DEPARTMENT OF THE INTERIOR

UNITED STATES GEOLOGICAL SURVEY

BACKWATER AT BRIDGES AND DENSELY WOODED FLOOD PLAINS, BUCKHORN CREEK NEAR SHILOH, ALABAMA

By C. O. Ming, B. E. Colson, and George J. Arcement

Prepared in cooperation with the DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION ALABAMA STATE HIGHWAY DEPARTMENT

HYDROLOGIC INVESTIGATIONS ATLAS Published by the U.S. Geological Survey, 1979

BACKWATER AT BRIDGES AND DENSELY WOODED FLOOD PLAINS BUCKHORN CREEK NEAR SHILOH, ALABAMA

INTRODUCTION

New techniques for predicting water-surface profiles needed in the design of economical, structurally sound, and environmentally compatible stream crossings, are under investigation. The investigation has accelerated with the advent of digital computers capable of analyzing large quantities of data. Among the techniques is the development of two-dimensional (2-D) digital models. Field data are essential for development and evaluation of these techniques for predicting water-surface profiles. This atlas is one of a series that provide a wide range of field data.

Since 1969 the U.S. Geological Survey has been collecting backwater data where wide, densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This work was done in cooperation with the Federal Highway Administration Department of Transportation, the Alabama State Highway Department, the Louisiana Department of Transportation and Development, and the Mississippi State Highway Department. The objective of this cooperative project is to present the data in a format conducive to the development of improved models for predicting hydraulic responses of flow at highway crossings of streams in complex hydrologic and geographic settings.

Backwater data were obtained at 22 sites for 35 floods; that is, 11 sites had 1 flood each; 9 sites, 2 floods each; and 2 sites, 3 floods each. Analysis of data (Schneider and others, 1976) showed that backwater and discharge at these sites computed by methods presently in use, would be inaccurate. The floodflow data are unique in the range and detail in which information was collected and provide a base for evaluating digital models relating to open-channel flow.

The data sites (fig. 1) are listed below. This atlas shows flood data obtained on Buckhorn Creek near Shiloh, Ala., one of 22 sites plotted in figure 1:

HYDROLOGIC INVESTIGATIONS ATLAS NUMBER

HYDROLOGIC INVESTIGATIONS ATLAS NOW	IDLI
ALABAMA	
Buckhorn Creek near Shiloh H	A-607
Pea Creek near Louisville	608*
Poley Creek near Sanford	609
Yellow River near Sanford	610*
Whitewater Creek near Tarentum	611
LOUISIANA	
Alexander Creek near St. Francisville H	A-600*
Beaver Creek near Kentwood	601*
Comite River near Olive Branch	602
Cypress Creek near Downsville	603*
Flagon Bayou near Libuse	604
Little Bayou de Loutre near Truxno	605*
Tenmile Creek near Elizabeth	606*
MISSISSIPPI	
Pogue Chitto poor Johnston Station	Δ_591

Tenmile Creek near Elizabeth	000
MISSISSIPPI	
Bogue Chitto near Johnston Station HA	-591
Bogue Chitto near Summit	592
Coldwater River near Red Banks	593*
Lobutcha Creek at Zama	594
Okatoma Creek east of Magee	595
Okatoma Creek near Magee	596
Tallahala Creek at Waldrup	590
Thompson Creek near Clara	597*
West Fork Amite River near Liberty	598*
Yockanookany River near Thomastown	599*

* In press

DESCRIPTION OF DATA TYPE OF DATA

Data collected at all study sites consist of (1) depths, velocities, and discharges measured through the bridge openings, and (2) peak water-surface elevations along the highway embankment and along cross sections. A minimum of seven valley cross sections were surveyed at approximately one valley-width intervals in the vicinity of the bridge at each site. Locations of the cross sections were alined perpendicularly to the assumed direction of flow. Cross sections were extended to intersect the edge of the valley at equal water-surface elevations. Surveying procedures described in the U.S. Geological Survey Techniques of Water-Resources Investigations series (Matthai, 1967; Benson and Dalrymple, 1967) were followed.

HIGH-WATER MARKS

Water-surface elevations were determined from high-water marks identified along the cross sections and the edges of the valley after each flood. During peak discharge measurements, water-surface elevations were marked with standard surveying stakes along the upstream and downstream sides of the highway embankment. For some floods additional high-water marks were identified in the valley adjacent to the bridge to define in detail the water surface in the approach and exit reaches.

