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STREAMFLOW CHARACTERISTICS
STREAMFLOW

Investigation of streamflow in the basin consisted of col-
lecting and analyzing data from three stream-gaging stations
(see map), and from 47 low-flow partial-record sites. A
fourth stream-gaging station, on the North Branch Hoosic
River at North Adams, 17 miles north of the Coltsville sta-
tion was used as the index station for correlation purposes
because the Coltsville station and the Great Barrington sta-
tion on the Housatonic River are regulated by mills up-
stream.

For purposes of comparison and correlation, 30 years of
record, ending in 1961, was used as the standard or base pe-
riod. Records for this period at North Adams were used to
extend the records of the Green River gaging station near
Great Barrington and the 47 low-flow sites to the base
period.

RUNOFF

An average of about 24 inches of surface-water runoff,
an estimated 219 billion gallons of water, flows out of the
basin each year. This amounts to about 52 percent of the
average annual precipitation. Annual runoff, in inches, rep-
resents the depth to which the basin would be covered if
all the streamflow in one year uniformly covered the basin.
The pattern of average annual runoff is shown on the map.

The mean annual flow, in cfs per sq mi (cubic feet per
second per square mile) and in mgd per sq mi (million gal-
lons per day per square mile), for each low-flow partial-
record site is listed in table 1. The site locations are shown
on the map. The overall mean flow in the basin is 1.72 cfs
per sq mi or 1.11 mgd per sq mi.

The amount of water that becomes streamflow depends
upon where, when, and how the precipitation falls. Most of
the precipitation in the winter months accumulates upon the
land surface as snow. In the early spring air temperatures
rise and the snow cover melts. After the ground becomes
saturated, the snowmelt, together with the spring rain, runs
off and increases streamflow. Streamflow decreases through
the spring as longer days and higher air temperatures in-
crease evaporation. Generally the amount of precipitation is
about the same in the spring and summer, but as the grow-
ing season progresses, the plants transpire more and more
water. This transpiration process combined with the higher
temperatures and evaporation rates of the summer season
produce the lowest streamflow in the late summer and early
fall. During periods of no precipitation most of the flow in
the streams is ground-water effluent.

FLOW DURATION

The flow-duration curve provides a convenient means for
studying the flow characteristics of streams and for compar-
ing one basin with another, and is used for investigating
problems dealing with water supply, power developments,
and dilution and disposal of sewage or industrial wastes.
Flow-duration curves for the four gaging stations are shown
in figure 2.
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GEOLOGY AND LOW FLOW

The low-flow measurements for this report were made
after six or more consecutive days of no precipitation. At
this time streamflow is essentially ground-water runoff
(effluent). The geology of a basin has a profound effect on
low flow in streams; and, thus, at first glance, low-flow
measurements may be considered as indicators of potential
aquifer (ground-water reservoir) yields. However, in the
glaciated valleys of the basin, the surface sediments (valley
fill) adjacent to the stream channels may largely control the
low flow in the streams. Fine grained lake sediments at the
surface will result in low ground-water runoff, and coarse
sand and gravel sediments will result in high ground-water
runoff. In the practical search for ground-water supplies,
however, the surficial lake sediments may be underlain at
depth by sand and gravel deposits which are good water
suppliers; whereas, the surficial sand and gravel sediments
may be thin, of little extent, and may constitute a small wa-
ter supply. Also, the hydraulic properties of the surficial
deposits may completely obscure the water-yielding poten-
tial of the underlying bedrock. In valleys where bedrock is
near or at the surface and surficial deposits are thin or ab-
sent, such as in the upper parts of some tributary stream
channels, all low flow may be coming out of the rock. How-
ever, because of the hydraulic inhomogeneity of the bedrock,
most of the flow may be emitted through a few open frac-
tures that intercept the stream channel.

Data available for this work were not sufficient to make a
quantitative evaluation of the relationship between low flows
and aquifer yields. Some factors, other than geology, affect-
ing low flows are soil moisture conditions, stream bank stor-
age, hydraulic gradient of the water table, periodicity of pre-
cipitation, seasonal variations and trends in precipitation,
evapotranspiration rates, hydraulic properties of the aquifers
(as inferred above), and relative storage of water in the
ground.

Water users frequently require streamflow data for un-
gaged sites. To estimate the amount of storage needed at
places where no gaging-station records are available requires
that an estimate be made of the median 7-day annual low
flow. To help meet this need in the basin, storage-required
frequency data have been estimated at 27 of the low-flow
partial-record sites. These data are summarized in table 2.

Regional draft-storage curves based on storage-required
frequency data from the four gaging stations, are shown in
figure 6.

Through use of these curves the amount of storage re-
quired to provide selected rates of allowable draft (outflow
rate) can be estimated from the median 7-day annual low
flow and the size of the drainage area (table 2).

For example, in table 2, low-flow site no. 25, Smith Brook
at West Street in Pittsfield, has an estimated median 7-day
annual low flow of 0.115 mgd per sq mi. Using the curves
in figure 6, a storage of 6.9 mgd per sq mi would be required
at the 20-year recurrence interval to give an allowable draft
or outflow rate of 0.2 mgd per sq mi.

The method used for obtaining storage requirements neg-
lects losses due to evaporation and seepage from the reser-
voir. These losses depend on the characteristics at each spe-
cific reservoir site and they must be determined for each
individual problem. Also, the method of estimating storage
requirements from low-flow frequency curves gives amounts
of storage that are about 10 percent less than those given by
mass curves. Therefore, the storage-required figures would
have to be increased by about 10 percent before being used
in a final design.

Storage-draft relations can be used by water managers
who are concerned with seeking new or additional sources
of surface-water supply for municipal and industrial use, or
who are appraising the potential water supply for regional
growth and development.

The availability of streamflow for water supply and waste
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MILES ABOVE MOUTH
FIGURE 4.— Flood profile showing high-water elevations for the January 1949 flood on the Housatonic River
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