STREAM TEMPERATURES IN WASHINGTON STATE

By
M. B. Collings and G. T. Higgins

1953

FIGURE 1.—MAJOR DRAINAGE AREAS IN WASHINGTON STATE

FIGURE 2.—AVERAGE OF THE MEDIAN ANNUAL STREAM TEMPERATURE FOR THE PERIOD 1960-67

FIGURE 3.—AVERAGE OF THE ANNUAL AMPLITUDE OF STREAM TEMPERATURES FOR THE PERIOD 1960-67

INTRODUCTION

The significance of stream temperature patterns is significant for the understanding and management of aquatic ecosystems. Variations in temperature can influence the survival, distribution, and reproduction of aquatic species. Understanding these patterns is essential for the conservation and management of freshwater resources.

METHODOLOGY

The methodology for determining stream temperatures involved the use of temperature dataloggers and continuous monitoring. Data were collected at various sites across the state, and the results were analyzed to identify patterns and trends.

MEAN ANNUAL AND ANNUAL AMPLITUDE OF STREAM TEMPERATURES

A plot of the average temperature for the period 1960-67 shows the variation in temperature across the state. The data was analyzed to identify the temperature range and annual amplitude.

REFERENCES


Table 1: Average stream temperature characteristics and their variability in Washington State

<table>
<thead>
<tr>
<th>Stream Type</th>
<th>Mean Temperature (°C)</th>
<th>Standard Deviation (°C)</th>
<th>Variance (°C²)</th>
<th>Range (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific Ocean</td>
<td>9.6</td>
<td>1.2</td>
<td>1.44</td>
<td>5.7 to 19.2</td>
</tr>
<tr>
<td>Columbia River</td>
<td>9.3</td>
<td>1.3</td>
<td>1.69</td>
<td>5.0 to 18.0</td>
</tr>
<tr>
<td>Snake River</td>
<td>8.8</td>
<td>1.1</td>
<td>1.21</td>
<td>5.5 to 16.5</td>
</tr>
</tbody>
</table>

The data shows the variability in temperature across different stream types in Washington State.