U.S. DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY

116°
Porthill
5 ~\oeu 5 =7 -
0 Hal T oo : \g / oA o T oosill «:e/
L. y ' W2 | (S 6,,,, di o
. & - » Mt Wam
ra } & B
37,
| !
Rex! .:f’fv,o .e

CORRELATION OF HYDROGEOLOGIC UNITS

Qal | ( Holocene

e
Qg Pleistocene

HYDROLOGIC INVESTIGATIONS ATLAS HA-738-A
Generalized hydrogeologic map—SHEET 1 OF 2

Tuck, LK., and others, 1996, Geologic history and hydrogeologic units of intermontane

DESCRIPTION OF HYDROGEOLOGIC UNITS

basins of the Northern Rocky Mountains, Montana and Idaho

N

MAJOR LITHOLOGY

AREAL EXTENT OF OUTCROPS

WATER-YIELDING PROPERTIES

QUATERNARY m ALLUVIAL DEPOSITS (Holocene and Pleistocene)—

Unconsolidated stream-laid gravel, sand, silt, and clay, that is
poorly to moderately well sorted. Includes some talus,

\ CENOZOIC colluvium, landslide and placer deposits, mine tailings, and

Mainly present along present-day stream channels,
flood plains and low-level terraces near rivers in
larger basins and as smaller deposits near perennial
and ephemeral streams. In mountainous areas, Qal
is found as narrow deposits that are not laterally or
vertically extensive. In most mountainous regions
these deposits are not shown on figure 2

Extensive deposits are present in the northern half
of the study area where the Cordilleran ice sheet
and mountain glaciers covered a large part of the
study area. In most mountainous regions these
deposits are not shown on figure 2. Scattered
deposits of Qg are found in the southern half of the
study area near the basin margins or in
mountainous areas, except for the Centennial
Valley and the Round Valley (Payette), which
contain Qg throughout their extent

Extensive deposits are present in central Idaho
where QTd covers most basins from the present-
day stream channels, flood plains, and low-level
terraces near streams and rivers to the basin
margins. In southwestern Montana, QTd is present
mostly near the basin margins or as scattered
erosional remnants where streams and rivers
dissect these deposits

Deposits and rocks crop out only in the southern
two-thirds of the study area. Ts is mainly found
near basin margins, as erosional remnants within
the basins, and as isolated outcrops on uplifted
fault-bounded blocks which form mountains

Most outcops are found in four general areas:
central Idaho where large outcrops extend to the
southern edge of the study area, extreme
southwestern Montana where scattered rocks crop
out, west-central Montana between Ovando and the
Butte-Three Forks area, and northern Idaho near
Coeur d’Alene Lake

The most extensive outcrops, present in central
Idaho and west-central Montana, are part of the
Idaho Batholith. Outcrops also are found in
northern Idaho. In Montana, outcrops between
Helena and Divide are part of the Boulder Batholith

Most of these rocks are present as isolated outcrops
east of longitude 113°15’ in the troughs of
synclines within uplifted fault-bounded mountain
masses and as scattered outcrops along the frontal
fold and thrust belt and Disturbed Belt

Paleozoic rocks are generally present in uplifted
fault-bounded blocks which form mountains in
southwestern and extreme northwestern Montana
and eastern Idaho

Metasedimentary rocks primarily crop out in the
northern half of the study area. These rocks are
also found in east-central Idaho, along the
Montana-Idaho State boundary from the southern
part of the Bitterroot Range to about Bannock Pass
in the Beaverhead Range

Metamorphic rocks primarily crop out in
southwestern Montana between Yellowstone
National Park, Wyo., and Missoula, Mont. Large
outcrops are present in central Idaho and are
associated with TKi of the Idaho Batholith.
Scattered outcrops are also present in northern
Idaho

Deposits yield abundant water to wells throughout the
study area. Yields range from 1 to 4,550 gal/min with a
median of 30 gal/min. Specific capacity ranges from 0.1
to 661 (gal/min)/ft with a median of 2 (gal/min)/ft.
Reported estimates of transmissivity include: 270,000
to 3,400,000 ft%d in the Rathdrum Prairie area (Drost
and Seitz, 1978); 87 to 45,600 ft%d in the Mission Valley
(Slagle, 1988); 2,670 to 23,400 ft¥d in the Upper Clark
Fork Valley (Konizeski and others, 1968); 2,000 to
38,000 ft%d in the Bitterroot Valley (McMurtrey and
others, 1972); 61,000 to 330,000 ft¥d in the Big Lost
River Valley (Bassick and Jones, 1992)

