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5N-34E-9BDA1 Ground-water levels change in response to long-term changes in precipitation.
g 80 KILSMIETERS Boundary of Snake River Plain 250 u An example of the relation between long-term precipitation trends and ground-
water level trends was given by Young and Norvitch (1984, p. 8) and was modified
above.
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example above, trends on the precipitation cumulative departure from monthly
mean precipitation curve and trends on the hydrograph deviate after 1973. The
deviation is attributed to decreased surface-water diversions for irrigation, more
efficient use of water, and increased ground-water withdrawals.

Although details vary, long-term water-level trends in many wells on the
eastern plain appear to have a similar relation to precipitation. On the western part
of the Snake River Plain, the relation is less apparent and other factors
predominate.

Prior to the start of intensive irrigation in the early 1900’s, ground-water levels
changed only in response to precipitation, both on the plain and on tributary areas.
As use of surface water for irrigation increased, more water became available for
recharge. Transmission losses from a network of canals and deep percolation from
irrigated fields raised ground-water levels in large parts of the plain.

Although preirrigation water-level data are largely unavailable, Mundorff and
others (1964, p. 162) reported that from about 1907 to 1959 as a result of
irrigation, the water table north of the Snake River between Minidoka and Bliss rose
25-100 ft, and the average rise may have been 60-70 ft. Water-level rises owing
to irrigation south of the Snake River were greatest in the Twin Falls area. Within
5 years after the start of surface-water irrigation in 1908, a water-level rise of 186
ft was measured in well 10S-17E-20AD1; the total rise owing to surface-water
irrigation may have been nearly 300 ft (Stearns and others, 1938, p. 129).
Continued use of surface water for irrigation for more than 100 years in the Boise
River valley has raised ground-water levels as much as 140 ft (Nace and others,
1957, p. 1). In much of the Boise River valley, water levels have been fairly stable
for a number of years. On the basis of these examples, it is apparent that use of
surface water for irrigation has greatly affected ground-water levels in the Snake
River Plain.

Changes in irrigation practices also affect ground-water levels. The most
obvious is lower water levels resulting from ground-water withdrawals. Since the late
1940’s, use of ground water for irrigation has increased steadily. Removal of water
from storage lowers ground-water levels within the cone of influence of a well or
well field. Given enough properly spaced wells, continued pumping can result in
lowering of water levels regionally. Young and Norvitch (1984) analyzed water-level
data from several hundred wells in Idaho to determine probable causes of water-
level fluctuations from 1971 to 1982. Included were those wells whose hydrographs
are shown at left.

On the eastern part of the Snake River Plain, ground-water withdrawals were
identified as the probable cause of declining water levels from the early 1970’s to
the early 1980’s in wells 9N-36E-33CBB1, bN-34E-9BDA1, 1N-29E-30BBD1,
45-24E-6BBC1, 85-24E-31DAC], and 11S-19E-17AABI.

Water-level declines observed in wells 7N-38E-23DBA1, 1N-36E-1CCBI,

5S-17E-26ACA1 and 55-17E-26ACA1 probably were due to reduced recharge from surface-water
irrigation. Well 7N-38E-23DBA1 is on the Egin Bench where, for a number of
years, irrigation with surface water has raised ground-water levels to root depths.
180 [~ m Since the early 1970's, some irrigators have changed from flood and furrow
............. irrigation to sprinklers, a more efficient use of water. Consequently, recharge from
200 /\/\/—\ surface water has decreased and ground-water levels have declined.
: " On the western part of the Snake River Plain, ground-water withdrawals,
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1957 1959 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 Home (IN-2E-15DCA1 and 4S-5E-25BBC1). In the Boise River valley, the water
,,,,,,,,,,,,,,,,, L o s S L e L L L L R L L L LS LS L L) L LR LR LR LS R L L level in well 4AN-1W-36DAD1 rose rapidly from 1915 to about 1925, then rose
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350 o 1N-36E-1CCB1 gradually for many years owing to increased recharge from surface-water irrigation.
Nearly all hydrographs show a rapid decline in water levels following the drought
& 140 - N of 1976-77, owing to decreased recharge.
200 k- \/\/¥ In general, since the start of irrigation, ground-water levels have changed more
in response to irrigation practices than to precipitation.
““““““““““““““ 150 W A brief history of irrigation on the Snake River Plain was written by Lindholm
: and Coodell (1084), and ground- wind surface water primmnace fmr imication s 1980
a5 bbb o bbb budwdd ol 439 -43° was estimated by Bigelow and others (1984). Young and Norvitch (1984) analyzed
160 bobnbon bbb bbb b b bbb bn Do b bc Loscben b b, seasonal water-level changes (see hydrographs) and showed how water levels differ
1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 under natural recharge conditions and in surface- and ground-water-irrigated areas.
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were presented in an earlier report (Lindholm, 1981).
The purpose of this report is to (1) present results of ground-water level
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mouth of Salmon Falls Creek, is the largest group of springs. Flow characteristics
of the Snake River and the water budget for the Snake River Plain are discussed
in another companion report (Kjelstrom, 1984).

