By C. O. Ming, B. E. Colson, and George J. Arcement

Prepared in cooperation with the DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION and the ALABAMA STATE HIGHWAY DEPARTMENT

UNITED STATES GEOLOGICAL SURVEY

HYDROLOGIC INVESTIGATIONS ATLAS Published by the U.S. Geological Survey, 1979 W

BACKWATER AT BRIDGES AND DENSELY WOODED FLOOD PLAINS YELLOW RIVER NEAR SANFORD, ALABAMA

INTRODUCTION

New techniques for predicting water-surface profiles, needed in the design of economical, structurally sound, and environmentally compatible stream crossings, are under investigation. The investigation has accelerated with the advent of digital computers capable of analyzing large quantities of data. Among the techniques is the development of two-dimensional (2-D) digital models. Field data are essential for development and evaluation of these techniques for predicting water-surface profiles. This atlas is one of a series that provide a wide range of field data.

Since 1969 the U.S. Geological Survey has been collecting backwater data where wide, densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This work was done in cooperation with the Federal Highway Administration Department of Transportation, the Alabama State Highway Department, the Louisiana Department of Transportation and Development, and the Mississippi State Highway Department. The objective of this cooperative project is to present the data in a format conducive to the development of improved models for predicting hydraulic responses of flow at highway crossings of streams in complex hydrologic and geographic settings.

Backwater data were obtained at 22 sites for 35 floods; that is, 11 sites had 1 flood each; 9 sites, 2 floods each; and 2 sites, 3 floods each. Analysis of data (Schneider and others, 1976) showed that backwater and discharge at these sites computed by methods presently in use, would be inaccurate. The floodflow data are unique in the range and detail in which information was collected and provide a base for evaluating digital models relating to open-channel flow.

The data sites (fig. 1) are listed below. This atlas shows flood data obtained on Yellow River near Sanford, Ala., one of the 22 sites plotted in figure 1.

HYDROLOGIC INVESTIGATIONS ATLAS NUMBER ALABAMA

ALADAIVIA	
Buckhorn Creek near Shiloh	\ −607
Pea Creek near Louisville	608
Poley Creek near Sanford	609
Yellow River near Sanford	610
Whitewater Creek near Tarentum	611
LOUISIANA	
Alexander Creek near St. FrancisvilleHA	\ -600
Beaver Creek near Kentwood	601
Comite River near Olive Branch	602
Cypress Creek near Downsville	603
Flagon Bayou near Libuse	604
Little Bayou de Loutre near Truxno	605
Tenmile Creek near Elizabeth	606
MISSISSIPPI	
Bogue Chitto near Johnston Station	\-591
Bogue Chitto near Summit	592
Coldwater River near Red Banks	593
Lobutcha Creek at Zama	594
Okatoma Creek east of Magee	595
Okatoma Creek near Magee	596
Tallahala Creek at Waldrup	590
Thompson Creek near Clara	597
West Fork Amite River near Liberty	598
Yockanookany River near Thomastown *In press	599

DESCRIPTION OF DATA

TYPE OF DATA

Data collected at all study sites consist of (1) depths, velocities, and discharges measured through the bridge openings, and (2) peak water-surface elevations along the highway embankment and along cross sections. A minimum of six valley cross sections were surveyed at approximately one valley-width intervals in the vicinity of the bridge at each site. Locations of the cross sections were alined perpendicularly to the assumed direction of flow. Cross sections were extended to intersect the edge of the valley at equal water-surface elevations. Surveying procedures described in the U.S. Geological Survey Techniques of Water-Resources Investigations series (Matthai, 1967; Benson and Dalrymple, 1967) were followed.

HIGH-WATER MARKS
Water-surface elevations were determined from high-water marks identified along the cross sections and the edges of the valley after each flood. During peak discharge measurements, water-surface elevations were marked with standard surveying stakes along the upstream and downstream sides of the highway embankment. For some floods additional high-water marks were identified in the valley adjacent to the bridge to define in detail the water surface in the approach and exit

reaches. BRIDGE GEOMETRY Detailed bridge geometry was obtained at each si

Detailed bridge geometry was obtained at each site. The bridge cross section was surveyed at the most contracted section. Piers, spur dikes, wingwalls, abutment slopes, and other petinent geometry were measured.

MANNING'S ROUGHNESS COEFFICIENT
Schneider and others (1976) used composite Manning's roughness coefficient values of n where frequent changes in roughness occurred. In their study, composite values of n were verified by matching step back-water computations of the water surface with actual water-surface profiles for measured discharges. The range of n values used in this report is based on values used by Schneider and others (1976). Roughness

varies from open fields to dense forests.

