BACKWATER AT BRIDGES AND DENSELY WOODED FLOOD PLAINS, TALLAHALA CREEK AT WALDRUP, MISSISSIPPI

By B. E. Colson, C. O. Ming, and George J. Arcement

Prepared in cooperation with the DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION MISSISSIPPI STATE HIGHWAY DEPARTMENT

HYDROLOGIC INVESTIGATIONS ATLAS Published by the U.S. Geological Survey, 1978

BACKWATER AT BRIDGES AND DENSELY WOODED FLOOD PLAINS TALLAHALA CREEK AT WALDRUP, MISSISSIPP

Square meter (m²)

Cubic meter (m³)

Cubic meter per

tabular data.

second (m3/s)

3.281

10.76

VOLUME

35.31

VELOCITY

FLOW RATE

are shown on the frequency curve (fig. 4).

during the discharge measurement.

sidered valid for all floods.

Hudson, 1976, fig. 4).

boundaries are shown on sheets 2A to 5B.

FLOOD OF APRIL 14, 1969

FLOOD OF FEBRUARY 21, 1971

FLOOD OF APRIL 13, 1974

the downstream bridge abutments was 95.166 meters. The

peak discharge was 507 cubic meters per second from the

stage-discharge relation. The recurrence interval of the 1974

peak discharge is 43 years (Colson and Hudson, 1976, fig. 4).

are shown on sheet 5B as representative of the velocity dis

tribution for the 1974 flood data. The flood measurement of

April 6, 1964, was at an elevation of 95.436 meters, 0.27 meters

higher than the 1974 flood peak at the downstream bridge

abutments. This measured discharge was 591 cubic meters

per second of which 57 cubic meters per second flowed over

Floodflow data that will provide a base for evaluating digital

models relating to open-channel flow were obtained at 22 sites

on streams in Alabama, Louisiana, and Mississippi. Thirty-five

floods were measured. Analysis of the data indicated that

backwater and discharges computed by standard indirect

methods currently in use would be inaccurate where densely

vegetated flood plains are crossed by highway embankments

and single-opening bridges. This atlas presents flood informa-

tion at the site on Tallahala Creek at Waldrup, Miss. Water

depths, velocities, and discharges through bridge openings on

Tallahala Creek at Waldrup, Miss. for floods of April 14, 1969,

February 21, 1971, and April 13, 1974, were measured, to-

gether with peak water surface elevations along embankments

and along cross sections. Manning's roughness coefficient

values in different parts of the flood plain are shown on maps,

ADDITIONAL INFORMATION

Other information pertaining to floods in Alabama,

Louisiana, and Mississippi may be obtained at the offices of

SELECTED REFERENCES

Barnes, H. H., Jr., 1967, Roughness characteristics of natural

Benson, M. A., and Dalrymple, T., 1967, General field and office

Bradley, J. N., 1970, Hydraulics of bridge waterways: Federal

Colson, B. E., and Hudson, J. W., 1976, Flood frequency of

Hains, C. F., 1973, Floods in Alabama, magnitude and fre-

Hedman, E. R., 1964, Effects of spur dikes on flow through

Matthai, H. F., 1967, Measurement of peak discharge at width

contractions by indirect methods: U.S. Geol. Survey

Techniques Water-Resources Inv., book 3, chap. A4, 44 p.

Neely, B. L., Jr., 1976, Floods in Louisiana, magnitude and

Schneider, V. R., Board, J. W., Colson, B. E., Lee, F. N., and

Druffel, L., 1976, Computation of backwater and discharge at

width constrictions of heavily vegetated flood plains: U.S.

ing flood flow frequency: Washington, D. C., U.S. Water

U.S. Water Resources Council, 1976, Guidelines for determin-

frequency, 3d ed.: Louisiana Dept. Highways, 340 p.

Geol. Survey Water-Resources Inv. 76-129, 64 p.

Resources Council Bull. 17, 26 p.

raulics Div., v. 91, no. HY4, July 1965, p. 155-165.

constrictions: Am. Soc. Civil Engineers Proc., Jour. Hyd-

quency: Alabama Highway Dept., 37 p.

Mississippi streams: Mississippi State Highway Dept., 34 p.

Highway Admin., Hydraulic Design Ser. No. 1, 111 p.

procedures for indirect discharge measurements: U.S. Geol.

Survey Techniques Water-Resources Inv., book 3, chap.

channels: U.S. Geol. Survey Water Supply Paper 1849,

and flood-frequency relations are shown on graphs.

Room 202, Oil and Gas Board Building (P. O. Box V)

the U.S. Geological Survey listed below:

6554 Florida Boulevard (P. O. Box 66492)

U.S. Geological Survey

U.S. Geological Survey

U.S. Geological Survey

430 Bounds Street

A1, 30 p.

University, Alabama 35486

Baton Rouge, Louisiana 70896

Jackson, Mississippi 39206

the highway embankment (table 4).