BRIDGE GEOMETRY Detailed bridge geometry was obtained at each site. The

bridge cross section was surveyed at the most contracted section. Piers, spur dikes, wingwalls, abutment slopes, and other petinent geometry were measured. MANNING'S ROUGHNESS COEFFICIENT Schneider and others (1976) used composite Manning's

roughness coefficient values of n where frequent changes in roughness occurred. In their study, composite values of n were verified by matching step back-water computations of the water surface with actual water-surface profiles for measured discharges. The range of *n* values used in this report is based on values used by Schneider and others (1976). Roughness varies from open fields to dense forests.

Roughness values or ranges of roughness values in different parts of the flood plain are shown on the maps. The values shown are based on water depth. The high value is the value where water depth is less than 0.6 meter and the low value applies where water depth is greater than 1.0 meter. A linear relation of roughness to water depth is assumed for water depths between 0.6 and 1.0 meter.

PRESENTATION OF DATA

The data are presented on topographic maps enlarged from standard 1:24,000 (or 1:62,500) scale Geological Survey topographic maps which comply with National Map Accuracy Standards. Accuracy limitations of the base maps are retained in the enlargements. Although positions may be scaled closely on the enlargements, they are not defined with greater accu-

racy than positions on the base maps. Ground elevations are placed adjacent to solid squares. Elevations of floodmarks are indicated by numerical values adjacent to solid triangles. Floodmark elevations for separate floods are shown on separate sheets. Bridge geometry and road-embankment dimensions are shown with brief notations

of pier spacing and configuration. In addition to the data points shown on the maps, discharge measurements of selected floods, plots of cross sections, and velocity distribution diagrams are shown. Cross-section elevations are tabulated to define stream channels and flood-plain features in greater detail. Each cross section is referred to a zero station established at the extreme left edge (facing downstream) of the valley.

All elevations presented in this report are referred to National Geodetic Vertical Datum of 1929 (NGVD).

FLOOD FREQUENCY Flood-frequency relations derived using techniques described in "Floods in Alabama" (Hains, 1973) are presented

INTERNATIONAL SYSTEM OF UNITS (SI) The International System of Units (SI) is used throughout this report. All data were measured in the U.S. customary units and converted to SI units. Ground elevations which were originally determined to the nearest tenth of a foot are rounded to the nearest 0.01 meter. Water-surface elevations which were surveyed to hundredths of a foot are rounded to millimeters. The same criteria apply to all other dimensions, except contour elevations which are shown to the nearest tenth of a meter.

The following factors may be used to convert SI units to the

U.S. customary units:

Cubic meter per

second (m³/s)

MULTIPLY SI UNITS	BY	TO OBTAIN U.S. CUSTOMARY UNITS	
Meter (m)	<i>LENGTH</i> 3.281	Feet (ft)	
Square meter (m²)	AREA 10.76	Square feet (ft²)	
Cubic meter (m³)	<i>VOLUME</i> 35.31	Cubic feet (ft³)	
Meter per second (m/s)	VELOCITY 3.281	Feet per second (ft/s)	

FLOW RATE

DATA FOR BUCKHORN CREEK NEAR SHILOH, ALABAMA

Cubic feet per second

Base from U.S. Geological Survey

 (ft^3/s)

Data for Buckhorn Creek near Shiloh, Ala., obtained in a 3-kilometer reach crossed about midway by State Highway 130, are presented on four sheets (fig. 2). Sheet 1 contains tables showing cross-section data (table 1) and discharge data (table 2). An aerial view of the reach upstream from the bridge is shown in figure 3. Relative magnitudes of the floods are shown on the frequency curve (fig. 4).

The locations of representative ground elevations are

shown on sheet 2. These are points of significant changes in

cross-section elevations and alinement of the axis. Stationing along cross sections was projected along straight lines perpendicular to the flow. Plots of the cross sections are graphic presentations of the tabular data. Bridge geometry and road embankments are shown on sheet 2 as they existed at the time of the floods. The cross section surveyed at the downstream side of the bridge is tabulated. The cross section shown for velocity distribution was

obtained by sounding from the upstream side of the bridge during the discharge measurement. Data for two floods on Buckhorn Creek are presented. The first flood occurred March 2, 1972. Nine valley cross sections were surveyed after this flood (sheet 3). A second flood occurred on December 21, 1972 (sheet 4). The stability of the stage-discharge relation indicates that no significant changes

Valley cross sections as surveyed are considered valid for both Manning's roughness coefficient values and the 1972 flood boundaries are shown on sheets 2-4.

have occurred in the flood plain downstream from the bridge.