Roughness values or ranges of roughness values in different parts of the flood plain are shown on the maps. The values shown are based on water depth. The high value is the value where water depth is less than 0.6 meter and the low value applies where water depth is greater than 1.0 meter. A linear relation of roughness to water depth is assumed for water

depths between 0.6 and 1.0 meter. PRESENTATION OF DATA

of pier spacing and configuration.

The data are presented on topographic maps enlarged from standard 1:24,000 (or 1:62,500) scale Geological Survey topographic maps which comply with National Map Accuracy Standards. Accuracy limitations of the base maps are retained in the enlargements. Although positions may be scaled closely on the enlargements, they are not defined with greater accu-

on the enlargements, they are not defined with greater accuracy than positions on the base maps.

Ground elevations are placed adjacent to solid squares. Elevations of floodmarks are indicated by numerical values adjacent to solid triangles. Floodmark elevations for separate floods are shown on separate sheets. Bridge geometry and road-embankment dimensions are shown with brief notations

In addition to the data points shown on the maps, discharge measurements of selected floods, plots of cross sections, and velocity distribution diagrams are shown. Cross-section elevations are tabulated to define stream channels and flood-plain features in greater detail. Each cross section is referred to a zero station established at the extreme left edge (facing downstream) of the valley.

DATUM All elevations presented in this report are referred to National Geodetic Vertical Datum of 1929 (NGVD).

FLOOD FREQUENCY
Flood-frequency relations derived using techniques described in "Floods in Alabama" (Hains, 1973) are presented graphically.

INTERNATIONAL SYSTEM OF UNITS (SI)

The International System of Units (SI) is used throughout this report. All data were measured in the U.S. customary units and converted to SI units. Ground elevations which were originally determined to the nearest tenth of a foot are rounded to the nearest 0.01 meter. Water-surface elevations which were surveyed to hundredths of a foot are rounded to millimeters. The same criteria apply to all other dimensions, except contour elevations which are shown to the nearest tenth of a meter. The following factors may be used to convert SI units to the

U.S. customary units:

Cubic meter per

second (m³/s)

MULTIPLY SI UNITS	BY	TO OBTAIN U.S. CUSTOMARY UNITS
	LENGTH	
Meter (m)	3.281	Feet (ft)
	AREA	
Square meter (m ²)	10.76	Square feet (ft ²)
	VOLUME	
Cubic meter (m³)	35.31	Cubic feet (ft³)
	VELOCITY	
Meter per second (m/s)	3.281	Feet per second (ft/s)
	FLOW RATE	

DATA FOR YELLOW RIVER NEAR SANFORD, ALA.

Data for Yellow River near Sanford, Ala., obtained in a
2-kilometer reach crossed about midway by a Covington
County road, are presented on four sheets (fig. 2). Sheet 1
contains tables showing cross-section data (table 1) and discharge data (table 2). An aerial view of the reach upstream
from the bridge is shown in figure 3. Relative magnitudes of

35.31

Cubic feet per second

the floods are shown on the frequency curve (fig. 4).

The locations of representative ground elevations are shown on sheet 2. These are points of significant changes in cross-section elevations and alinement of the axis. Stationing along cross sections was projected along straight lines perpendicular to the flow. Plots of the cross sections are graphic presentations of the tabular data.

Bridge geometry and road embankments are shown on sheet 2 as they existed at the time of the floods. The cross section surveyed at the downstream side of the bridge is tabulated. The cross section shown for velocity distribution was obtained by sounding from the upstream side of the bridge during the discharge measurement.

during the discharge measurement.

Data for two floods on Yellow River are presented. The first flood occurred December 21, 1972 (sheet 3). Six valley cross sections were surveyed after this flood. A second flood occurred on March 12, 1973 (sheet 4). A stage-discharge relation was developed for this site using five discharge measurements made from February 20, 1971 to March 12, 1973. Valley cross sections as surveyed are considered valid for both

Manning's roughness coefficient values and the 1973 flood boundaries are shown on sheets 2 to 4.