The 1964 measured cross section and velocity distribution

Cubic feet (ft³)

INTRODUCTION New techniques for predicting water-surface profiles, needed in the design of economical, structurally sound, and environmentally compatible stream crossings, are under investigation. The investigation has accelerated with the advent of digital computers capable of analyzing large quantities of data. Among the techniques is the development of twodimensional (2–D) digital models. Field data are essential for development and evaluation of these techniques for predicting water-surface profiles. This atlas is the first of a series that will provide a wide range of field data.

Since 1969 the U.S. Geological Survey has been collecting backwater data where wide, densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This work was done in cooperation with the Department of Transportation Federal Highway Administration, the Alabama State Highway Department, the Louisiana Department of Transportation and Development, and the Mississippi State Highway Department. The objective of this cooperative project is to present the data in a format conducive to the development of improved models for predicting hydraulic responses of flow at highway crossings of streams in complex hydrologic and geographic settings.

Data were collected at the following 22 sites (fig. 1) for 35 floods; that is, 11 sites had 1 flood each; 9 sites, 2 floods each; and 2 sites, 3 floods each. Analysis of the data (Schneider and others, 1976) showed that backwater and discharge at these sites computed by methods presently in use, would be inaccurate. The flood flow data are unique in the range and detail in which information was collected and provide a base for evaluating digital models relating to open-channel flow. This atlas shows flood data obtained at Tallahala Creek at Waldrup, Miss., one of 22 sites plotted on figure 1:

ALABAMA Buckhorn Creek near Shiloh Pea Creek near Louisville Poley Creek near Sanford Yellow River near Sanford Whitewater Creek near Tarantum

Alexander Creek near St. Francisville Beaver Creek near Kentwood Comite River near Olive Branch Cypress Creek near Downsville Flagon Bayou near Libuse Little Bayou de Loutre near Truxno Tenmile Creek near Elizabeth

Bogue Chitto near Johnston Station Bogue Chitto near Summit Coldwater River near Red Banks Lobutcha Creek at Zama Okatoma Creek east of Magee Okatoma Creek near Magee Tallahala Creek at Waldrup Thompson Creek near Clara West Fork Amite River near Liberty Yockanookany River near Thomastown

DESCRIPTION OF DATA

TYPE OF DATA Data collected at all study sites consist of (1) depths, velocities, and discharges measured through the bridge openings, and (2) peak water-surface elevations along the highway embankment and along cross sections. A minimum of eight valley cross sections were surveyed at approximately one valley-width intervals in the vicinity of the bridge at each site. Locations of the cross sections were alined perpendicularly to the assumed direction of flow. Cross sections were extended to intersect the edge of the valley at equal water-surface elevations. Surveying procedures described in the U.S. Geological Survey Techniques of Water-Resources Investigations series (Matthai, 1967; Benson and Dalrymple, 1967) were followed.

HIGH-WATER MARKS Water-surface elevations were determined from high-water marks identified along the cross sections and the edges of the valley after each flood. During peak discharge measurements, water-surface elevations were marked with standard surveying stakes along the upstream and downstream sides of the highway embankment. For some floods additional high-water marks were identified in the valley adjacent to the bridge to define in detail the water surface in the approach and exit reaches.

BRIDGE GEOMETRY Detailed bridge geometry was obtained at each site. The bridge cross section was surveyed at the most contracted section. Piers, spur dikes, wingwalls, abutment slopes, and other pertinent geometry were measured. MANNING'S ROUGHNESS COEFFICIENT

Schneider and others (1976) used composite Manning's roughness coefficient values (n) where frequent changes in roughness occurred. In their study, composite values of (n) were verified by matching step backwater computations of the water surface with actual water-surface profiles for measured discharges. The range of (n) values used in this report is based on values used by Schneider and others (1976). Roughness varies from open fields to dense forests.

Roughness values or ranges of roughness values in different parts of the flood plain are shown on the maps. The values shown are based on water depth. The high value is value where depth is less than 0.6 meter and the low value applies where water depth is greater than 1.0 meter. A linear relation of roughness to water depth is assumed for water depths between 0.6 and 1.0 meter.

PRESENTATION OF DATA

The data are represented on topographic maps enlarged from standard 1:24,000 (or 1:62,500) scale Geological Survey topographic maps which comply with National Map Accuracy Standards. Accuracy limitations of the base maps are retained in the enlargements. Although positions may be scaled closely on the enlargements, they are not defined with greater accuracy than positions on the base maps.

Ground elevations are placed adjacent to solid squares. Elevations of floodmarks are indicated by numerical values adjacent to solid triangles. Floodmark elevations for separate floods are shown on separate sheets. Bridge geometry and road-embankment dimensions are shown with brief notations of pier spacing and configuration. In addition to the data points shown on the maps, discharge

measurements of selected floods, plots of cross sections, and velocity distribution diagrams are shown. Cross-section elevations are tabulated to define stream channels and flood-plain features in greater detail. Each cross section is referred to a zero station established at the extreme left edge (looking downstream) of the valley.