FLOOD OF MARCH 2, 1972 Peak water-surface elevations, measured cross section, and velocities for the flood of March 2, 1972, are shown on sheet 3. The flood crested at an elevation of 97.385 meters at the reference point located on the downstream guardrail 67 meters from the left abutment. The crest was determined from highwater marks located at each bridge abutment. The peak discharge was 63.7 cubic meters per second, from a stagedischarge relation developed for the site. The discharge was measured three times on the recession with 55.8, 43.0, and 25.3 cubic meters per second at elevations of 97.350, 97.106, and 96.847 meters, respectively (table 2). The recurrence interval of the peak discharge is 6 years (Haines, 1973). See figure 4.

FLOOD OF DECEMBER 21, 1972 Peak water-surface elevations for the flood of December 21, 1972, are shown on sheet 4. The flood crested at an elevation of 97.917 meters at the reference point located on the downstream guardrail. The peak discharge was 118 cubic meters per second. A discharge of 117 cubic meters per second was measured at an elevation of 97.914 meters, 0.003 meters below the crest elevation (table 2). The measured cross section and velocity distribution are shown on sheet 4. The recurrence interval of the peak discharge is 28 years (Haines, 1973). See

SUMMARY

figure 4.

Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated that backwater and discharges computed by standard indirect methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on Buckhorn Creek near Shiloh, Ala. Water depths, velocities, and discharges through bridge openings on Buckhorn Creek near Shiloh, Ala., for floods of March 2, 1972, and December 21, 1972 were measured, together with peak water-surface elevations along embankments and along cross sections. Manning's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-

ADDITIONAL INFORMATION Other information pertaining to floods in Alabama,

Louisiana, and Mississippi may be obtained at the offices of the U.S. Geological Survey listed below: U.S. Geological Survey

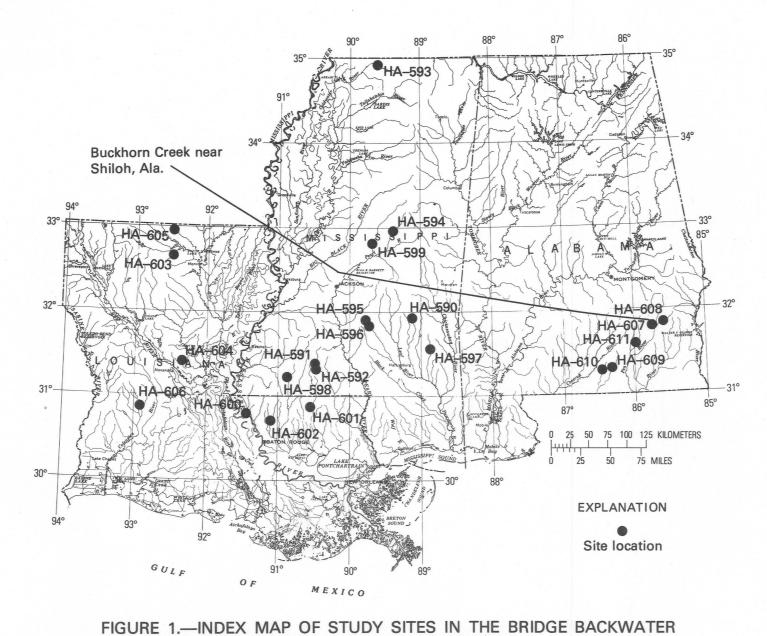
Room 202, Oil and Gas Board Building (P.O. Box V) University, Alabama 35486 U.S. Geological Survey 6554 Florida Boulevard (P.O. Box 66492) Baton Rouge, Louisiana 70896 U.S. Geological Survey

frequency relations are shown on graphs.

430 Bounds Street Jackson, Mississippi 39206

SELECTED REFERENCES Barnes, H. H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geol. Survey Water Supply Paper 1849,

Benson, M. A., and Dalrymple, T., 1967, General field and office procedures for indirect discharge measurements: U.S. Geol. Survey Techniques Water-Resources Inv., book 3, chap. Al,


Bradley, J. N., 1970, Hydraulics of bridge waterways: Federal Highway Admin., Hydraulic Design Ser. No. 1, 111 p. Colson, B. E., and Hudson, J. W., 1976, Flood frequency of Mississippi streams: Mississippi State Highway Dept., 34 p. Hains, C. F., 1973, Floods in Alabama, magnitude and frequency: Alabama Highway Dept., 37 p.