FLOOD OF DECEMBER 21, 1972

Peak water-surface elevations, measured cross section, and velocities for the flood of December 21, 1972, are shown on sheet 3. The flood crested at an elevation of 71.122 meters at the reference point located on the downstream guardrail 37 meters from the left abutment. The peak discharge was 56.6 cubic meters per second, from a stage-discharge relation developed for the site. A discharge of 50.7 cubic meters per second was measured on the recession at an elevation of 71.085 meters at the reference point (table 2). The recurrence interval of the peak discharge is 2 years (Hains, 1973). See

FLOOD OF MARCH 12, 1973 Peak water-surface elevations for the flood of March 12, 1973, are shown on sheet 4. The elevation of the flood crest, estimated from high-water marks at both abutments, was 71.942 meters. The peak discharge was 187 cubic meters per second. A discharge of 96.0 cubic meters per second (table 2) was measured at an elevation of 71.402 meters, 0.540 meter below the crest. The measured cross section and velocity distribution are shown on sheet 4. The recurrence interval of the

peak discharge is 30 years (Hains, 1973). See figure 4.

SUMMARY Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated that backwater and discharges computed by standard indirect methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on Yellow River near Sanford, Ala. Water depths, velocities, and discharges through bridge openings on Yellow River near Sanford, Ala., for floods of December 21, 1972, and March 12, 1973, were measured, together with peak water-surface elevations along embankments and along cross sections. Manning's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-

ADDITIONAL INFORMATION
Other information pertaining to floods in Alabama,
Louisiana, and Mississippi may be obtained at the offices of
the U.S. Geological Survey listed below:

frequency relations are shown on graphs.

U.S. Geological Survey
Room 202, Oil and Gas Board Building (P.O. Box V)
University, Alabama 35486
U.S. Geological Survey
6554 Florida Boulevard (P.O. Box 66492)
Baton Rouge, Louisiana 70896
U.S. Geological Survey
430 Bounds Street

Jackson, Mississippi 39206

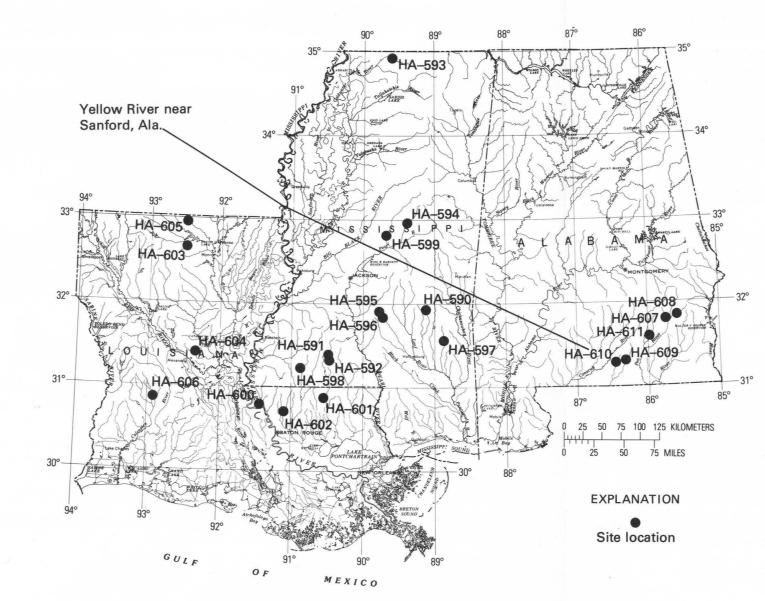


FIGURE 1.—INDEX MAP OF STUDY SITES IN THE BRIDGE BACKWATER INVESTIGATION PROJECT, ALABAMA, LOUISIANA, AND MISSISSIPPI.