All elevations presented in this report are referred to National Geodetic Vertical Datum of 1929 (NGVD). FLOOD FREQUENCY

Flood-frequency relations are presented graphically. Techniques for deriving flood-frequency relations are those described by the U.S. Water Resources Council (1976), and by Colson and Hudson (1976).

INTERNATIONAL SYSTEM OF UNITS (SI) The International System of Units (SI) is used throughout this report. All data were measured in the U.S. customary units and converted to SI units. Ground elevations which were originally determined to the nearest tenth of a foot are rounded to the nearest 0.01 meter. Water-surface elevations which were surveyed to hundredths of a foot are rounded to millimeters. The same criteria apply to all other dimensions, except contour elevations which are shown to the nearest tenth of a meter. The following factors may be used to convert SI units to the U.S. customary units:

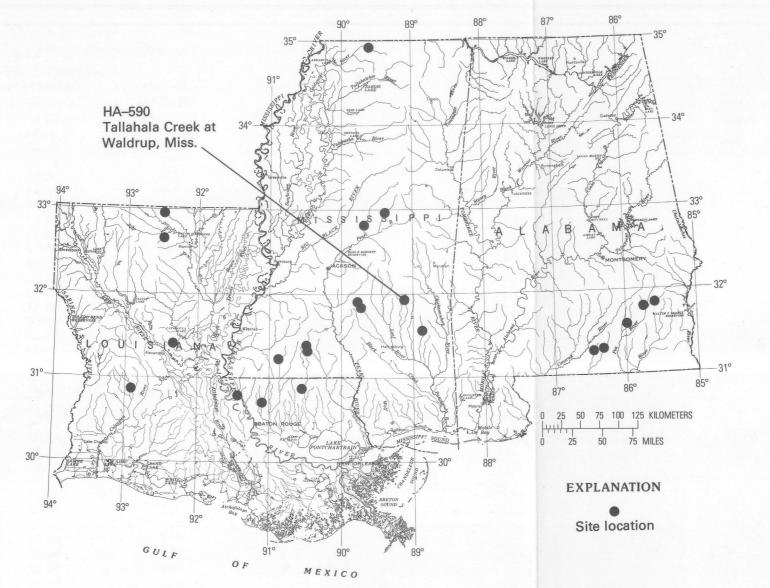
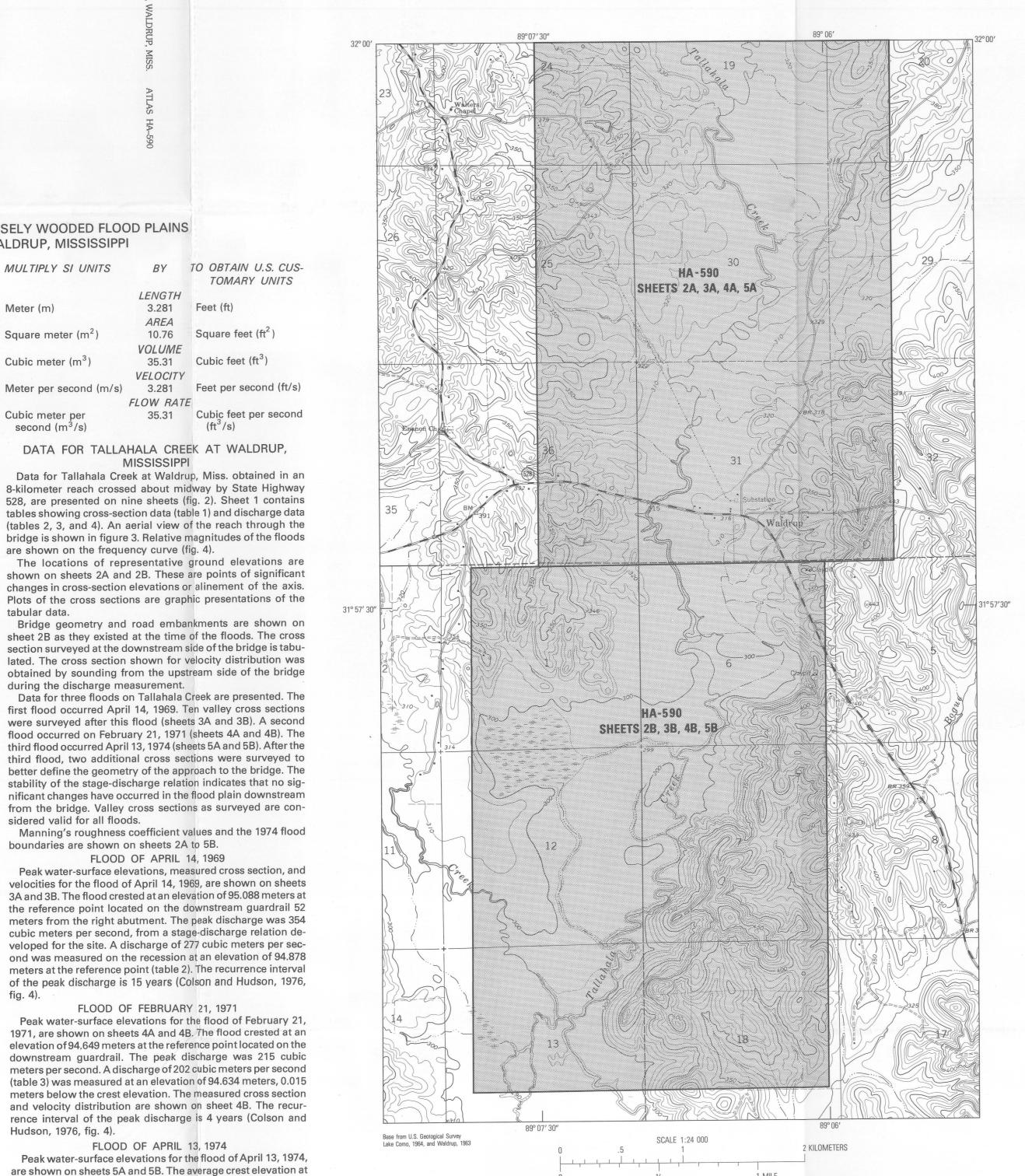
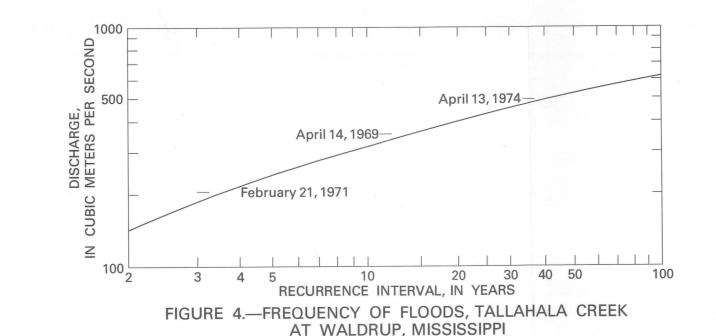




