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VERTICAL ELECTRICAL SOUNDINGS INDICATE THAT QUATERNARY
BASALT OF THE SNAKE RIVER GROUP UNDERLYING THE SNAKE RIVER
PLAIN MAY BE AS MUCH AS 5,000 FEET THICK. To help define areal N
variations in basalt thickness, the U.S. Geological Survey, Geologic Division, Test hole
Branch of Electromagnetism and Geomagnetism, completed 221 vertical electrical = = e : ‘ z T
soundings as part of the Snake River Plain RASA study. These soundings, along — ‘ ‘ . W
with an equal number of soundings made for previous studies (Zohdy and Stanley,
1973; Crosthwaite, 1974; Jackson, 1974; Zohdy, Bisdorf, and Jackson, 1978; and
Robinette and Matzner, 1980), provided sufficient regional coverage for mapping
approximate thickness of Quaternary basalt. Zohdy (1974, p. 5) states:

The electrical properties of most rocks in the upper part of the
Earth’s crust are dependent primarily on the amount of water in the
rock, the salinity of the water, and the distribution of the water in
the rock. Saturated rocks have lower resistivities than unsaturated
or dry rock. The higher the porosity of the saturated rock, the lower
its resistivity, and the higher the salinity of the saturating fluid, the
lower the resistivity. The presence of clays and conductive minerals
also reduces the resistivity of the rock.

Electrical resistivity soundings were made using a symmetric Schilumberger
array; current electrode spacings ranged from 4,000 to 28,000 ft; apparent
resistivities ranged from 3.5 to 4,750 ohm-meters. Vertical electrical sounding
curves were computer processed and interpreted using a modified version of
Zohdy’s (1973) inversion program. Computer-generated profiles were created for
each of the traverse lines made during the present study and for the Arco to
Blackfoot line from an earlier study. A total of about 450 mi of profiling was
completed. Generalized computer-generated profiles are shown at right (K-K’
through W-W").

Because young basalts of the Snake River Group have a high resistance to
electrical current even when saturated with water (because of low salinity), the
vertical electrical sounding profiles were used to help estimate basalt distribution
thickness (sheet 2). Correlation of the profiles with several deep drill holes
indicated that resistivities of 300 ohm-meters and greater in the upper part of the
stratigraphic section were indicative of young basalts of Quaternary age. To verify
vertical electrical sounding interpretations, a 1,123-ft test hole was drilled 5 mi
northeast of Wendell (NEVaNW"SWV4 sec. 12, T. 7 S., R. 15 E.) along profile
N-N'. Test-drilling results and geologic and hydrologic implications of the test hole
were in good agreement with resistivity interpretations.

In some areas, particularly near the margins of the plain, unconsolidated and
unsaturated gravels have a resistivity comparable to that of the basalts. Where
saturated sedimentary rocks are intercalated with basalt, an apparent resistivity of
100 ohm-meters or greater was interpreted as basalt. Drillers’ logs were available
to aid in interpretation in many of these areas.

High resistivities at depths greater than 3,000 ft may be indicative of older
consolidated sedimentary rocks or volcanic rocks. Where high resistivity zones
apparently were continuous from the surface to depths in excess of the area
average, an arbitrary cutoff was made at the average depth to regionalize the
interpretation.

Although vertical electrical soundings are apparently useful to approximate
basalt distribution and thickness, some complications in interpretation were noted.
Lowest resistivities (less than 7 ohm-meters, not shown on profiles) appear to be
indicative of fine-grained sedimentary rocks, thermal waters, or a combination of
the two. Zones of faulting associated with the thermal water also may be surmised.
The effect of thermal waters may mask lithologic variations (Jackson, 1974), as
evidenced by the low resistivity of faulted areas flanking the western plain, where
thermal waters occur in both sedimentary and volcanic rocks.
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GRAVITY MODELS WERE USED TO AID IN DEFINITION OF MAJOR
GEOLOGIC FEATURES. All earth materials influence gravity measurements.
However, the bulk of the Earth’s gravitational force has little to do with crustal
rocks. Only about 0.05 percent of the gravitational force is contributed by the
upper 8 mi of crustal rock (Grant, 1965, p. 190). Most important is the fact that
this very small contribution can be detected by gravity meters and accordingly
mapped. Gravity measurements must be subjected to a series of reductions and
corrections before they are suitable for interpretation of geologic features.

