

FIGURE 2.—GENERALIZED COLUMNAR SECTION AND WATER-BEARING CHARACTER OF GEOLOGIC FORMATIONS

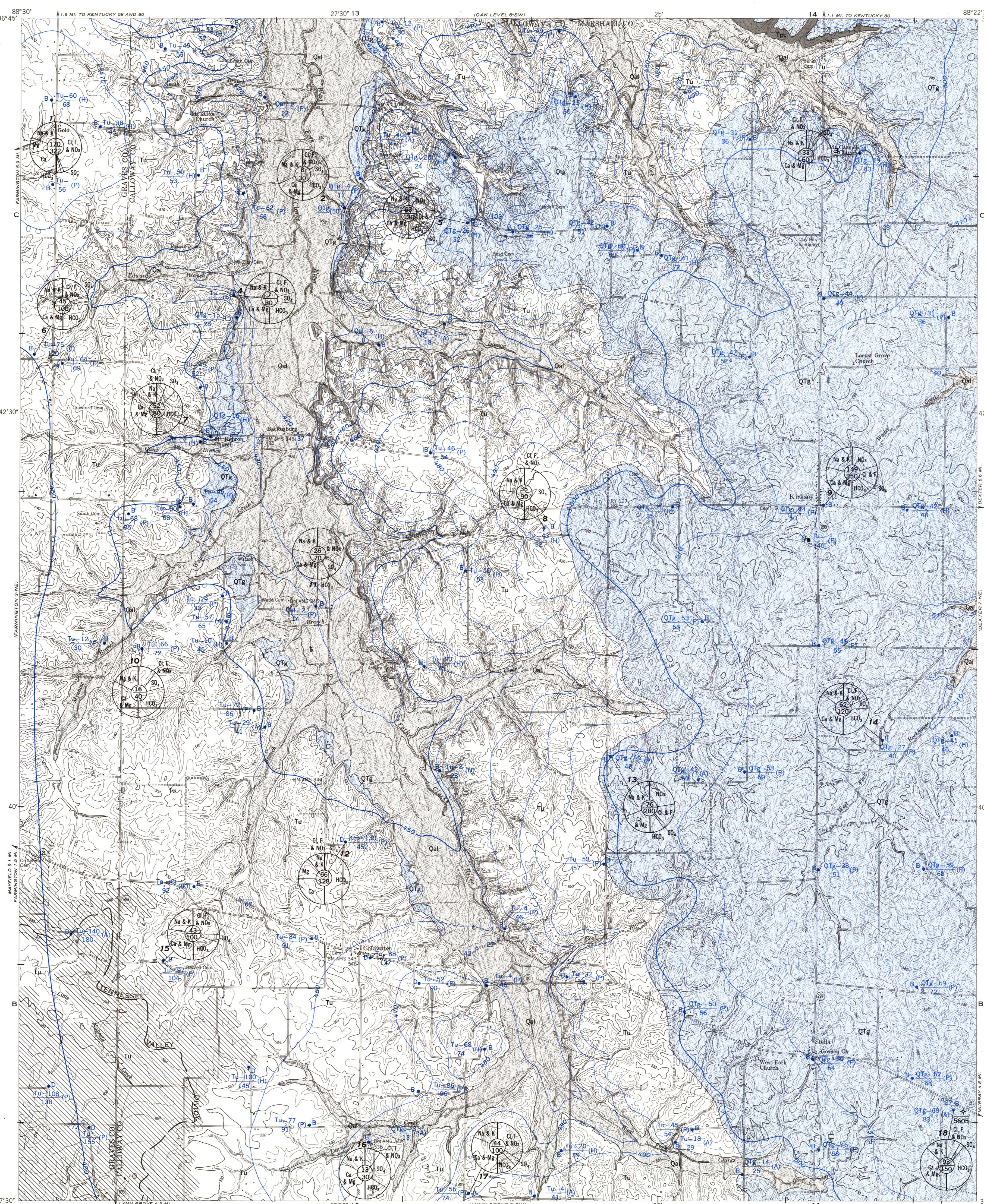
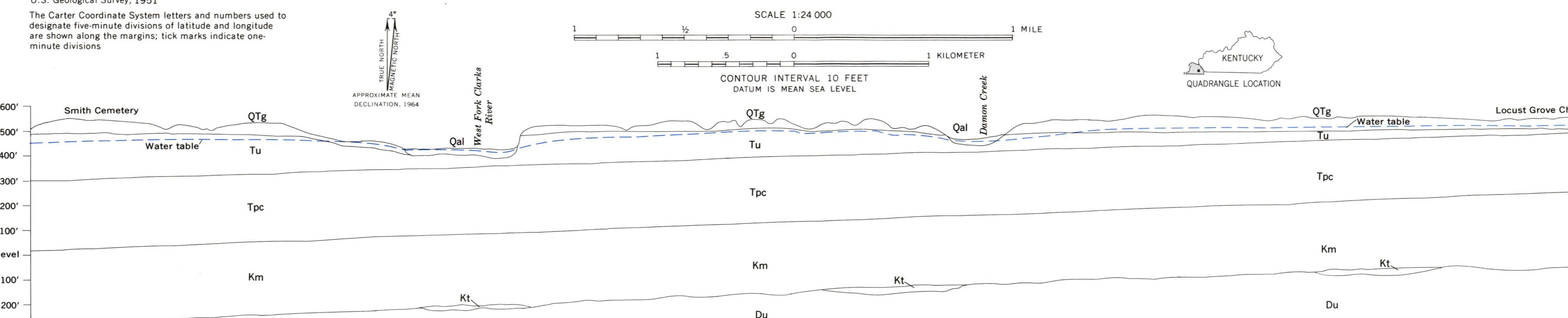



