


DEPARTMENT OF THE INTERIOR  
UNITED STATES GEOLOGICAL SURVEY

PALEOTECTONIC MAPS



JURASSIC SYSTEM

By

Edwin D. McKee, Steven S. Oriel, Vernon E. Swanson,  
Marjorie E. MacLachlan, James C. MacLachlan, Keith B. Ketner,  
June Waterman Goldsmith, Ruth Young Bell, and Dolores J. Jameson  
With a separate section on paleogeography by Ralph W. Imlay

PUBLISHED BY THE U. S. GEOLOGICAL SURVEY  
WASHINGTON, D. C.  
1956

UTAH POWER AND LIGHT  
MINING AND EXPLORATION  
LIBRARY

## CONTENTS

| Page                                                     | Column | Page         | Column | Page         | Column |
|----------------------------------------------------------|--------|--------------|--------|--------------|--------|
| TEXT                                                     |        | INTRODUCTION |        | INTRODUCTION |        |
| INDEX TO LOCALITIES AND SOURCES                          |        | 1 1          |        | 1 1          |        |
| Acknowledgments for information                          |        | 1 1          |        | 1 1          |        |
| MAP OF CONTROL POINTS (PL. 1)                            |        | 1 2          |        | 1 2          |        |
| PALEOGEOLOGIC MAP (PL. 2)                                |        | 1 2          |        | 1 2          |        |
| Atlantic Coast region                                    |        | 1 2          |        | 1 2          |        |
| Gulf Coast region                                        |        | 1 2          |        | 1 2          |        |
| Alabama and Mississippi, units underlying Jurassic       |        | 1 2          |        | 1 2          |        |
| Arkansas and Louisiana, units underlying Jurassic        |        | 1 3          |        | 1 3          |        |
| East Texas, units underlying Jurassic                    |        | 1 3          |        | 1 3          |        |
| Lower boundary of Jurassic                               |        | 1 3          |        | 1 3          |        |
| West Texas                                               |        | 1 3          |        | 1 3          |        |
| Midcontinent region                                      |        | 1 3          |        | 1 3          |        |
| Kansas and Nebraska, units underlying Jurassic           |        | 1 3          |        | 1 3          |        |
| Eastern Colorado, units underlying Jurassic              |        | 1 4          |        | 1 4          |        |
| Lower boundary of Jurassic                               |        | 1 4          |        | 1 4          |        |
| Southwest region                                         |        | 1 4          |        | 1 4          |        |
| Arizona and New Mexico, units underlying Jurassic        |        | 1 4          |        | 1 4          |        |
| Lower boundary of Jurassic                               |        | 1 4          |        | 1 4          |        |
| Utah and Western Colorado                                |        | 1 4          |        | 1 4          |        |
| Units underlying Jurassic                                |        | 1 5          |        | 1 5          |        |
| Lower boundary of Jurassic                               |        | 1 5          |        | 1 5          |        |
| Idaho, Wyoming, and South Dakota                         |        | 1 5          |        | 1 5          |        |
| Units underlying Jurassic                                |        | 1 5          |        | 1 5          |        |
| Lower boundary of Jurassic system                        |        | 1 5          |        | 1 5          |        |
| Montana and North Dakota                                 |        | 1 5          |        | 1 5          |        |
| Units underlying Jurassic                                |        | 1 5          |        | 1 5          |        |
| Lower boundary of Jurassic system                        |        | 1 5          |        | 1 5          |        |
| Nevada                                                   |        | 1 5          |        | 1 5          |        |
| West Coast region                                        |        | 1 6          |        | 1 6          |        |
| Washington and Oregon, units underlying Jurassic         |        | 1 6          |        | 1 6          |        |
| California, units underlying Jurassic                    |        | 1 6          |        | 1 6          |        |
| SUMMARY MAP OF JURASSIC THICKNESSES (PL. 3)              |        | 1 6          |        | 1 6          |        |
| Atlantic Coast region                                    |        | 1 6          |        | 1 6          |        |
| Florida                                                  |        | 1 6          |        | 1 6          |        |
| Gulf Coast region                                        |        | 1 6          |        | 1 6          |        |
| West Texas                                               |        | 1 6          |        | 1 6          |        |
| Midcontinent region                                      |        | 1 7          |        | 1 7          |        |
| Thickness and trends                                     |        | 1 7          |        | 1 7          |        |
| Southwest region                                         |        | 1 7          |        | 1 7          |        |
| Utah and western Colorado                                |        | 1 7          |        | 1 7          |        |
| Idaho, Wyoming, and South Dakota                         |        | 1 7          |        | 1 7          |        |
| Montana and North Dakota                                 |        | 1 8          |        | 1 8          |        |
| Thickness and trends                                     |        | 1 8          |        | 1 8          |        |
| Western Nevada                                           |        | 1 8          |        | 1 8          |        |
| Western Idaho—eastern Oregon                             |        | 1 8          |        | 1 8          |        |
| West Coast region                                        |        | 1 8          |        | 1 8          |        |
| LITHOFACIES MAPS AND SUBDIVISIONS OF THE JURASSIC SYSTEM |        | 1 8          |        | 1 8          |        |
| Jurassic subdivisions                                    |        | 1 9          |        | 1 9          |        |
| Sources of correlations                                  |        | 1 9          |        | 1 9          |        |
| Index to formations                                      |        | 1 9          |        | 1 9          |        |
| Generalized correlation chart                            |        | 1 9          |        | 1 9          |        |