Generally, a limited source of water to wells owing to the
fine-grained material and very poor sorting of some
deposits. Yields are variable and might depend on
hydraulic interconnection of more permeable units
including interbedded gravel. Yields range from 0.2 to
1,500 gal/min with a median of 15 gal/min. Specific
capacity ranges from 0.1 to 475 (gal/min)/ft with a
median of 1 (gal/min)/ft . Reported estimates of
transmissivity include: 0.01 to 22,000 ft%d (Slagle,
1988) and 0.01 to 9 ft%d (Slagle, 1992); and 2,100 to
22,000 ft%d (Boettcher, 1982) in the Mission Valley

Yields are variable and might depend on hydraulic
interconnection with more permeable units and extent of
interbedded gravel. Yields range from 0.7 to 4,500
gal/min with a median of 60 gal/min. Specific capacity
ranges from 0.1 to 700 (gal/min)/ft with a median of 4
(gal/min)/ft

Yields are variable and might depend on hydraulic
interconnection with more permeable units and extent of
interbedded gravel. Yields range from 0.2 to 3,420
gal/min with a median of 20 gal/min. Specific capacity
ranges from 0.1 to 120 (gal/min)/ft with a median of

1 (gal/min)/ft. Reported estimates of transmissivity

include: 3.2 to 18 ft¥d in the Little Bitterroot Valley

(Slagle, 1988); 80 to 5,080 ft%d in the Upper Clark Fork
Valley (Konizeski and others, 1968); 320 to 1,500 ft/d
in the Bitterroot Valley (McMurtrey and others, 1972);
330 ft%d in the Missoula Valley (McMurtrey and others,
1965)

Yields are variable and depend on the occurrence and
extent of fractures, faults, breccia, and permeable zones
between lava flows. In some southern Idaho basins, this
unit supplies large volumes of water to wells. Reported
yields range from 5 to 500 gal/min and specific
capacitity ranges from 1 to 2,000 (gal/min)/ft
(Whitehead, 1994)

Yields are variable and depend on the occurrence and
extent of fractures and joints. Reported estimates of
transmissivity include about 27 ft%d in the Silver Bow
Creek valley (Botz, 1969); 890 ft%d in the Upper
Blackfoot Valley (Coffin and Wilke, 1971)

Generally consists of low permeability shale. Water-
yielding zones depend on occurrence and extent of more
permeable conglomerate and sandstone. Wells have
been completed in this unit where it crops out near basin
margins. Can yield water locally, but generally water-
yielding properties are unknown

Yields are variable and depend on the occurrence and
extent of fractures, caverns, and breccia. One spring
discharges in excess of 5 million gal/d (Lorenz and
McMurtrey, 1956). In some basins this unit probably
supplies large volumes of subsurface recharge to basin-
fill deposits

Yields are variable and depend on the occurrence and
extent of fractures. In some basins this unit probably
supplies large volumes of subsurface recharge to basin-
fill deposits through extensive fracture systems

Generally a barrier to ground-water flow. Might yield
water locally, but generally water-yielding
characteristics are unknown
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INTRODUCTION
The Regional Aquifer-System Analysis (RASA) Program is a series of studies by the U.S. Geological ] o ) ) ) : ) ) i
Survey (USGS) to analyze regional ground-water systems that compose a major portion of the Nation’s Geologic units within the Northern Rocky Mountains RASA study area is subdivided into 10 Idaho. In the south, the study area extends from the Snake River Plain in Idaho northward to the United The climate is characterized by cold winters and mild summers. Annual precipitation ranges from GEOLOGIC HISTORY

water supply (Sun, 1986). The Northern Rocky Mountains Intermontane Basins is one of the study re-
gions in this national program. The main objectives of the RASA studies are to: (1) describe the ground-
water systems as they exist today, (2) analyze the known changes that have led to the system’ present
conditions, (3) combine results of previous studies in a regional analysis, where possible, and (4) provide
means by which effects of future ground-water development can be estimated.

The purpose of this study, which began in 1990, was to increase understanding of the hydrogeology of
the intermontane basins of the Northern Rocky Mountains area. This report is Chapter A of a three-part
series and describes the geologic history and the general hydrogeologic units of the Northern Rocky Moun-
tains area. Chapter B (Briar and others, 1996) shows the general distribution of ground-water levels in the
basin-fill deposits. Chapter C (Clark and Dutton, 1996) describes the quality of ground water and surface
water in the study area.