FIGURE 1.—INDEX MAP OF STUDY SITES IN THE BRIDGE BACKWATER INVESTIGATION PROJECT, ALABAMA, LOUISIANA, AND MISSISSIPP

Prepared in cooperation with the DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

STATION (METERS)

STATION

(METERS)

90.95

90.83

90.83

90.80

90.77

90.74

90.62

90.59

90.56

90.56

90.50

90.62

90.50

90.43

90.46

90.53

90.59

90.53

90.53

90.53

90.40

90.34

90.13

89.40

88.64

88.91

90.13

90.43

89.95

90.22

90.74

91.50

91.53

91.93

92.60

GROUND SURFACE

ELEVATION

(METERS)

93.30

92.48

91.74

91.65

91.81

91.59

92.05

92.02

92.02

92.08

92.14

92.11

92.11

92.14

91.71

89.92

89.64

89.37

88.73

88.57

88.39

89.09

89.28

89.64

89.89

91.59

92.35

91.74

91.96

91.93

91.78

91.38

91.07

91.38

91.99

92.20

92.26

92.38

92.38

92.29

92.08

91.96

92.17

92.23

92.20

92.17

92.11

92.05

91.78

92.02

91.90

91.84

CROSS SECTION 3

1020

1037

1052

1082

1092

1097

1118

1123

1128

1140

1159

1189

STATION

(METERS)

