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commonly ranges from 0.20 to 0.40 and the compressibility of similar rock in other
areas ranges from about 7 X 10™7to 7 x 10~° inch squared per pound under moderate
overburden load (Fatt, 1958; Clark, 1966). The compressibility of water is about 3.0
X% 107¢ inch squared per pound and the specific weight of water is 3.6 x 10~2 pound
per cubic inch (Freeze and Cherry, 1979). If the maximum and minimum values for
porosity and rock compressibility are used in solving the above equation, the specific
storage of the confined aquifers is shown to range from about 5.6 x 1077 to 3.5 x
107° foot™'. The mean value is about 2 x 107 foot™*. This value is the volume of
water the confined water-yielding strata release from or take into storage per unit volume
per unit change in head due to the compressible character of the water and the rock.

In an unconfined aquifer the volume of water released from or taken into storage
by this process is insignificant when compared to the volume involved in the gravity
drainage or filling of the pore space in the rock. As a result, the storage coefficient
of an unconfined aquifer is approximately equal to the specific yield of the aquifer.
The results of 59 specific-yield determinations performed on samples of siltstone, sand-
stone, and conglomerate from the bedrock formations are listed in table 2 (see sheet
2). The samples were analyzed by one of two laboratory techniques. The centrifuge-
moisture equivalent technique (American Society of Testing and Materials, 1964) was
used to analyze those samples that were medium to coarse grained and relatively friable.
This technique determines the specific retention of the sample, and specific yield is
calculated as the difference between porosity and specific retention. The mercury-
injection, moisture-tension curve technique was used to analyze those samples that
were fine grained or were well indurated (Prill and Johnson, 1967; Purcell, 1949).
This technique was found to provide more accurate results for these samples than did
the centrifuge technique. Effective porosity and specific yield are measured and specific
retention is calculated as the difference between porosity and specific yield. Specific-
yield data for a few samples reported to have greater than 48-percent porosity by
McConaghy and others (1964) were considered to be questionable and were not used
in this study.

Specific-yield data from table 2 and selected data from McConaghy and others
(1964) indicate that the specific yield of the permeable materials ranges from about
1 to 38 percent. The large range is due to the variable composition of the aquifer
materials, with clay content a principal factor. A moderately consolidated sandstone
with minimal clay content commonly will have a relatively large porosity and correspond-
ingly large specific yield. A clayey sandstone, by contrast, can have a relatively large
porosity and a small specific yield due to the presence of the clay (Todd, 1967). Because
of the variable composition of the permeable materials, specific yield can be expected
to vary considerably from one permeable bed to another and from one area to another
within the basin. Although of limited number, the available analyses are the best data
currently (1981) available for use in estimating the specific yield of the water-yielding
materials. The mean specific yield of the samples from the siltstone, sandstone, and
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as a rapid and nearly complete change in specific storage at the time the upper layer
first develops water-table conditions. This situation does not always occur in the Denver
basin because significant hydraulic connection commonly does not exist across the shale
layers that intervene between the upper and lower parts of each aquifer. As a result,
both confined and unconfined conditions may coexist at different depths in the same
aquifer. The differences in specific storage with depth are most pronounced during a
short-term pumping period of a few hours or a few days and become less pronounced
during a long-term pumping period of several years. Aquifer tests are short-term tests
and, thus, may give markedly different values of specific storage in nearby wells of
different depths completed in the same aquifer. This accounts for some of the scatter
of data points shown in figure 13. Other factors contributing to the scatter include er-
rors in data collection or test interpretation, rate of pumping, and anomalous well con-
struction or completion practices. Attempts to estimate specific yield or specific storage
by use of existing aquifer-tests results, thus, seem to be of minimal value.

The estimated confined storage coefficlents for the four aquifers are shown in figures
14, 15, 16, and 17. These storage coefficients apply to the confined water-bearing
material and are computed as the product of the average specific storage determined
from equation 1 and the thickness of the water-yielding material in each aquifer as shown
in reports by Robson and Romero (1981a, 1981b), Robson, Romero, and Zawistowski
(1981), and Robson, Wacinski, Zawistowski and Romero (1981). In those areas where
the 1978 water levels were below the base of the overlying aquifer, or where no overlying
aquifer occurs, it is possible for water-table conditions to exist in the upper (near-surface)
parts of each aquifer. The principal areas where these unconfined conditions commonly
occurred are shown in figures 14, 15, 16, and 17. In addition to the mapped areas,
a narrow band of unconfined conditions also may occur near the formation outcrops

Water-level drawdown that occurred in wells during the aquifer tests commonly
ranged from a few feet to about 300 feet. If the water level in a well is drawn down
below the base of an overlying confining layer during pumping, temporary unconfined
conditions may occur near the well. The unconfined conditions would revert to confin-
ed conditions when pumping ceased and the static water level rose back above the
base of the confining layer. If the static water level in an aquifer is more than 300 feet
above the top of the aquifer it is assumed that drawdown during pumping would not
exceed 300 feet and thus would not produce unconfined conditions. Those areas in
the Denver, Arapahoe, and Laramie-Fox Hills aquifers where less than 300 feet of
drawdown could produce unconfined conditions also are shown in figures 15, 16, 17.

Table 4.—Specific yield statistics for water-yielding materials
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conglomerate members of each aquifer is shown to range from 14 to 20 percent in
table 4. The standard deviation of the data are 1 to 3 percent greater than the standard Specific yield based on laboratory analysis of samples
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