FIGURE 1.—MAP SHOWING AVAILABILITY OF GROUND WATER, LOCATION OF WELLS AND SPRINGS, AND QUALITY OF WATER

AVAILABILITY OF GROUND WATER IN THE KIRKSEY QUADRANGLE, KENTUCKY

A plentiful supply of ground water for domestic purposes has been available since early in the settlement of the Jackson Purchase region in western Kentucky. The increasing demand for water for other purposes in our expanding econ-

omy has required that special consideration be given to the water resources of the area. To encourage wise development and conservation of this resource, the U.S. Geological Survey in cooperation with the Kentucky Geological Survey is conducting scientific investigations to expand the knowledge of the ground water in the region. This report, one of a series that includes the entire Jackson Purchase region, provides detailed information on the availability of ground water in the Kirksey quadrangle.

The shallowest ground-water source that may yield an adequate supply for domestic use is shown on an availability map (fig. 1). Although the main zone of saturation--that part of the rock material that is completely saturated with water--is continuous beneath the entire quadrangle, and is probably as thick as 150 feet in some places, the water table (the upper surface of the main zone of saturation) is in different geologic formations. Thus there are differences in the availability of the contained water. As an example of the usefulness of the map, the conditions near Coldwater in the southwestern part of the quadrangle are shown for area 3 where the water table is in the Eocene sand (see explanation of map); both small- and large-diameter wells yield enough water for a small municipal or industrial supply. The probable minimum depth of a well is the difference between the altitude of the land surface and the water table. At Coldwater the difference is 90 feet, which is the estimated depth to water and the minimum depth of a dependable well.

In a few places, the discontinuous beds of clay above the water table retard descending water above them. These local occurrence of ground water above the main zone of saturation, called "perched water," are usually inadequate for even a domestic supply, although during rainy seasons the amount available may be sufficient for many

Should the shallowest water-bearing formation (aquifer) yield an insufficient supply, deeper formations can be tapped. (See fig. 2.) The McNairy Formation in Marshall and Calloway Counties is an excellent aquifer, yielding municipal supplies of water to the towns of Benton and Murray, Kentucky. The water in the formation, confined by the overlying Bentons Creek Clay

confined by the overlying Porters Creek Clay, will rise in wells to an altitude of about 400 feet above sea level. The Tuscaloosa Formation, which is not tapped by wells in this quadrangle and may not be present, is water bearing in areas where the gravel in the formation has been located. The Paleozoic rocks are not tapped by wells in the quadrangle but are an excellent source of ground water elsewhere in the Jackson Purchase region, where they are at lesser depths. Near the Ohio River in southern Illinois these rocks supply water to several homes, small businesses, and large industries. The McNairy, Tuscaloosa, and Paleozoic aquifers in the quadrangle are potential sources of large quantities

The quality of water in the main zone of saturation is satisfactory for most uses. Except where the nitrate (NO_3) content is more than 45 parts per million (ppm), the concentration of dissolved solids rarely exceeds 150 ppm. The water is generally soft or only moderately hard, ranging from less than 10 ppm to about 90 ppm. It is slightly acidic and may be considered corrosive for some uses. The temperature of the ground water ranges from about 57° to 62°F. The water in the McNairy Formation may contain objectionable amounts of iron, but the iron content is reported to decrease with prolonged

The following table shows the iron content in parts per million and the hydrogen-ion concentration, expressed as pH, of the water analyses shown by circular diagrams on figure 1. A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity. Corrosiveness of water generally increases with decreasing pH.

analysis number	1	2	3	4	5	6	7	8	9	10
Iron content	0.31	0.02	0.38	0.11	0.08	0.17	0.31	0.15	0.24	0.10
pH	6.8	—	6.3	5.3	6.2	6.4	6.7	6.6	—	5.8

analysis number	11	12	13	14	15	16	17	18
Iron	0.97	8.0	0.05	0.14	0.13	0.11	0.40	0.07

content	5.5	6.5	6.0	6.4	6.5	5.7	—	6.7
pH	5.5	6.5	6.0	6.4	6.5	5.7	—	6.7

AVAILABILITY OF GROUND WATER IN THE KIRKSEY QUADRANGLE, KENTUCKY

By
J. H. Morgan
1964