Gravity variations are measured in gals; one gal is equivalent to a force of
acceleration of one centimeter per second per second. The Earth’s average
gravitational force is about 980 gals. Owing to the very small magnitude of
variations measured, milligals (1/1,000 of a gal) are used for computational
purposes.

The above Bouguer gravity anomaly map is a summation of all gravity effects
in the area. Corrections for most major nongeologic effects are incorporated in the
map. y

Because interpretations are nonunique, gravity modeling was used only as a
guide to help define major geologic features where no other definitive data were
available.

The modeling program is based on a two-dimensional polygon method
(Talwani and others, 1959). The program uses polygons of varying sizes, shapes,
and assumed density contrasts (table at right) to represent possible geological
bodies inferred from available information. The following assumptions were made:
(1) Subsurface density variations are modeled using polygonal bodies of infinite
strike length; (2) each polygon is of a constant assumed density contrast
(compared to an average for crustal rocks of 2.65 g/cm? see table at right); and
(3) compaction of material with increasing depth of burial is negligible. The
polygon’s gravitational effects are calculated in the program and a summation of
these effects is plotted against the measured residual gravity anomaly.

Polygons are changed, deleted, or added as necessary to comply with known
geologic and physical constraints until a best fit between the gravity field curve and
the theoretical curve is obtained.

Gravity modeling of the western plain was done using Bouguer anomaly
values obtained directly from the above map. Modeling of the eastern plain
required that the Bouguer anomalies be adjusted to compensate for the regional
effects of a large body of rock either more areally extensive than the plain or
deeply buried (more than 3 mi) under the plain (Mabey, 1978, p. 557). Data from
a seismic refraction study (Sparlin and others, 1981, p. 53) suggest that the latter
hypothesis is most likely correct. These data were used as a basis for the regional
residual separation. The separation was made using several methods suggested by
Dobrin (1952, p. 86-88). Actual modeling extended beyond the plain’s boundary,
but results shown in sections X—X' through EE-EE’ are only for that part within
the boundary. Sections were simplified because, in the modeling process, the
ability to simulate several rock units of different densities exceeds present
understanding of the subsurface distribution of rock units in the study area.

Delineation of major rock types by gravity modeling was marginally successful
but did aid in understanding the regional structure. Seismic section J—J' and gravity
section Y-Y’ show good agreement in delineation of the sediment and Tertiary
(Miocene) basalt unit contact. Although not shown on modified resistivity section

K-K', this contact was suggested by the original resistivity data as well.

Gravity data from Mabey, Peterson, and Wilson (1974)
and Berg and Thiruvathuskal (1967)
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. Average Density contrasts
Rock unit density used for modeling
Quaternary basalt 1.98 -0.67
Tertiary basalt 2.95 0.30
Granite . 2.65 0
Undifferentiated pre- 2.65 0
Tertiary rocks
Basalt and intercalated 1.98 -0.67
sedimentary rocks .
Consolidated sediment- 245 -0.20
ary rocks
Unconsolidated sedi- 2.20 -0.45
mentary rocks
Upper unit, silicic 2.43 -0.22
volcanic rocks
Lower unit, silicic 2.53 -0.12

volcanic rocks

ASSUMPTION OF DENSITY VALUES FOR ROCK TYPES UNDERLYING
THE SNAKE RIVER PLAIN IS A CRITICAL STEP IN THIS MODELING
PROCESS. A constant density value of 2.65 g/cm® was assumed to represent
undifferentiated pre-Tertiary rocks. Assumed values of density differences for these

-and other associated rocks underlying the plain are shown in the table above.
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