CONVERSION FACTORS

of the number designate the township and range. The third segment gives the
section number; three letters, which indicate the Ya section (160-acre tract), Va—Va
section (40-acre tract), and Y4—Va—Va section (10-acre tract); and serial number of
the well within the tract. Quarter sections are lettered A, B, C, and D in
counterclockwise order from the northeast quarter of each section. Within quarter
sections, 40-acre and 10-acre tracts are lettered in the same manner. For example,

Within the geohydrologic framework defined by Whitehead (1984), water
moves vertically then horizontally from areas of recharge to areas of discharge.
Movement is approximately perpendicular to lines of equal hydraulic head, as
shown on the sections above and map at center. Complexities of flow, owing to
local lithologic differences and geologic structure, are poorly defined and are not
shown.

temporary recharge to the system.

Section B-B’ approximates a regional ground-water flowpath along the
longitudinal axis of the eastern plain. Near the boundaries of the plain, as shown
on the northeastern end of the section, hydraulic head decreases with depth and
recharge occurs. Upward flow, about 25 mi from the northeastern end of the
section, is probably due to the confining effect of sediments that locally are

—

I Well

A

General direction of ground-water movement

Point of known hydraulic potential—Projected where no well
shown

A’ Lines of section shown on map at center

water-table gradients are 10-20 ft/mi toward the river. The unconfined aquifer in
the Boise River valley consists largely of coarse-grained alluvium. South of the
Snake River from Salmon Falls Creek to Murphy, water-table gradients are generally
50-100 ft/mi but are poorly defined. Most wells in that area are completed in con-
fined silicic volcanic—rock aquifers and yield thermal water with hydraulic heads
that average about 100 ft higher than heads in the overlying cold-water system.

grained sediments. The steep gradient in the vicinity of the Great Rift zone is
immediately upgradient from and generally parallel to a zone of decreased
transmissivity that may be attributable to healing of fractures or the presence of
dikes that impede water movement.

In some areas, particularly near the boundaries of the plain, sedimentary rocks
are intercalated with the basalt. Where fine grained, they impede the vertical

in the central part of the plain is largely horizontal. Along the margins of the plain
and near the Snake River, water moves vertically as well as horizontally. Where
basalt is intercalated with low-transmissivity sediments, vertical movement is
impeded and, in surface-water-irrigated and recharge areas, perched aquifers
have developed above the regional aquifer system.

Ground-water movement in the western part of the Snake River Plain is to the

water resources of the Snake River Plain in southeastern Idaho: U.S.
Geological Survey Water-Supply Paper 775, 268 p.

Whitehead, R.L., 1984, Geohydrologic framework of the Snake River Plain, Idaho
and eastern Oregon: U.S. Geological Survey Open-File Report 84-051, scale
1:1,000,000, 3 sheets.