Hedman, E. R., 1964, Effects of spur dikes on flow through

constrictions: Am. Soc. Civil Engineers Proc., Jour. Hyd-

raulics Div., v. 91, no. HY4, July 1965, p. 155-165. Matthai, H. F., 1967, Measurement of peak discharge at width contractions by indirect methods: U.S. Geol. Survey Techniques Water-Resources Inv., book 3, chap. A4, 44 p. Neely, B. L., Jr., 1976, Floods in Louisiana, magnitude and frequency, 3d ed.: Louisiana Dept. Highways, 340 p. Schneider, V. R., Board, J. W., Colson, B. E., Lee, F. N., and Druffel, L., 1976, Computation of backwater and discharge at

width constrictions of heavily vegetated flood plains: U.S. Geol. Survey Water-Resources Inv. 76-129, 64 p. U.S. Water Resources Council, 1977, Guidelines for determining flood flow frequency: Washington, D.C., U.S. Water Resources Council Bull. 17A, 163 p.

INVESTIGATION PROJECT, ALABAMA, LOUISIANA, AND MISSISSIPPI.

31°47′30″

FIGURE 2—INDEX MAP SHOWING STUDY REACH, BUCKHORN CREEK NEAR SHILOH, ALABAMA

SCALE 1:24 000

85°42'30"

2 KILOMETERS



FIGURE 3—AERIAL VIEW LOOKING UPSTREAM AT BRIDGE ON STATE HIGHWAY 130. BUCKHORN CREEK NEAR SHILOH, ALABAMA

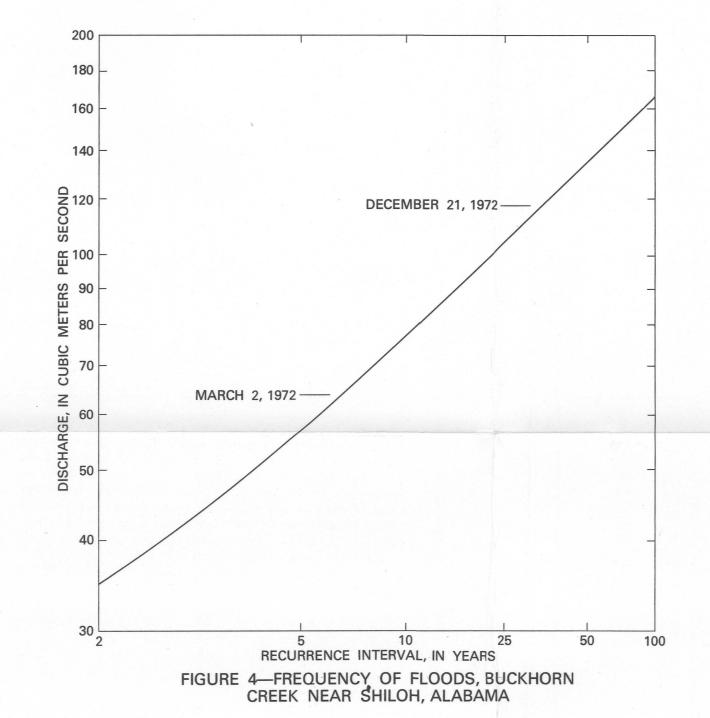


TABLE 1—VALLEY CROSS SECTION DATA FOR BUCKHORN CREEK NEAR SHILOH, ALABAMA. ZERO STATION IS AT THE LEFT EDGE OF THE VALLEY (FACING DOWNSTREAM).

