

Photograph by R. L. Copeland
AERIAL VIEW OF NILES, CALIFORNIA AND FLOODING
ALAMEDA CREEK, DECEMBER 24, 1955

Base map by Topographic Division
U. S. Geological Survey, 1959

EXPLANATION
③ River miles measured upstream
from mouth
APPROXIMATE MEAN
DECLINATION, 1959
127° N
122° 10' 122° 30' 122° 50' 123° 10' 123° 30' 123° 50' 124° N

- Flood of Dec. 23, 1955
- Flood of Apr. 3, 1958
- Flood of Dec. 23, 1955 and Apr. 3, 1958
- Flooded in 1955 but not flooded in 1958
- Flooded in 1958 but not flooded in 1955
- Flood inundated area

SCALE 1:24 000
1 0 1 MILE
CONTOUR INTERVAL, 5, 20 AND 40 FEET
DOTTED LINES REPRESENT 5 AND 10-FOOT CONTOURS
DEPTH CURVES IN FEET—DATUM IS MEAN LOWER LOW WATER
SHORLINE CURVES IN FEET—DATUM IS MEAN LOWER LOW WATER
THE MEAN RANGE OF TIDE IS APPROXIMATELY 7 FEET

1962

FLOODS AT FREMONT, CALIFORNIA

FLOODS IN ALAMEDA CREEK BASIN, AT FREMONT, CALIFORNIA, IN 1955 AND 1958

The approximate areas inundated by Alameda Creek and by the main channel of Patterson Creek, during the floods of December 23, 1955, and April 3, 1958, in the reach of channel downstream from State Highway 9 at Fremont, California, are shown on a topographic map base to reduce the flood hazard in graphical form. The flood of December 23, 1955, was the greatest since 1891 and probably the greatest since at least 1849 or 1852. Greater floods are possible, but no attempt has been made to show their probable overflow limits. From mean sea level to 100 feet above mean sea level, a narrow canyon above Fremont contains a wide flood plain that drains into San Francisco Bay. Alameda Creek divides into two channels at a point about 7.4 miles upstream from its mouth (San Francisco Bay). The eastern channel retains the name Alameda Creek. The western channel, Patterson Creek, a man-made distributary, flows into San Francisco Bay at a point about 2 miles south of Alameda Creek.

Recurrence interval (years)	Elevation above mean sea level Alameda Creek near Niles, California, 1 mile upstream from State Highway 9 (feet)
75	104.7
50	103.3
40	100.0
30	99.6
20	99.0
10	97.9
5	96.5
3	95.0

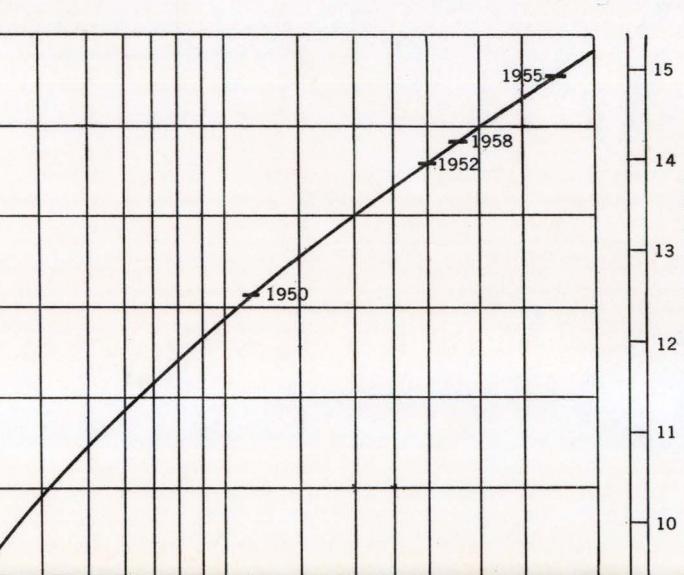


FIGURE 2.—FREQUENCY OF FLOODS AT GAGING STATION NEAR NILES, CALIFORNIA

The elevations of 4 floods of record—1950, 1952, 1955, and 1958—are plotted on figure 2. It is emphasized that recurrence intervals are average figures, and the number of years in which floods of specific gage height will be equaled or exceeded, thus, on Alameda Creek, the elevation of 100-foot elevation at the gaging station near Niles is said to have a recurrence interval of 40 years, or a 1-in-4 chance of occurring in any one year. However, the probability of occurrence of a given 100-year period or it may be attained several times.