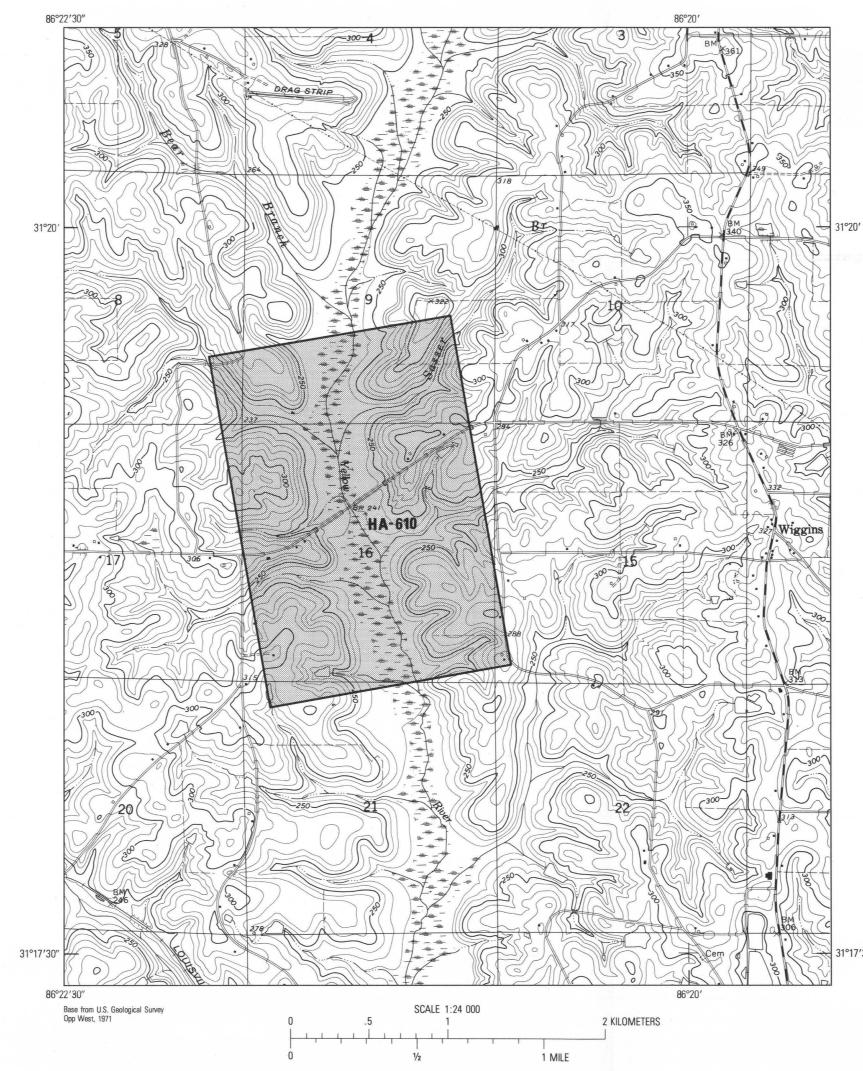


FIGURE 2—INDEX MAP SHOWING STUDY REACH, YELLOW RIVER NEAR SANFORD, ALABAMA

FIGURE 3—AERIAL VIEW LOOKING UPSTREAM AT BRIDGE ON COVINGTON COUNTY ROAD, YELLOW CREEK NEAR SANFORD, ALABAMA

SELECTED REFERENCES

Barnes, H. H., Jr., 1967, Roughness characteristics of natural channels: U.S. Geol. Survey Water Supply Paper 1849, 213 n.

213 p.
Benson, M. A., and Dalrymple, T., 1967, General field and office procedures for indirect discharge measurements: U.S. Geol. Survey Techniques Water-Resources Inv., book 3, chap. Al, 30 p.

Highway Admin., Hydraulic Design Ser. No. 1, 111 p.

Bradley, J. N., 1970, Hydraulics of bridge waterways: Federal

Colson, B. E., and Hudson, J. W., 1976, Flood frequency of Mississippi streams: Mississippi State Highway Dept., 34 p. Hains, C. F., 1973, Floods in Alabama, magnitude and frequency: Alabama Highway Dept., 37 p. Hedman, E. R., 1964, Effects of spur dikes on flow through constrictions: Am. Soc. Civil Engineers Proc., Jour. Hydraulics Div., v. 91, no. HY4, July 1965, p. 155-165. Matthai, H. F., 1967, Measurement of peak discharge at width contractions by indirect methods: U.S. Geol. Survey Techniques Water-Resources Inv., book 3, chap. A4, 44 p. Neely, B. L., Jr., 1976, Floods in Louisiana, magnitude and frequency, 3d ed.: Louisiana Dept. Highways, 340 p. Schneider, V. R., Board, J. W., Colson, B. E., Lee, F. N., and Druffel, L., 1976, Computation of backwater and discharge at width constrictions of heavily vegetated flood plains: U.S. Geol. Survey Water-Resources Inv. 76-129, 64 p. U.S. Water Resources Council, 1977, Guidelines for determining flood flow frequency: Washington, D.C., U.S. Water Re-

sources Council Bull. 17A, 163 p.