				ADOTT	MEIAL (L'ÚCHA	a powinou	(LAIVI)	
CROS	SS SECTION 1	BRIDG	SE SECTION					
CHOC		DITIDO	GROUND SURFACE					
CTATION	GROUND SURFACE	STATION	ELEVATION	DISCHARGE	MEASUREME	NT OF MARCH	1 2, 1972 BUCKHOR	N CREEK NEAR
STATION	ELEVATION			SHILOH	ΔΙ ΔΒΔΜΔ (W	ATER-SURFACE	ELEVATION=97.350	METERS) TOTAL
(METERS)	(METERS)	(METERS)	(METERS)			IC METERS PER		
0	97.24	0	97.79	DIOCHA	11GL-33.0 COD	IC WILTERO I LI	CECOND	
3	96.81	3	97.45					MEL COITM
6	95.93	5	96.87	STATION	DEPTH	ANGLE	OBSERVATION	VELOCITY
24	95.08	7	96.45	(METERS)	(METERS)	(DEGREES)	DEPTH1	(METERS PER
29	94.80	9	96.14					SECOND)
37	94.44	12	96.02	3.7	0.0	0	0.0	0.0
40	94.71	21	96.05	6.1	0.64	180	0.6	0.091
50	94.83	30	96.08				0.2	1.305
		37	96.14	9.1	1.22	31		
70	94.89						0.8	0.893
76	94.95	43	96.11	12.2	1.31	29	0.2	0.713
82	94.19	49	96.17				0.8	0.238
88	94.47	55	96.05	15.2	1.77	23	0.2	0.713
90	94.92	57	95.81				0.8	0.134
113	95.05	59	95.81	18.3	2.19	11	0.2	0.274
119	95.14	61	95.56				0.8	0.332
155	95.29	63	95.08	21.3	1.95	0	0.2	0.640
157	94.65	64	94.56	21.0	1.00	•	0.8	0.393
162	93.70	66	94.38	24.4	1.62	0	0.2	0.625
163	93.86	67	93.98	24.4	1.02	U		0.561
					4.04		0.8	
166	93.83	69	93.77	27.4	1.34	0	0.6	0.527
168	93.89	70	94.74	30.5	1.22	0	0.6	0.625
169	94.62	72	95.08	33.5	1.22	0	0.6	0.573
174	94.98	73	95.93	36.6	1.19	0	0.6	0.317
192	95.11	74	96.26	39.6	1.16	0	0.6	0.152
209	94.59	75	96.45	42.7	1.19	0	0.6	0.411
213	94.44	76	96.97	45.7	1.28	0	0.6	0.262
221	94.62	78	97.45	48.8	1.10	Ö	0.6	0.134
224	94.98	78	97.51				0.6	0.131
		70	07.01	51.8	1.19	0		
244	94.92			54.9	1.31	0	0.6	0.332
291	94.92	CROSS	S SECTION 6	57.9	1.49	0	0.2	0.655
299	95.11		GROUND SURFACE				0.8	0.360
305	95.35	STATION	ELEVATION	61.0	1.65	0	0.2	0.671
308	95.93						0.8	0.262
311	97.06	(METERS)	(METERS)	64.0	2.59	0	0.2	0.613
315	97.67	0	98.76	0 110	2.00		0.8	0.713
322	98.79	12	98.03	65.5	3.02	0	0.2	0.613
022	00.70	23	97.55	05.5	3.02	0	0.8	0.424
CROS	SS SECTION 2	27	97.30	07.4	0.00	0		0.856
01100		34	97.24	67.1	3.38	0	0.2	
	GROUND SURFACE	43	96.30				0.8	0.817
STATION	ELEVATION	52	96.54	68.6	3.51	11	0.2	1.006
(METERS)	(METERS)	104	96.63				0.8	0.936
0	97.55		96.39	70.1	2.26	23	0.2	0.799
8	97.48	126					0.8	1.006
26	96.78	134	96.08	71.6	2.13	31	0.2	0.762
30	96.39	143	96.48	71.0	2.10		0.8	0.728
34	96.26	152	96.33	73.2	1.43	31	0.2	0.686
46	95.84	154	96.11	13.2	1.43	31	0.8	0.573
		157	96.36	747	0.01	20		
67	95.53	159	96.30	74.7	0.91	36	0.6	0.875
81	95.81	171	96.30	77.1	0.0	0	0.0	0.0
99	95.26	177	96.26					
101	94.95	190	95.81					
104	94.56	197	95.29				1 2, 1972 BUCKHOF	
107	94.95	201	96.11	SHILOH	, ALABAMA (W.	ATER-SURFACE	ELEVATION=97.106	METERS) TOTAL
120	95.17			DISCHA	RGE=43.0 CUB	IC METERS PER	R SECOND	
123	94.95	216	96.45					
126	94.31	226	95.78	STATION	DEPTH	ANGLE	OBSERVATION	VELOCITY
130	94.95	230	96.26	(METERS)	(METERS)	(DEGREES)	DEPTH1	(METERS PER
139	95.41	233	95.53	(IVIETENS)	(IVIETERS)	(DEGREES)	DEFIL	
		235	95.53					SECOND)
145	95.35	244	96.30	4.6	0.0	0	0.0	0.0
154	95.02	253	96.42	9.1	0.88	31	0.6	1.116
158	94.68	277	97.03	12.2	1.07	29	0.6	0.341
165	94.56	283	97.55	15.2	1.43	23	0.2	0.323
169	94.98	287	98.00				0.8	0.128
175	95.26		99.16	18.3	1.83	11	0.2	0.384
189	95.29	299	33.10	10.0			0.8	0.323
190	94.98			21.2	1 60	0		
192	94.50	CDUCC	SECTION 7	21.3	1.68	U	0.2	0.613
	94.59	CHUSS				•	0.8	0.472
198			GROUND SURFACE	24.4	1.37	0	0.6	0.600
203	94.59	STATION	ELEVATION	27.4	1.07	0	0.6	0.539
206	94.95	(METERS)	(METERS)	30.5	0.91	0	0.6	0.613
207	95.35	0	99.19	33.5	0.91	0	0.6	0.628
213	95.38	18	97.85	36.6	0.85	0	0.6	0.506
229	95.59	21	97.79	39.6	0.91	0	0.6	0.482
242	95.66	23	97.61	42.7	0.94	0	0.6	0.643
252	05.91	23	37.01	4	0.04	_	0.0	0.454