This atlas provides a brief overview of the geologic history from early Precambrian time to the present
and describes major tectonic events, depositional environments, and structural features in the study area.
This atlas also describes the lithology, areal extent of outcrops, and water-yielding properties of the
hydrogeologic units, with an emphasis on Tertiary to Quaternary basin-fill deposits.

hydrogeologic units. These subdivisions generally are based on major lithology, geologic age, and water-
yielding properties. Hydrogeologic units in the study area consist of unconsolidated to consolidated basin-
fill deposits and consolidated bedrock. Basin-fill deposits that are aquifers include Holocene and Pleis-
tocene alluvial deposits (Qal), Pleistocene glacial deposits (Qg), Quaternary and Tertiary undifferentiated
deposits (QTd), and Tertiary sedimentary deposits and rocks (Ts). Bedrock units that are aquifers in the
study area include Quaternary through Cretaceous extrusive rocks (QTKe), Tertiary through Cretaceous
intrusive rocks (TKi), Mesozoic clastic and carbonate rocks (Mzsh), Paleozoic carbonate and clastic rocks
(Pzls), Middle Proterozoic metasedimentary rocks (Yms) and Cretaceous through Archean metamorphic
rocks (KAm). Clastic and carbonate rocks (Mzsh) and metamorphic rocks (KAm) can yield water locally,
but generally their water-yielding properties are unknown.

LOCATION AND GENERAL FEATURES

The Northern Rocky Mountains Intermontane Basins study area encompasses about 77,500 mi? in
western Montana and central and northern Idaho (fig. 1). The study area extends from near the eastern
front of the Rocky Mountains in Montana westward to the basalt plains of the Columbia Plateau in western

States-Canada border. The Continental Divide separates the study area into two major drainage systems—
the Missouri River drainage to the east and the Columbia River drainage to the west. Major tributaries of
the Missouri River drainage in the study area include the Beaverhead, Ruby, Big Hole, Jefferson, Madison,
and Gallatin Rivers. Major tributaries of the Columbia River drainage in the study area include the Kootenai,
Blackfoot, Bitterroot, Flathead, Clark Fork/Pend Oreille, Spokane, Salmon, Selway, Lochsa, South Fork
Clearwater, and North Fork Clearwater Rivers.

Topography in the study area is varied. Land surface altitudes range from about 2,000 ft in the Kootenai
River Valley in the northwestern part of the study area to more than 12,000 ft in the Lost River Range in
the south-central part of the study area. In northwestern Montana and central Idaho, mountain ranges
typically are separated by narrow, steep-sided valleys that have little or no basin-fill deposits. In contrast,
the ranges of southwestern Montana and east-central and northern Idaho are separated by wide, relatively
level valleys that are deeply filled with basin-fill deposits. Valley floor altitudes range from about 2,000 ft
in the Kootenai River Valley to about 7,000 ft in the Sawtooth Valley in south-central Idaho.

about 8 in. for basins of east-central Idaho to about 100 in. for some mountainous parts of Montana. Most
valleys receive about 10 to 30 in. of precipitation per year, with more than one-half falling in winter and
spring. Large winter snowpacks in the mountains gradually release their water content as snowmelt that
maintains streamflow well into summer.

Major physiographic features in the study area include 54 generally north-south trending intermont-
ane basins (or valleys) (fig. 1). For the purpose of this study, “basin” refers to topographic as well as
geologic structural basins. The perimeters of the basins are approximated from topography, geologic struc-
ture, extent of basin fill, and results of previous studies. The intermontane basins range in area from less
than 10 mi” to more than 700 mi? and are filled with unconsolidated to consolidated Tertiary to Quaternary
continental deposits. Intermontane basins compose about 16 percent of the study area. All basins have
through-flowing perennial streams with recent flood plains. In most southern basins, these flood plains are
adjacent to older river terraces which grade into pediments or alluvial fans that meet mountain fronts with
an abrupt change in slope. In northern basins, recent flood plains are adjacent to glacial deposits which
extend to mountain fronts; in some areas, the glacial deposits reach an altitude of as much as 6,000 ft above
sea level. Mountain fronts commonly coincide with faults or fault systems along which the basins have
been down dropped relative to the mountains.

The early geologic history of the study area involved several episodes of tectonism and regional
metamorphism, erosion, and deposition. Major tectonic events probably occurred about 3,000; 2,750;
1,600; 1,400-1,300; and 800 m.y. (James and Hedge, 1980; James, 1990) producing granitic plutons,
gneiss, amphibolite, schist, dolomitic marble, quartzite, and banded iron (fig. 2, KAm). The oldest sedi-
mentary rocks in the study area might be as old as 1,700 m.y. (Ruppel, 1986). These Early to Middle
Proterozoic rocks (Yms) form a thick sequence of argillite, siltstone, and sandstone With some volcanic
tuffs, which were deposited as turbidites (Hahn and Hughes, 1984). In Middle Proterozoic time, central
Idaho was uplifted to form a highland area that created two areas of deposition which persisted through the

* remainder of the Proterozoic. Sediments from this highland were deposited southward into a deep-ocean

basin along the western margin of North America in west-central Idaho (Ruppel, 1986) and northward into
a basin in western Montana now called the Belt Basin.
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