of the area now bordered by the Scioto River and Paint Creek. It is based on a topographic map issued by the U.S. Geological Survey, 1877-1880. The map is in a form similar to that used by the U.S. Geological Survey, 1877-1880, for the flood of January 23, 1876.

The flood of January 23, 1876, was the greatest and most destructive flood on record in the area. The Scioto River and Paint Creek were at flood stage during the January 23, 1876, flood. The flood of January 23, 1876, was the most destructive flood in the area. The Scioto River and Paint Creek were at flood stage during the January 23, 1876, flood.

The three water-supply reservoirs, Griggs, O'Haralson, and Shaver, do not include flood storage capacity in their design and their potential effects on flood peaks at Chillicothe are negligible. The effect of the Delaware Reservoir on stream flow at Chillicothe is negligible during the January 23, 1876, flood.

On Paint Creek, flow from about 10 percent of the drainage area is subject to regulation by the Porto Rico Reservoir since 1932.

The curve represents natural flow, influenced by the effect of reservoir storage.

It is emphasized that recurrence intervals are average figures—the average number of years that will shift between occurrences of floods that equal or exceed a certain flood height. The curve represents natural flow, influenced by the effect of reservoir storage.

The abrupt changes in the profiles, shown at some street locations, indicate the difference in water surface elevations at the upstream and downstream sides of bridges. The profiles for the bridge designs generally along the main channels. River rises upstream from the bridge and the bridge structure is included in the profile. The profile for the bridge designs generally along the main channels. River rises upstream from the bridge and the bridge structure is included in the profile.

The general relationship between recurrence intervals and flood heights at the Bridge Street at Chillicothe is shown in figure 3. It is emphasized that recurrence intervals are average figures—the average number of years that will shift between occurrences of floods that equal or exceed a certain flood height. The curve represents natural flow, influenced by the effect of reservoir storage.

The abrupt changes in the profiles, shown at some street locations, indicate the difference in water surface elevations at the upstream and downstream sides of bridges. The profiles for the bridge designs generally along the main channels. River rises upstream from the bridge and the bridge structure is included in the profile. The profile for the bridge designs generally along the main channels. River rises upstream from the bridge and the bridge structure is included in the profile.

The general relationship between recurrence intervals and flood heights at the Bridge Street at Chillicothe is shown in figure 3. It is emphasized that recurrence intervals are average figures—the average number of years that will shift between occurrences of floods that equal or exceed a certain flood height. The curve represents natural flow, influenced by the effect of reservoir storage.

By George W. Bledsoe, Jr., Frederick H. Huggins, Jr., and William P. Cross

1880