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Runoff -- Runoff is that portion of precipitation that leaves an area as
streamflow. Average annual runoff in the Copper River basin ranges from
less than 5 in. in the lowland areas to more than 54 in. in the high
mountain areas (fig. 8). Annual runoff for the entire basin above Chitina
averages 24.8 in., or 37,680 ft /s. The runoff values and pattern shown
on the map are based on measured and estimated streamflow and on other
factors such as estimated evapotranspiration and area-altitude runoff
calculations. The map is intended only to delineate the general areal
distribution of runoff from the basin and should not be used to estimate
the flow of any specific stream.
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Stream Types -- The streams draining the Copper River basin can be classi-
fied into two general types: nonglacial streams, which drain lowland and
low-altitude mountain areas, and glacial streams, which drain the high-
altitude mountains.
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Streams in the Copper River Lowland areas (fig. 2), have a relatively low
gradient and derive their flow from snowmelt and rain. Streamflow is low
from September through March, but with the increased solar radiation and
warmer temperatures of April and May, flow reaches a peak. This peak
results mainly from melting of snow and channel ice. A general recession
in flow then takes place during June, July, and August. About 75 percent
of the total annual flow occurs during the open-water period, May
through September. Squirrel Creek (fig. 9) northwest of Tonsina is an
example of a lowland stream.
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Low-altitude mountain streams are nonglacial, as their drainage basins lie
along the mountain flanks at altitudes too low for glaciers to exist. The
Little Tonsina River (fig. 9) typifies such streams. Flow of the Little
Tonsina increases due to snowmelt from late April through June and then
declines during July, August, and September. About 80 percent of the
total annual flow takes place between May and September, the open-water
period.
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FIGURE 15. -- FLOOD MAGNITUDE AND
FREQUENCY FOR SELECTED LOWLAND
STREAMS.

FIGURE 16. -- FLOOD MAGNITUDE AND FRE-
QUENCY FOR SELECTED LOW-ALTITUDE
MOUNTAIN STREAMS.
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High-altitude mountain streams (glacial) exhibit the greatest seasonal

variability of flow. About 88 percent of their total annual flow takes
place during the.approximately 5-month open-water period (May through
September). High flows usually occur in July (fig. 9) when the highest
seasonal temperatures cause maximum melting of glacier ice and snow.
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FIGURE 14. - RELATION BETWEEN MAXIMUM DISCHARGE AND
DRAINAGE AREA.
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The production of meltwater from a glaciated basin appears to be closely

related to annual precipitation. This relation can be seen by comparing
the cumulative departure of average annual flow of glacier-fed Tonsina
River (fig. 10) to the departure curve of precipitation for the same period
(fig. 4).
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ANNUAL AVERAGE DISCHARGE fall. Floods on nonglacial streams in the Copper River Lowland and
Gulkana Upland result primarily from snowmelt in the spring and stream
overflow in frozen and ice-jammed channels.
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In the use and management of water, seasonal streamflow variation is of
more concern than long-term variation. Streams throughout the basin ex-
perience high flows during the spring and summer and low flows during
fall and winter. The seasonal and annual variability of streamflow is
illustrated in figures 8a-8i. In general, streamflow in the basin shows the
greatest variability in mean annual discharge for nonglacial streams and
the least in streams affected by glacial meltwater. Glaciers tend to reduce
the variation in annual discharge because they release water from ice and
firn storage in dry, warm years and store water as snow and firn during
cool, wet years. However, during the relatively dry years of 1969-70 even
glacial streams experienced the lowest annual average discharge in the
period of record (figs. 8e, 8f, 8h, and 8i).
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Nz;nglacial SQUIRREL CREEK AT TONSINA 196675 The relation of maximum discharge to drainage area for 23 selected

streams in the Copper River basin is shown in figure 14. For comparison
purposes, a line corresponding to the peak discharge for a 50-yr recurrence
interval, computed by the flood-frequency regression equation of Lamke
(1979), is also drawn on the graph. Maximum observed instantaneous
runoff rates range from 5 (ft3/s)/mi® for lowland drainages to 66 (ft/s)/mi?
for mountain basins (table 2).
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The peak discharges for recurrence intervals from 2 to 50 years for repre-
sentative lowland, low-altitude mountains, and high-altitude mountains
streams are shown in figures 15, 16, and 17. Recurrence interval is the
average period of time (in years) within which a flood of specified magni-
tude will be equaled or exceeded once. For a given recurrence interval,
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Klutina River at Copper Center
1951-66
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A typical hydrograph of nonglacial streams, such as the Gulkana River 10,000

(fig. 11), shows sharp May rises during the spring snowmelt, a general
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recession during the summer months, and a slight increase in streamflow
during the early fall rainy period. In contrast, high flow on glacial
streams, such as the Tonsina River, coincides with the peak melting of
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the probability of a flood of specified magnitude occurring inany one year
can be estimated. For example, if the recurrence interval of a flood of
specified magnitude is 25 years (Q,5), the probability that such a flood
will occur in any one year is 4 percent (1 chance in 25). For ungaged
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snow and ice in June, July, and August (fig. 11). Rainfall during these K \ ; s a \ : gtreams in the stud.y area, tl}e ﬂoo@ discharges for selectefi recurrence | B
same months may produce even higher discharge when the rivers are <@ 3 i ., - > . intervals can be estimated using regional flood-flow regression methods L
already high from glacial runoff. 10,000 nS = "\(,"é,f, CN—, given by Lamke (1979).
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