226

233

254 270

328

345

356

370

427

476

DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION AND THE MISSISSIPPI STATE HIGHWAY DEPARTMENT								HYDROLOGIC INVESTIGATIONS ATLAS HA-590 (SHEET 1)				
			S-SECTION DATA FOR		REEK AT WALDRUP, I			TABLE 2.—	-DISCHARGE	MEASUREME	ENT OF APRIL 14, P, MISS. (WAT	1969, OF TAL-
CROS	S SECTION 1	CROSS SE	ECTION 3 (Cont.)	BRIDGE S	ECTION (Cont.)		SECTION 9	FLEVA	TION=94.87	8 METERS). T	OTAL DISCHARG	E=277 CUBIC
Ontoo	GROUND SURFACE	508	91.81	26	90.92		GROUND SURFACE ELEVATION		RS PER SECO			
ATION	ELEVATION	528	91.90	28 30	90.37 90.31	STATION (METERS)	(METERS)				OBOED!/ATION	VELOCITY
ETERS)	(METERS)	547 567	91.78 91.68	32	90.43	0	99.06	STATION (METERS)	DEPTH (METERS)	ANGLE (DEGREES)	OBSERVATION DEPTH ¹	VELOCITY (METERS PER
0 41	92.51 91.14	584	91.23	34	90.28	32	100.13	(METERS)	(IVIETERS)	(DEGREES)	DEFIN	SECOND)
110	90.04	609	91.38	36	90.56	44 87	101.01 101.28	1.2	0.0	0	0.0	0.0
115	90.40	631 646	91.68 91.62	38	90.56 90.83	118	100.22	3.0	0.98	0	0.6	0.272
124 145	90.62 90.53	650	91.35	44	91.56	134	99.12	9.1	1.98	14	0.2 0.8	1.643 1.430
183	90.71	653	91.01	47	91.93	143	98.24 97.26	15.2	2.44	11	0.2	1.893
190	90.71	656 659	90.68 90.68	50 56	92.29 92.93	156 171	96.19				0.8	1.228
215	90.71	663	89.76	59	92.93	194	95.34	21.3	2.13	0	0.2	1.228 0.811
245 269	90.74 90.68	667	90.07	62	93.06	206	94.98	27.4	2.07	0	0.8 0.2	0.652
277	90.68	670	90.68	71	93.06	227 239	94.73 95.52	27.4	2.07		0.8	0.503
289	90.59	676 682	91.47 91.99	77 90	93.12 93.15	242	94.21	36.6	1.95	0	0.2	0.338
292	90.37 88.64	688	92.60	96	93.02	247	94.64	45.7	1.05	0	0.8	0.323 0.524
297 298	87.48	694	92.81	99	92.93	256	94.95	45.7	1.95	U	0.8	0.381
300	86.87	718	92.75	105	92.90	274 280	95.40 95.25	54.9	1.83	0	0.2	0.173
302	86.87	734 745	92.63 92.72	120 126	92.81 92.69	286	94.82				0.8	0.090
304	87.36 87.81	765	93.15	132	92.51	288	94.31	64.0	1.74	0	0.2 0.8	0.637 0.503
305 308	88.15	778	93.33	135	92.51	292	93.91	73.2	1.71	0	0.8	0.722
311	88.64	790	93.42	138	92.60	293 294	94.09 94.64	75.2	1.71		0.8	0.360
311	89.95	811 819	93.51 93.33	141 144	93.18 93.82	297	95.25	82.3	1.83	0	0.2	0.214
314	90.53	829	93.12	150	93.97	304	95.62	00.4	4.00	0	0.8	0.123 0.338
316 329	90.65 90.62	835	93.24	152	95.65	315	95.62	88.4	1.83	0	0.2 0.8	0.336
348	90.56	846	93.94	00000	CECTION C	342	95.62 95.62	94.5	1.83	0	0.2	0.448
386	90.53	846 858	93.91 94.91	CROSS	SECTION 6	363 392	95.02	0			0.8	0.491
409	90.22	000	34.31	CTATION	GROUND SURFACE ELEVATION	408	95.46	100.6	2.44	19	0.2	1.643 1.228
434 456	90.22 90.22	CROSS	S SECTION 4	STATION (METERS)	(METERS)	425	95.52	106.7	3.23	19	0.8 0.2	1.317
469	90.22		GROUND SURFACE	0	95.22	436 440	95.37 94.91	100.7	3.23	10	0.8	1.228
484	90.16	STATION	ELEVATION	40	95.86	442	93.88	109.7	4.27	23	0.2	0.924
496	90.13 90.13	(METERS)	(METERS) 95.95	70	96.26 96.26	442	92.66	110.0	4.00	23	0.8	0.884 1.228
507 522	89.92	31	94.58	79 79	94.85	443	92.05	112.8	4.08	23	0.8	0.969
528	90.16	84	93.60	99	94.85	445 446	91.93 92.05	115.8	4.57	23	0.2	1.149
539	90.10	115	93.21	137	93.82	450	92.35				0.8	0.637
547	90.10 90.10	174 212	92.84 92.60	152	93.79 93.88	452	92.51	118.9	4.33	16	0.2 0.8	1.079 0.829
559 573	90.13	214	92.23	186 211	93.79	454	92.96	121.9	4.51	11	0.2	0.930
592	90.04	220	92.57	215	93.76	455 458	94.43 95.13	121.0			0.8	0.994
609	89.95	233	92.63	218	93.76	461	95.65	125.0	4.11	0	0.2	0.799
630	89.85 89.82	290 294	92.57 92.05	223	93.66 93.91	465	95.55	100.0	4 1 1	0	0.8 0.2	0.969 1.100
638 642	89.85	297	91.41	250 269	93.79	484	95.43	128.0	4.11	U	0.8	0.668
654	89.85	298	91.99	273	93.76	504 529	95.40 95.34	134.1	3.20	0	0.2	0.994
656	89.89	304	92.72	275	91.10	553	95.34				0.8	0.503
666	89.92	308 310	92.14 91.90	278	90.50	569	95.16	140.2	2.93	0	0.2 0.8	1.402 1.180
671 677	89.89 89.85	321	92.99	281 284	89.85 90.10	595	95.01	146.3	1.68	0	0.2	0.637
703	89.73	410	93.27	285	90.10	611 620	95.04 94.85	140.0	1.00		0.8	0.594
711	89.79	478	93.12	287	91.07	630	94.85	150.6	0.0	0	0.0	0.0
717	89.64	481 520	93.21 92.81	289	93.24	639	94.95	¹ Observation depth is	the ratio of the velocity ob	servation depth to the total de	epth of the station.	
724 737	89.82 89.76	530	92.45	302 319	93.42 93.42	650	94.64					
757	89.58	533	92.26	323	92.99	657 666	94.24 94.46	TABLE 3	-DISCHARGE	MEASUREM	ENT OF FEBRUA	RY 21, 1971, OF
769	89.37	536	91.65	334	92.93	675	94.76	TALL	AHALA CREE	K AT WALDE	RUP, MISS. (WA	TER-SURFACE
786	89.40 89.34	538 539	90.83 90.68	340	93.27	685	95.13	ELEV	ATION=94.63	34 METERS). T	OTAL DISCHAR	GE=202 CUBIC
803 811	89.09	540	91.59	375 387	92.96 92.81	690	94.15		RS PER SEC			
811	88.82	543	92.54	415	93.48	693 696	94.31 94.18	07471011	DEDT	ANICLE	ODCEDVATION	VELOCITY
819	88.82	547	92.42	445	93.42	699	94.58	STATION (METERS)	DEPTH (METERS)	ANGLE (DEGREES)	OBSERVATION DEPTH ¹	(METERS PER
828 828	88.82 89.12	548 559	92.45 93.12	455 470	93.42 92.87	703	94.88	(INIETEKS)	(INIE I EUS)	(DEGREES)	DELTIT	SECOND)
832	89.58	585	93.18	490	93.45	708	95.04	1.8	0.0	0	0.0	0.0
837	90.56	602	92.87	518	93.27	712 718	95.22 95.34	6.1	1.28	8	0.6	0.802
839	90.62	621	92.29	549	93.57	721	96.01	9.1	1.68	11	0.2	1.667
841	91.10 91.32	629 632	91.41 90.50	563 574	93.91 94.09	725	97.20	12.2	1.98	14	0.8 0.2	1.244 1.588
842 849	91.44	633	90.16	574 593	94.09	730	97.99	12.2	1.30	. 17	0.8	1.305
858	91.01	634	89.98	602	95.52	CROSS	S SECTION 10	15.2	2.19	11	0.2	1.189
863	90.83	635	89.82	611	96.13	3.1000	GROUND SURFACE		4.60	•	0.8	1.335
870 976	90.95	635	89.64 89.37	CDOCC	SECTION 7	STATION	ELEVATION	21.3	1.92	8	0.2 0.8	0.552 0.509
876 878	91.17 91.50	636 637	89.25	ChUSS	GROUND SURFACE	(METERS)	(METERS)	27.4	1.83	0	0.2	0.341
884	91.74	638	89.06	STATION	ELEVATION	0	98.66				0.8	0.256
		638	89.00	(METERS)	(METERS)	10	98.15 97.81	33.5	1.77	8	0.2	0.223
CROS	SS SECTION 2	639	89.12	0	96.32	18 26	97.41	20.6	1.68	8	0.8 0.2	0.149 0.497
TATION:	GROUND SURFACE	639 640	89.58 89.76	11	95.46	43	96.93	39.6	1.08	0	0.8	0.509
TATION	ELEVATION (METERS)	641	89.95	21	94.55	51	96.65	45.7	1.71	8	0.2	0.137
IETERS)	(METERS) 92.69	641	90.16	33 38	93.73 93.70	62	96.59				0.8	0.113
0 55	92.20	642	90.50	52	93.21	79 101	96.47 96.23	51.8	1.62	8	0.2 0.8	0.509 0.405
61	91.32	644 647	92.72 92.72	53	93.21	114	95.95	57.9	1.52	0	0.6	0.378
70	91.26	658	92.96	54	92.32	126	96.26	64.0	1.49	180	0.6	0.119
72 74	88.94 88.36	665	93.09	57 58	92.35 93.12	130	96.47	70.1	1.58	0	0.2	0.341
77	88.24	672	93.30	94	93.09	147 161	96.53 96.44	70.0	4.50	11	0.8	0.226 0.649
70	99.49	681	93.15	135	93 18	101	00.77	76.2	1.58	11	0.2	0.043