268 96.69 283 96.57 288 96.66 97.27 95.50 95.90 96.78 **CROSS SECTION 3** 95.87 **GROUND SURFACE** 96.14 STATION **ELEVATION** 96.48 (METERS) (METERS) 96.08 98.15 95.72 97.45 95.87 101 96.14 96.02 109 96.20 121 95.96 95.62 122 123 95.78 95.81 108 95.90 96.02 95.78 125 96.69 152 96.78 160 95.84 146 96.63 192 95.90 149 96.39 207 95.62 152 96.60 223 95.93 96.57 238 95.78 202 97.33 210 97.85 244 94.28 218 98.34 245 94.80 244 101.63 247 95.26 **CROSS SECTION 8** 248 95.17 **GROUND SURFACE** 250 95.78 251 95.93 STATION **ELEVATION** 265 95.90 (METERS) (METERS) 280 95.99 100.90 299 95.90 99.07 95.75 314 98.61 323 95.93 98.09 332 95.99

96.72 343 97.03 347 97.03 53 97.33 351 97.39 97.06 96.45 96.14 96.42 **CROSS SECTION 4** 96.48 **GROUND SURFACE** 97.06 STATION **ELEVATION** 97.24 (METERS) (METERS) 97.12 98.55 97.03 97.82 107 96.72 97.30 114 117 96.69 97.09 24 97.03 123 97.15 96.90 135 97.09 73 96.23 146 96.90 116 96.23 165 97.06 158 96.33 176 97.09 168 177 96.57 195 96.08 178 96.57 198 96.02 180 97.21 95.05 206 180 96.97 209 95.08 184 97.15 215 201 96.97 96.14 226 226 96.60 238 96.02 226 227 96.81 244 97.00 247 95.08 236 97.00 248 95.47 249 97.03 97.00 276 96.20 294 96.81 299 96.20 296 96.69 311 96.30 299 97.15 323 97.09 320 97.24 329 97.33 344 354 96.81 347 97.36 96.94 363 97.00 367 97.18 363 96.63 373 98.09 97.42 366 378 98.79 100.11 CROSS SECTION 5 **GROUND SURFACE CROSS SECTION 9** STATION **ELEVATION**

GROUND SURFACE (METERS) (METERS) STATION **ELEVATION** 98.55 (METERS) (METERS) 12 97.82 99.68 97.30 98.58 21 97.21 98.37 30 97.03 97.73 97.00 97.39 71 96.90 120 126 186 241 97.51 107 97.15 97.51 96.63 169 97.55 184 96.63 97.58 186 96.81 290 328 97.88 189 96.84 98.22 192 96.72 344 370 98.37 194 96.54 98.55 210 96.69 396 98.61 229 96.69 427 98.92 238 96.20 99.22 245 96.08 250 96.17 256 96.17 262 96.11 274 95.81 280 96.20 294 96.02 299 95.08 306 94.77 308 95.41 320 96.33 340 96.51 347 96.20

352

364

369

372

390

411

418

421

424

425

427

428

433

95.90

96.20

96.36

96.30

96.51

96.57

96.60

96.94

96.90

97.06

97.21

97.45

98.31

103.03

TABLE 2—DISCHARGE MEASUREMENTS MARCH 2, MARCH 3, AND DECEMBER 21, 1972, BUCKHORN CREEK NEAR SHILOH ALABAMA. ZERO STATION IS AT THE LEFT EDGE OF THE LEFT ABUTMENT (FACING DOWNSTREAM)