Flood profiles. Profiles of the water-surface of Alameda Creek, and Patterson Creek, from the point of diversion of Patterson Creek, constructed from maps left by the flood of April 3, 1958, (recurrence interval about 35 years) are shown in figure 3, together with profiles of hypothetical floods with 3, 15, 35, and 70-year recurrence intervals. Profile of the hypothetical floods show an arrival front, stages of frequency relating to the time of arrival near Niles and other points located downstream. Profiles for the hypothetical floods were not extended downstream below mile 1.4 (Patterson Creek diversion point) because of uncertainty regarding distribution of flow, tide, and occurrence of levee breaks.

Below river mile 1.4, the profile reflects conditions which existed at the time of the 1958 flood and in this reach a future flood of the same magnitude at the gaging station near Niles would not necessarily duplicate the profile shown in figure 3. Fluctuations in overbank flooding of Alameda Creek at about mile 0.96. Changes in the point of overflow, as well as alterations in the creek channel or levee system can have a marked effect on the profiles downstream. Upstream from river mile 7.4, profiles of floods corresponding to the flood heights can be plotted on figure 3 generally parallel to those shown.

Base lines for the profiles are located generally along the centerlines of the streams. River miles measured upstream from the mouth of Alameda Creek and Patterson Creek, used for the profiles of figure 3, are also marked along the streams on the map.

Depth of flooding at any point can be estimated by subtracting the ground elevation (shown by contours on the map) from the water surface elevation indicated by the profiles of figure 3.

Tributaries. Alameda Creek and Patterson Creek are the principal sources of flooding in the Fremont vicinity, downstream from Niles. Tributaries other than these as a result to a small part of the total drainage area is negligible, the effect of reservoir storage on annual flood peaks at Niles is not large.

Flood frequency. Frequency of floods of Alameda Creek is derived from the continuous record of annual floods since 1918 by the Geological Survey gaging station near Niles, supplemented by other streamflow records during the period 1891-1918. Large errors may result if the flood frequency curve is extrapolated beyond the limits shown.

Recurrence intervals. As applied to these events, recurrence intervals are the time intervals within which a given flood height will be equaled or exceeded once. It is inversely related to the chance of a specific flood being equal or exceeded in any one year. Thus 25-year flood would have a chance of 1 in 25 of being equaled or exceeded in any one year, or a 300-year flood would have 1 chance in 30 of being equal or exceeded in any one year.

The

relationship between recurrence interval and flood height at the gaging station on Alameda Creek near Niles is shown graphically in figure 2 and is tabulated in next column.

Information pertaining to floods in the Alameda Creek basin may be obtained at the office of the U. S. Geological Survey, 245 Middlefield Road, Menlo Park, California, and from the following published reports:

Matthi, H. F., and others, 1957, Water Resources of the San Francisco Bay area, California, U. S. Geol. Survey Prof. Paper 478.

Hart, R. H., and others, 1958, Water Resources of December 1955-January 1956 in the far Western States: U. S. Geol. Survey Water-Supply Papers 1650-A and -B.

U. S. Geological Survey, 1960, Compilation of Records of Surface Waters of the United States through September 1959, Part 11, Pacific Slope Basins in California except Central Valley, U. S. Geol. Survey Water-Supply Paper 1315-B.

Cooperation and acknowledgement. Overflow boundary information for floods of 1955 and 1958 was furnished by the following agencies:

Alameda County Flood Control and Water Conservation District

Alameda County Water District

California Division of Highways

City of Fremont

The Hydrologic Investigations Atlas was prepared by L. E. Young, U. S. Geological Survey.