93.18 96.38 93.09 0.369 88.97 93.24 96.07 0.171 93.21 1.55 82.3 93.27 89.43 96.16 0.140 92.96 90.89 93.27 96.35 0.387 92.66 1.55 88.4 93.36 90.68 96.35 0.311 93.39 91.38 93.15 96.35 0.250 1.52 91.29 93.45 96.29 0.658 93.06 100.6 2.07 93.45 90.92 96.44 1.052 92.99 93.54 91.10 96.23 1.551 92.96 106.7 2.83 93.66 91.32 96.53 0.765 92.60 93.33 90.59 93.79 96.47 1.189 3.35 109.7 93.39 90.95 96.44 1.311 93.66 93.48 91.41 1.216 3.93 94.18 112.8 90.59 93.73 95.55 1.216 94.64 93.85 90.62 94.49 1.244 94.82 115.8 4.02 91.17 92.69 94.18 1.052 94.85 91.01 90.53 94.03 0.914 94.76 4.27 118.9 89.98 90.95 94.40 1.030 94.46 93.48 91.35 95.80 94.31 121.9 4.21 93.88 91.01 96.35 0.732 90.95 93.85 96.50 0.856 125.0 4.24 93.76 91.10 96.35 0.732 94.24 93.57 91.14 96.32 0.576 94.21 4.42 0.2 128.0 93.45 90.95 96.44 0.472 93.79 93.60 90.95 96.65 0.588 93.57 3.02 0.2 132.6 91.04 96.44 0.433 93.24 0.8 90.98 92.84 95.22 0.689 3.02 0.2 137.2 90.95 93.27 95.04 0.689 92.51 93.51 90.95 95.19 0.856 92.72 140.2 2.77 90.92 93.33 96.10 93.06 93.51 90.86 96.26 1.817 93.27 144.8 2.23 90.77 96.26 1.305 93.91 93.54 96.47 0.576 97.02 148.4 93.21 90.43 93.18 150.9 90.74 92.84 96.68 10bservation depth is the ratio of the velocity observation depth to the total depth of the station. 93.27 90.89 96.13 CROSS SECTION 5 628 93.39 90.92 94.12