ASUREMENT OF MARCH 2, 1972 BUCKHORN CREEK NEAR

STATION (METERS)	DEPTH (METERS)	ANGLE (DEGREES)	OBSERVATION DEPTH ¹	VELOCITY (METERS PI SECOND)
3.7 6.1 9.1	0.0 0.64 1.22	0 180 31	0.0 0.6 0.2	0.0 0.091 1.305
12.2	1.31	29	0.8 0.2	0.893 0.713
15.2	1.77	23	0.8 0.2	0.238 0.713
18.3	2.19	11	0.8 0.2	0.134 0.274
21.3	1.95	0	0.8 0.2	0.332 0.640
24.4	1.62	0	0.8	0.393 0.625
			0.8	0.561
27.4	1.34	0	0.6	0.527
30.5	1.22	0	0.6	0.625
33.5	1.22	0	0.6	0.573
36.6	1.19	0	0.6	0.317 0.152
39.6	1.16 1.19	0	0.6 0.6	0.411
42.7 45.7	1.19	0	0.6	0.262
48.8	1.10	0	0.6	0.134
51.8	1.19	0	0.6	0.131
54.9	1.31	0	0.6	0.332
57.9	1.49	0	0.2	0.655
37.0	1.40		0.8	0.360
61.0	1.65	0	0.2	0.671
			0.8	0.262
64.0	2.59	0	0.2	0.613
			0.8	0.713
65.5	3.02	0	0.2	0.613
			0.8	0.424
67.1	3.38	0	0.2	0.856 0.817
68.6	3.51	11	0.8 0.2	1.006
00.0	3.31	11	0.8	0.936
70.1	2.26	23	0.2	0.799
70.1	2.20	25	0.8	1.006
71.6	2.13	31	0.2	0.762
7 110	20		0.8	0.728
73.2	1.43	31	0.2	0.686
			0.8	0.573
74.7	0.91	36	0.6	0.875
77.1	0.0	0	0.0	0.0
DISCHARCE	MEAGIIDEME	NT OF MARCH	2, 1972 BUCKHOR	N CREEK NE
			ELEVATION=97.106	

(METERS)	(METERS)	(DEGREES)	DEPTH ¹	(METERS PER SECOND)		
4.6	0.0	0	0.0	0.0		
9.1	0.88	31	0.6	1.116		
12.2	1.07	29	0.6	0.341		
15.2	1.43	23	0.2	0.323		
13.2	1.45	23	0.8	0.128		
10.2	1 02	11	0.2			
18.3	1.83	11		0.384		
04.0	4.00	0	0.8	0.323		
21.3	1.68	0	0.2	0.613		
			0.8	0.472		
24.4	1.37	0	0.6	0.600		
27.4	1.07	0	0.6	0.539		
30.5	0.91	0	0.6	0.613		
33.5	0.91	0	0.6	0.628		
36.6	0.85	0	0.6	0.506		
39.6	0.91	0	0.6	0.482		
42.7	0.94	0	0.6	0.643		
45.7	0.94	0	0.6	0.451		
48.8	0.85	0	0.6	0.162		
51.8	0.91	0	0.6	0.311		
54.9	1.04	11	0.6	0.347		
57.9	1.22	25	0.2	0.482		
37.3	1.22	20	0.8	0.472		
61.0	1.37	25	0.2	0.494		
01.0	1.57	25	0.8	0.482		
62.5	1.68	31	0.2	0.674		
02.5	1.00	31	0.8	0.561		
64.0	2.44	36	0.2	0.674		
04.0	2.44	30	0.8	0.573		
CE E	2.87	36	0.8	0.820		
65.5	2.07	30				
07.4	0.00	00	0.8	0.552		
67.1	2.99	36	0.2	0.780		
			0.8	0.658		
68.6	2.96	36	0.2	0.658		
			0.8	0.658		
70.1	1.62	28	0.2	0.658		
			0.8	0.747		
73.2	0.91	0	0.6	0.600		
76.2	0.0	0	0.0	0.0		
DISCHARGE MEASUREMENT OF MARCH 3, 1972 BUCKHORN CREEK NEAR SHILOH, ALABAMA (WATER-SURFACE ELEVATION=96.847 METERS) TOTAL DISCHARGE=25.3 CUBIC METERS PER SECOND						
STATION	DEPTH	ANGLE	OBSERVATION	VELOCITY		
(METERS)	(METERS)	(DEGREES)	DEPTH ¹	(METERS PER		
(IVIL I LNS)	(IVIL I LING)	(DEGREES)	DEL IU.	(IVIETERS PER		

76.2	0.0	0	0.0	0.0
SHILOH	I, ALABAMA (W		3, 1972 BUCKHOF ELEVATION=96.847 SECOND	
STATION (METERS)	DEPTH (METERS)	ANGLE (DEGREES)	OBSERVATION DEPTH ¹	VELOCI (METERS SECON
5.2 9.1	0.0 0.73	0 31	0.0 0.6	0.0 0.613
12.2	0.76	29	0.6	0.235
15.2 18.3	1.22 1.65	23 11	0.6 0.2	0.104 0.268
21.3	1.37	0	0.8 0.2 0.8	0.219 0.384 0.259
24.4	1.10	0	0.6	0.393
27.4 30.5	0.85 0.70	0	0.6 0.6	0.442 0.347
33 5	0.70	0	0.6	0.460

