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Note: In Minnesota, the Ironton Sandstone,

Contact which was formerly a member of the
Franconia Formation, has been raised to
formation rank (Austin, 1969). This

= change constitutes a redefinition of the
Fault Franconia Formation in Minnesota; else-

where the Ironton remains a member of
the Franconia.

BEDROCK IN THE LOWER ST. CROIX RIVER WATER-
SHED CONSISTS OF PRECAMBRIAN IGNEOUS ROCKS
AND PRECAMBRIAN, CAMBRIAN, AND ORDOVI-
CIAN SEDIMENTARY ROCKS.—
the watershed are part of a thick sequence of Keweenawan lava flows
deposited in the Lake Superior syncline (Sims and Zietz, 1967). These
lava flows were covered by clastics of the Fond du Lac and Hinckley
Formations of Winchell (1886, 1899).

Precambrian basalts in

Subsequent faulting and ero-

45°00’

3

T. 29 N.

ston resulted in juxtaposition of Precambrian clastics and basalt in
the northern part of the watershed. South of the present maxrimum
extent of Paleozoic rocks, Precambrian faults are covered by younger

rocks.

Marine sandstones, shales, and carbonates were deposited in the
area during the Cambrian and Ordovician Periods.
form the bedrock surface in most of the watershed, progressively
younger rocks generally occurring from north to south across the
watershed. Exceptions to this occur along the St. Croix River valley
and along other now-buried valleys cut into the bedrock surface.

Regionally, Paleozoic bedrock in the watershed constitutes part of
the north and east flanks of the Twin Cities basin.
leozoic bedrock is shown by the structure contour maps.

These rocks
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THICKNESS OF GLACIAL DRIFT COMMONLY RANGES FROM 0-200
FEET AND EXCEEDS 400 FEET IN SOME BEDROCK VAL-
LEYS.— The bedrock valleys in places contain thick sections of sand and gravel,

potentially capable of yielding large amounts of water to wells. Areas of thin drift,
including numerous bedrock outcrops, occur in the southern part of the watershed

and along the St. Croix River valley. Small amounts of water are available from the
drift in these areas.
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o Gray-brown outwash Undifferentiated gray drift on the three accompanying tllustrations. The area contains an upper gray-brown
Well for which top of aquifer / Primarily very-fine to medium Primarily silty till outwash generally 20-50 feet thick that is commonly underlain by red outwash 10-30
is known 92542 3’::;1' includes some thin surficial , Seet thick. Greatest combined thicknesses occur as northeastward-trending features
p 7 that coincide with topographic lows commonly containing streams or strings of lakes.
—_ hieh el Most of the outwash is very fine to medium-grained sand of relatively low hy-
epotZ; t?a] fs krfow':nu I 925' ) Undifferentiated red drift draulic conductivity. It may be productive where large saturated thickness compen-
B Primarily sandy till sates for the fine texture. Well yields exceeding 500 gpm (gallons per minute), and
- o e AT — el 900’ Red outwash locally 1,000 gpm, are theoretically possible in parts of the area. Yield estimates are
Watershed boundary J—. Primarily fine to medium sand, based on testing drilling, assigned hydraulic conductivity values, and the following
. m assumptions: 1) wells are properly developed, 16 inches in diameter, and open to the
850t e °rmace b SPSAastle entire aquifer; 2) drawdown after 1 day of pumping is two-thirds of the original sat-
m S urated thickness;and 3) the aquifer is homogeneous, of infinite areal extent, and has
825 - a uniform storage coefficient of 0.15.  Theoretical yields were adjusted to account
Glacial lake deposits Jor dewatering of the aquifer. Local deviations from the general interpretations
Primarily ved l:;y A i shown will occur because of textural variations and boundary conditions.
uger hole
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Watershed boundary
Sandstone
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N N S o | SHOWN ON GLACIAL GEOLOGY
THE MAJOR BEDROCK AQUIFERS DIP GENERALLY SOUTHWESTWARD. X = e orgeyer 4 MAP ABOVE
Where the aquifer is noneroded, its maximum water-yielding capa- moves tn the direction of structural dip. In the southern part, the St.
bility can be realized. Where partly eroded, its capability is correspond- Croix River is entrenched to such a degree that it overshadows the effect
ingly less. of dip on ground-water movement. Potentiometric trends in this part -
In the northern part of the watershed, water in bedrock generally of the watershed are therefore opposite the direction of dip.
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