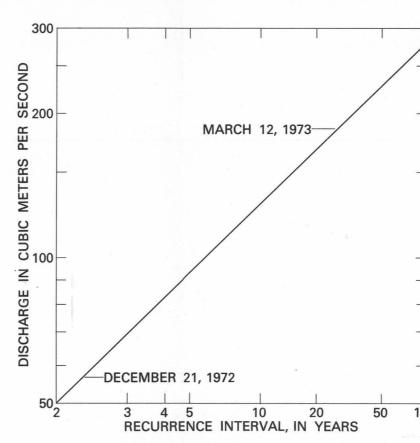


FIGURE 4—FREQUENCY OF FLOODS, YELLOW RIVER NEAR SANFORD, ALABAMA

TABLE 1—VALLEY CROSS SECTION DATA FOR YELLOW RIVER NEAR SANFORD, ALABAMA. ZERO STATION IS AT THE LEFT EDGE OF THE VALLEY (FACING DOWNSTREAM)

	EDGE OF THE VALLEY (FACING DOWNS (REAM)		
CROSS	SECTION 1		CROSS	SECTION 5
STATION (METERS)	GROUND SURFACE ELEVATION (METERS)		STATION (METERS)	GROUND SURFA ELEVATION (METERS)
0	71.58		0	73.23
15 24	70.57 69.87		11 20	72.62 71.85
30	69.35		23	71.52
91	69.35		34	70.76
113 114	69.17 68.99		56 78	70.79 70.73
116	67.68		94	70.60
116	67.40		120	70.60
117 119	67.43 69.17		143 145	70.70 69.96
157	69.11		148	70.09
187	68.99		149	70.12
212 251	68.90 69.05		151 154	70.73 70.76
282	69.78		168	70.70
283 303	69.87 71.12		180	70.82
326	72.04		212 215	70.60 70.33
	SECTION 2		216	69.84
CHOSS	GROUND SURFACE		219	69.42
STATION	ELEVATION		221 224	70.30 70.60
(METERS)	(METERS)		242	70.76
0 24	71.88 71.46		258 279	70.57 70.54
53	71.18		290	70.63
82	71.24		309	70.63
91 120	70.63 70.27		329 347	70.70 70.73
177	69.60		369	70.79
218	69.72		375	70.79
219 223	68.93 68.68		383 386	71.09 71.85
227	68.74		389	72.37
230 235	69.78 69.75		419	78.47
264	69.72		CROSS	SECTION 6
300	69.51			GROUND SURFA
326 355	69.57 69.57		STATION (METERS)	ELEVATION
360	69.57		(IVIETENS)	(METERS) 73.10
375	69.60		56	72.19
386 396	69.57 70.21		61 70	71.88 71.70
402	70.63		107	71.70
416 437	71.82 73.35		120	71.34
			136 151	71.03 71.09
CRUSS	SECTION 3 GROUND SURFACE		169	70.76
STATION	ELEVATION		180	71.06
(METERS)	(METERS)	**************************************	186 187	71.00 70.02
0 17	72.98 72.43		190	69.99
44	72.07		192 197	70.48 71.00
72	71.67		213	70.91
98 99	71.46 70.94		230	70.88
99	70.57		255 265	70.76 71.15
108	69.90		267	70.51
110 113	68.50 68.53		268	70.33
114	69.20		271 274	70.36 71.09
119 128	70.12 70.06		288	70.85
146	70.06		344	71.00
174	69.75		354 360	71.52 71.88
201 215	69.78 69.75		370	72.55
230	70.12		398	74.08
238	70.36			
247 251	70.76 70.94			
255	71.03			
267	71.00			
268 297	71.00 71.24			
325	71.52			
343	71.79			
360 369	72.16 72.43			

BRIDGE SECTION

(METERS)

GROUND SURFACE

ELEVATION

(METERS)

72.07

72.01

71.09

69.54

69.69

70.18 70.21

70.12

70.15

70.18

70.21 70.18

70.09

70.12

69.84

69.84

69.32

68.90

68.32

68.13

68.26

68.26

68.17

68.90

69.60

69.84

70.21

70.30

70.21

70.15

70.12

70.06

70.12

70.09

70.15

70.21

70.36

70.39

70.45

70.51

70.70

71.09

72.01

72.13

GROUND SU

ELEVATIO

(METERS

72.80

72.43

71.34

70.42

70.39

70.30

70.24

70.24

69.51

70.27

70.21

70.18

70.21

70.21

70.18

69.84

70.18

70.15

70.09

70.09

69.35

69.23

69.48

70.24

69.48

70.24

69.75

70.15

70.45

71.06

71.15

71.37

71.43

71.88

72.13

72.37

72.80

CROSS SECTION 4

STATION

(METERS)