12.2	0.76	29	0.6	0.235
15.2	1.22	23	0.6	0.104
18.3	1.65	11	0.2 0.8	0.268 0.219
21.3	1.37	0	0.2	0.213
			0.8	0.259
24.4	1.10	0	0.6	0.393
27.4	0.85	0	0.6	0.442
30.5	0.70	0	0.6	0.347
33.5	0.70	0	0.6	0.460
36.6 39.6	0.61 0.67	0	0.6	0.323
42.7	0.73	0	0.6 0.6	0.165 0.341
45.7	0.73	0	0.6	0.341
48.8	0.61	0	0.6	0.155
51.8	0.61	0	0.6	0.140
54.9	0.76	11	0.6	0.256
57.9	0.98	25	0.6	0.384
61.0	1.22	25	0.2	0.561
62.5	1.55	31	0.8 0.2	0.402 0.628
02.0	1.55	31	0.8	0.028
64.0	2.29	36	0.2	0.561
			0.8	0.433
65.5	2.59	36	0.2	0.506
			0.8	0.393
67.1	2.83	36	0.2	0.482
68.6	2.90	36	0.8 0.2	0.451 0.494
00.0	2.30	30	0.2	0.494
70.1	1.52	28	0.2	0.518
			0.8	0.573
71.6	1.58	11	0.2	0.539
			0.8	0.585
73.2	0.91	8	0.6	0.643
75.6	0.0	0	0.0	0.0
SHILOH, A	EASUREMENT LABAMA (WATI SE=117 CUBIC N	ER-SURFAC	BER 21, 1972 BUCKHOR E ELEVATION=97.914 N R SECOND	N CREEK N METERS) TO

SHILOH, A	ALABAMA (W		ER 21, 1972 BUCKHOI ELEVATION=97.914 SECOND	
STATION	DEPTH	ANGLE	OBSERVATION	VELOCITY

(METERS)	(METERS)	(DEGREES)	DEPTH ¹	(METERS PER SECOND)
0.0	0.0	0	0.0	0.0
1.5	0.15	0	0.6	0.671
3.0	0.30	0	0.6	2.012
4.6	0.85	0	0.6	2.012
6.1	1.22	0	0.6	1.564
7.6	1.52	0	0.6	1.753
9.1	1.83	19	0.2	1.253
			0.8	1.122
12.2	1.86	16	0.2	0.805
			0.8	0.631
15.2	2.41	11	0.2	0.844
			0.8	0.378
18.3	2.77	0	0.2	0.646
			0.8	0.604
21.3	2.44	0	0.2	0.604
4-322			0.8	0.567
24.4	2.10	0	0.2	0.735
			0.8	0.408
27.4	1.92	0	0.2	0.719
00.5	4.74		0.8	0.579
30.5	1.74	0	0.2	0.844
22.5	174	0	0.8	0.378
33.5	1.74	0	0.2	0.677
26.6	1.05	0	0.8	0.661
36.6	1.65	U	0.2 0.8	0.963 0.445
39.6	1.71	0	0.2	0.677
55.0	1.71	0	0.8	0.509
42.7	1.77	0	0.2	0.677
	1.77		0.8	0.515
45.7	1.80	0	0.2	0.485
			0.8	0.287
48.8	1.68	0	0.2	0.533
			0.8	0.256
51.8	1.71	0	0.2	0.567
			0.8	0.305
54.9	1.80	0	0.2	0.311
			0.8	0.509
57.9	2.01	0	0.2	0.805
24.0			0.8	0.677
61.0	2.29	0	0.2	0.899
04.0	0.44		0.8	0.396
64.0	3.14	0	0.2	0.786
GE E	2 54	0	0.8	1.170
65.5	3.54	U	0.2 0.8	0.844 1.122
67.1	3.78	0	0.2	1.012
07.1	3.70	0	0.8	1.253
68.6	3.99	0	0.2	1.170
	0.00		0.8	1.253
70.1	2.53	11	0.2	1.170
			0.8	1.430
73.2	2.16	11	0.2	1.283
			0.8	1.012
74.7	1.65	19	0.2	1.430
			0.8	1.100
76.2	0.79	0	0.6	0.0
78.0	0.0	0	0.0	0.0

Observation depth is the ratio of the velocity-observation depth to the total depth at the station.

For sale by Branch of Distribution, U.S. Geological Survey 1200 South Eads Street, Arlington, VA 22202 and Branch of Distribution, U.S. Geological Survey, Box 25286, Federal Center, Denver, CO 80225

INTERIOR—GEOLOGICAL SURVEY, RESTON, VA.—1979—W79046