92.93

93.54

94.12

96.16

96.53

96.50

95.98

96.29

95.65

95.34

95.71

95.77

96.59

97.60

98.27

99.15

93.18

92.57

93.06

93.76

95.13

96.32

GROUND SURFACE

ELEVATION

(METERS)

97.60

96.19

94.61

94.67

94.55

93.85

94.64

94.43

94.15

94.31

94.15

94.21

94.06

94.27

94.27

94.34

93.97

94.31

94.18

94.18

94.24

94.18

94.18

94.00

94.43

94.18

94.18

94.12

94.06

94.21

93.82

94.12

94.27

94.00

93.24

93.70

92.75

92.17

89.98

91.68

94.06

94.09

94.24

94.09

93.94

94.15

93.91

94.06

94.21

93.88

93.51

93.06

92.60

92.87

93.51

94.52

94.58

94.40

94.37

94.18

94.37

94.40

94.24

94.43

94.18

93.54

94.06

93.82

94.27

94.27

94.12

94.24

94.12

94.27

94.09

94.24

94.61

95.16

95.68

96.19

CROSS SECTION 8

774

STATION

(METERS)

190

208

226

239

273

308

332

353

430

460

474

479

483

493

518

575

584

595

606

614

630

643

657

684

691

734 740

753 767

796

847

853

858

GROUND SURFACE

ELEVATION

(METERS)

94.76

94.67

93.63

93.36

94.34

93.48

93.79

93.70

93.88

93.88

93.70

93.33

93.15

92.87

92.17

91.35

91.90

93.24

93.33

93.24

93.12

93.12

93.15

93.30

92.63

90.53

90.31

90.13

90.10

90.01

89.70

89.70

89.40

89.15

89.18

89.12

89.25

89.64

89.89

90.59

91.41

92.23

92.96

92.60

93.12

93.51

93.39

92.72

93.18

93.54

93.27

92.87

92.84

92.38

92.08

92.42

92.87

92.38

92.08

92.69

92.72

92.60

92.51

92.81

93.06

92.99

93.30

92.99

92.48

92.51

92.78

93.48

94.67

95.74

GROUND SURFACE

ELEVATION

(METERS)

95.65

94.18

93.76

92.57

92.23

91.93

91.90

91.53

91.50

91.38

BRIDGE SECTION

STATION

(METERS)

243

253

266

299

328

329

334

335

338

339

339

400

479

514

527

538

544 547

570

576 587

605

618

STATION

(METERS)

TABLE 4.—DISCHARGE MEASUREMENT OF APRIL 6, 1964, OF TAL-LAHALA CREEK AT WALDRUP, MISS. (WATER-SURFACE ELEVATION=95.613 METERS). FLOW THROUGH BRIDGE=534 CUBIC METERS PER SECOND, FLOW LEFT OF BRIDGE=57 CUBIC METERS PER SECOND, AND TOTAL DISCHARGE=591 CUBIC METERS PER SECOND.