29

93

104 123

142

151

387

401

TABLE 2—DISCHARGE MEA	ASUREMENTS DECE	MBER 21, 1972, AND
MARCH 12, 1973, YELL		
ZERO STATION IS AT T	HE EDGE OF THE LEF	T ABUTMENT (FAC-
ING DOWNSTREAM)		

DISCHARGE MEASUREMENT OF DECEMBER 21, 1972, OF YELLOW RIVER NEAR SANFORD, ALA. (WATER SURFACE ELEVATION=71.085 METERS) TOTAL

			ER SURFACE E SIC METERS PER	SECOND	METERS) TOTA
	STATION (METERS)	DEPTH (METERS)	ANGLE (DEGREES)	OBSERVATION DEPTH ¹	VELOCITY (METERS PE SECOND)
	2.4	0.0	0	0.0	0.0
	4.6	1.37	23	0.2	1.600
	4.0	1.57	23	0.8	0.454
	9.1	0.85	18	0.6	0.381
	13.7	0.79	18	0.2	0.445
	10.7	0.75	10	0.8	0.844
	18.3	0.91	11	0.6	0.485
	22.9	1.07	Ö	0.2	0.494
	22.0	1.07	0	0.8	0.110
	27.4	1.01	0	0.2	0.110
	27.7	1.01	U	0.8	0.085
	30.5	1.28	0	0.2	
	30.3	1.20	U	0.2	0.287
	32.0	1.92	0	0.8	0.256 0.677
	32.0	1.32			
	33.5	2.44	0	0.8	0.768
	33.3	2.44	U	0.2 0.8	1.036
	35.1	2.74	0	0.8	0.988
	33.1	2.74	U		1.222
	36.6	2.74	0	0.8 0.2	1.222
	30.0	2.74	U	0.8	1.100 1.198
	38.1	2.74	0	0.2	1.012
	30.1	2.74	U	0.8	
	39.6	2.59	0		1.079
	33.0	2.59	0	0.2	0.988
	41.1	2.29	0	0.8	0.823
	41.1	2.25	oral U	0.2 0.8	0.753
	42.7	0.79	0	0.6	0.509
	45.7	0.76	0	0.6	0.491 0.415
	50.3	0.85	0		
	30.3	0.05	U	0.2	0.305
	54.9	1.01	. 0	0.8 0.2	0.201
	54.5	1.01	0	0.2	0.226
	59.4	0.94	0	0.8	0.195 0.445
	55.4	0.54	0	0.8	
	64.0	0.91	0	0.8	0.180
	04.0	0.51	U	5 A 15 A 15 A	0.768
	69.6	0.76	0	0.8	0.567
JRFACE	68.6 73.2	0.76	0	0.6	0.280
ON	73.2	0.64 0.46	0	0.6	0.692
S)	79.2	0.46	0	0.6	0.427
	13.2	0.0	U	0.0	0.0

DISCULARDE MEACUREMENT OF MARQUIAG AGTO OF VELLOW BIVER NEAR O
DISCHARGE MEASUREMENT OF MARCH 12, 1973, OF YELLOW RIVER NEAR SA
그는 마음을 하는 그는 그는 그는 그는 그는 그는 그는 그를 가는 그는 그들은 그들은 그들은 그들은 그들은 그는 그들은 그는
FORD, ALA. (WATER SURFACE ELEVATION=71.402 METERS) TOTAL [
CHARGE CO. C. CHIRLO METERS DED CECCHIR

CHARGE	=96.0 CUBIC I	METERS PER SE	COND	
STATION (METERS)	DEPTH (METERS)	ANGLE (DEGREES)	OBSERVATION DEPTH ¹	VELOCITY (METERS PER SECOND)
2.1	0.0	0	0.0	0.0
6.1	1.40	14	0.6	1.570
12.2	1.10	14	0.6	1.204
18.3	1.16	0	0.6	0.716
24.4	1.22	0	0.6	0.247
30.5	1.52	0	0.6	0.771
33.5	3.02	0	0.2	1.082
			0.8	1.082
36.6	2.96	0	0.2	1.073
			0.8	1.381
39.6	3.11	16	0.2	0.936
			0.8	1.231
42.7	1.58	0	0.6	1.152
48.8	1.13	0	0.6	0.402
54.9	1.22	0	0.6	0.344
61.0	1.25	0	0.6	0.500
67.1	1.13	0	0.6	1.058
76.2	0.79	14	0.6	1.469
79.9	0.0	0	0.0	0.0

10bservation depth is the ratio of the velocity-observation depth to the total depth at the station.