Multiply By To obtain well 88-24E-31DAC1 is in the SWY4NEVAaSEV4, sec. 31, T. 8 S., R. 24 E., and In the western part of the Snake River Plain, ground water discharges as intercalated with basalt. Ground-water movement in the eastern part of the Snake River Plain is movement of water and perched aquifers have formed. Under surface-water- Snake and Boise Rivers. Hydraulic grad'}ents are steep: 1007.200 ]f:lt/rgl al;.)ngh th(cel Whlt?hi‘;d R.I;., ang I_Lnd];;(;llr:Ii Sl:r; lgiiaiiestétsuzft ge&l;y}]ff)lagls(: téséo?:;lil:agi

acre 4,047 square meter is the first well inventoried in that tract. The well-numbering system in Oregon is seepage to the Snake and Boise Rivers. West of the Snake River and in the vicinity Two-thirds of total ground-water discharge from the eastern plain is spring flow generally from northeast to southwest. Deviations are apparent near the margins of irrigated areas, perched water is common and local flow systems, independent of .northeasterr? boundary and 50—.100 Aft/ml along the lanal('e River. ; y rau1§ eta 1Sn o : e\;}z teer:Re:jufces Investigat;ons = ogrt 84_423}é4 30p- .
cubic foot per second 0.02832 cubic meter per referenced to the Willamette base line and meridian. of Lake Lowell, hydraulic heads decrease with depth. In those areas, water moves and seepage to the Snake River between Milner and King Hill. Included in that In the central part of the eastern plain, most ground water flows horizontally; no the plain, owing to underflow from tributary drainage basins, and along gaining the regional system, have developed. Some water in perched aquifers is withdrawn increases with depth in the Boise River valley, resulting in upward ground-water y u H%)v iomcme A 12\;215 - obse}v aﬁoﬁ wells i Tdaho
(ft¥/s) second In addition, a unique identification number is assigned to each well. This downward and recharges the ground-water system. East of Lake Lowell, hydraulic reach are 11 of the 65 known springs in the United States that discharge an average significant upward or downward movement is evident. reaches of the Snake River. Water-table gradients range from about 3 to 100 ft/mi for various uses; the remaining water eventually percolates to the regional system. movement. . . . Srvnlcs R Bl 0'-‘“}9571;85 US (’Seoijo ‘cEaI; Sl,:)urve Over File Report 83225, 282 p )
foot (ft) 0.3048 meter number is based on the well’s location with respect to latitude and longitude. For heads increase with depth and ground water discharges mainly to the Boise River of more than 100 ft*/s (Meinzer, 1927, p. 44). Piezometers in a U.S. Geological The north wall of the Snake River canyon from Milner to King Hill was mapped and average about 12 ft/mi. Gradients are lowest in the central part of the eastern Areas of perched aquifers, usually shallow, are shown on the map above. Effects Depth to .water is greatest 11-1 the central part gf tfebeallsterrll (rj\a e]rf werI ?ﬁn y o .an.d 'Nowitcﬁl i 1925;4 %round?wafer ot trena o ldaho —
foot per mile (ft/mi) 0.1894 meter per kilometer example, the number 424053113412801 indicates well 85—24E-31DAC1 is at as shown in section A-A’. In the Boise River valley, a well-developed network of Survey test hole, about 12 mi northeast of the springs, verify upward, as well as during the study (H.R. Covington, U.S. Geological Survey, written commun., 1983) plain, which is underlain by thick highly transmissive basalt. Horizontal movement of leakage from these aquifers to the regional aquifer system are not apparent at where tl.ie regional .water table is as mL.lCh as 1,000 ft below land surface. n e ourggz,‘ L.)S., and Mon! S, i .,Water,—ResourceS e e 8:%_4245
mile (mi) 1.609 kilometer latitude 42°40'53" and longitude 113°41'28". The sequential ending number (01, surface drains (ditches) intercepts ground water that otherwise would be discharged horizontal, flow in the vicinity of the Snake River. Additional evidence of upward to determine spring altitudes, geologic controls on spring locations, and relative of water in basalt is primarily through rubbly tops of flows where hydraulic the scale shown. Irrigated acreage and other land uses on the Snake River Plain in Boise River valley, in the Mud Lake-Egin Bench area, and northeast of American : U.S. Geologi urvey g D )

square mile (mi®) 2.590 square kilometer

etc.) allows for additional wells at the same general location.

to the river. The water table in much of the Boise River valley is shallow (several

water movement to the Snake River is springs that discharge directly into the river.

amounts of discharge from individual springs or groups of springs.

conductivities are high. Consequently, if the basalt sequence is thick and consists of

1980 were delineated from Landsat data (Lindholm and Goodell, 1984).

Falls Reservoir, water levels are less than 50 ft below land surface.
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