CODIC	WILTEROTE	III OLOGIAD.		
STATION (METERS)	DEPTH (METERS)	FLOW THROUGH ANGLE (DEGREES)	I BRIDGE OBSERVATION DEPTH ¹	VELOCITY (METERS PER SECOND)
0.0 3.0	0.0 1.52	0 180	0.0	0.0 0.436 0.512
9.1	2.29	0	0.8 0.2	0.567 1.170
15.2	3.35	25	0.8	2.396 2.234
21.3	3.05	25	0.8 0.2	2.054
27.4	2.90	23	0.8 0.2	1.798 1.798
33.5	2.87	11	0.8 0.2	1.679 0.786
39.6	2.80	0	0.8 0.2	0.631 0.963
45.7	2.74	0	0.8 0.2	1.100 0.314
51.8	2.68	0	0.8 0.2	0.408 0.805
57.9	2.59	0	0.8 0.2	0.591 1.125
64.0	2.59	0	0.8 0.2	0.768 1.527
76.2	2.68	0	0.8	1.125 1.079
82.3	2.74	0	0.8 0.2	0.546 1.146
88.4	2.90	8	0.8 0.2	0.604 0.988
94.5	3.05	11	0.8	0.591 1.600
100.6	3.66	0	0.8 0.2	1.600 1.170 1.402
106.7	4.27	0	0.8 0.2	0.988 1.170
112.8	4.88	0	0.8 0.2	0.988 0.786
118.9	4.91	0	0.8 0.2 0.8	0.780 0.920 0.942
125.0	4.63	0	0.2	1.314 0.942
131.1	4,27	0	0.8 0.2	1.225 1.198
137.2	3.96	0	0.8 0.2 0.8	2.015 2.015
143.3	3.20	25	0.8 0.2 0.8	1.344 2.015
150.6 152.1	0.94 0.0	180	0.6 0.0	0.619 0.0
		BRIDGE		
STATION (METERS)	DEPTH (METERS)	ANGLE (DEGREES)	OBSERVATION DEPTH ¹	VELOCITY (METERS PER SECOND)
-487.7 -408.4 -373.4 -344.4 -304.8 -262.1 -216.4 -188.4 -160.0 -121.9 -83.8 -42.7 -11.0	0.0 0.24 0.29 0.27 0.27 0.24 0.32 0.40 0.29 0.32 0.18 0.09 0.09	0 0 0 53 66 66 8 18 53 45 53	0.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	0.0 0.119 0.640 0.732 0.814 0.762 0.762 0.701 0.911 1.021 0.890 0.716 0.521

10bservation depth is the ratio of the velocity observation depth to the total depth of the station.

INTERIOR—GEOLOGICAL SURVEY, RESTON, VA.—1978—W78275

For sale by Branch of Distribution, U.S. Geological Survey 1200 South Eads Street, Arlington, VA 22202 and Branch of istribution, U.S. Geological Survey, Box 25286, Federal

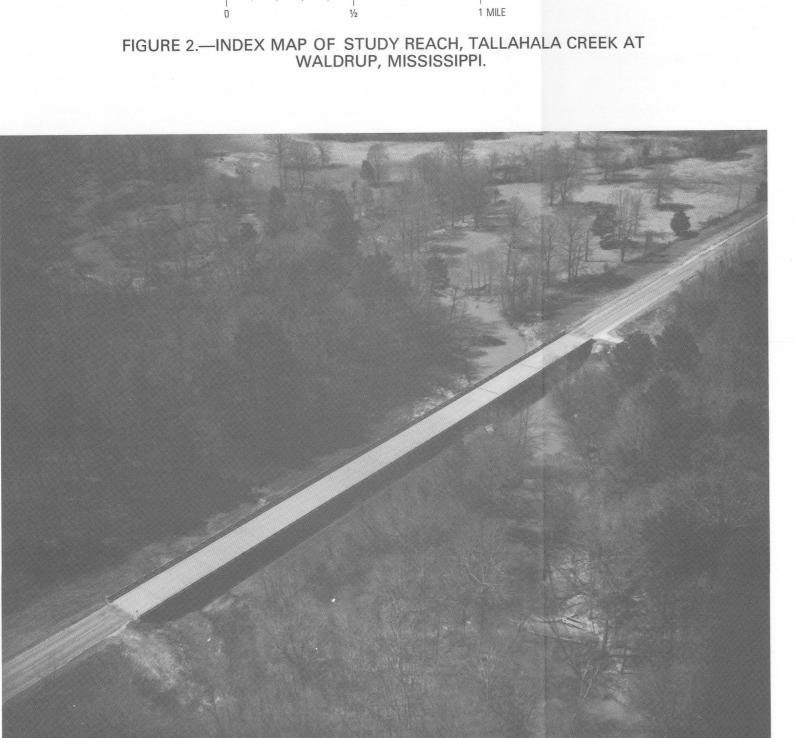


FIGURE 3.—AERIAL VIEW LOOKING DOWNSTREAM AT BRIDGE ON STATE HIGHWAY 528 AT WALDRUP, MISSISSIPPI, MARCH 22, 1978.