Date of flood	Stage (feet)	Elevation above mean sea level (feet)
April 3, 1958	14.17	99.92
December 23, 1955	14.9	100.55
January 12, 1952	13.92	99.57

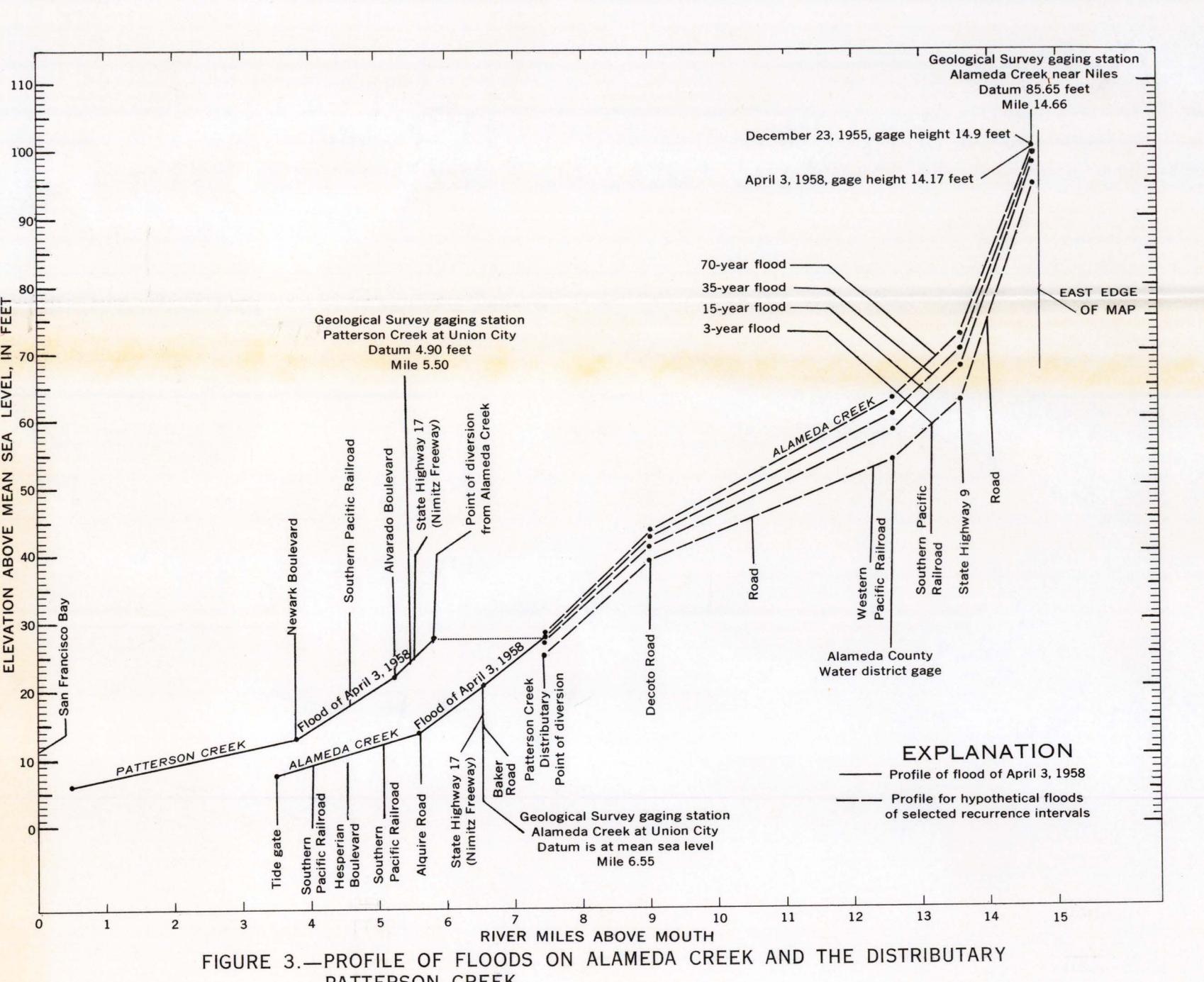


FIGURE 3.—PROFILE OF FLOODS ON ALAMEDA CREEK AND THE DISTRIBUTARY PATTERSON CREEK