| Lithofacies and thickness maps (Pls. 4-7)                |        | 1 9          |        | 1 9          |        |
| Purposes of maps                                         |        | 1 9          |        | 1 9          |        |
| Lithofacies map symbols                                  |        | 1 9          |        | 1 9          |        |
| INTERVAL A (PL. 4)                                       |        | 1 9          |        | 1 9          |        |
| Southwest region                                         |        | 1 10         |        | 1 10         |        |
| Formations included                                      |        | 1 10         |        | 1 10         |        |
| Thickness trends                                         |        | 1 10         |        | 1 10         |        |
| Lithofacies trends                                       |        | 1 10         |        | 1 10         |        |
| Origin and source of sediments                           |        | 1 10         |        | 1 10         |        |
| Upper boundary of Interval A                             |        | 1 10         |        | 1 10         |        |
| Utah and western Colorado                                |        | 1 10         |        | 1 10         |        |
| Formations included                                      |        | 2 1          |        | 2 1          |        |
| Thickness trends                                         |        | 2 1          |        | 2 1          |        |
| Lithofacies trends                                       |        | 2 1          |        | 2 1          |        |
| Upper boundary of Interval A                             |        | 2 1          |        | 2 1          |        |
| Idaho and Wyoming                                        |        | 2 1          |        | 2 1          |        |
| Formation included                                       |        | 2 1          |        | 2 1          |        |
| Map trends                                               |        | 2 1          |        | 2 1          |        |
| Upper boundary of Interval A                             |        | 2 1          |        | 2 1          |        |
| Western Nevada                                           |        | 2 1          |        | 2 1          |        |
| West Coast region                                        |        | 2 1          |        | 2 1          |        |
| California formations included                           |        | 2 1          |        | 2 1          |        |
| Oregon formations included                               |        | 2 1          |        | 2 1          |        |
| INTERVAL B (PL. 5)                                       |        | 2 2          |        | 2 2          |        |
| Gulf Coast region                                        |        | 2 2          |        | 2 2          |        |
| Formations included                                      |        | 2 2          |        | 2 2          |        |
| Map data                                                 |        | 2 2          |        | 2 2          |        |
| Midcontinent region                                      |        | 2 2          |        | 2 2          |        |
| Formations included and map data                         |        | 2 2          |        | 2 2          |        |
| Upper boundary of Interval B                             |        | 2 2          |        | 2 2          |        |
| Southwest region                                         |        | 2 3          |        | 2 3          |        |
| Formations included and thickness trends                 |        | 2 3          |        | 2 3          |        |
| Lithofacies trends                                       |        | 2 3          |        | 2 3          |        |
| Origin and source of sediments                           |        | 2 3          |        | 2 3          |        |
| Upper boundary of Interval B                             |        | 2 4          |        | 2 4          |        |
| Utah and western Colorado                                |        | 2 4          |        | 2 4          |        |
| Formations included                                      |        | 2 4          |        | 2 4          |        |
| Thickness trends                                         |        | 2 4          |        | 2 4          |        |
| Lithofacies trends                                       |        | 2 4          |        | 2 4          |        |
| Upper boundary of Interval B                             |        | 2 4          |        | 2 4          |        |
| Idaho, Wyoming, and South Dakota                         |        | 2 4          |        | 2 4          |        |
| Formations included                                      |        | 2 4          |        | 2 4          |        |
| Thickness trends                                         |        | 2 4          |        | 2 4          |        |
| Lithofacies trends                                       |        | 2 4          |        | 2 4          |        |
| Upper boundary of Interval B                             |        | 2 5          |        | 2 5          |        |
| Montana and North Dakota                                 |        | 2 5          |        | 2 5          |        |
| Formations included                                      |        | 2 5          |        | 2 5          |        |
| Thickness trends                                         |        | 2 6          |        | 2 6          |        |
| Lithofacies trends                                       |        | 2 6          |        | 2 6          |        |
| Upper boundary of Interval B                             |        | 2 6          |        | 2 6          |        |
| West Coast region                                        |        | 2 6          |        | 2 6          |        |
| California formations included                           |        | 2 6          |        | 2 6          |        |
| Oregon and western Idaho formations included             |        | 2 6          |        | 2 6          |        |
| Washington formations included                           |        | 2 7          |        | 2 7          |        |
| Significance of available data                           |        | 2 7          |        | 2 7          |        |
| INTERVAL C (PL. 6)                                       |        | 2 7          |        | 2 7          |        |
| Gulf Coast region                                        |        | 2 7          |        | 2 7          |        |
| Formations included                                      |        | 2 7          |        | 2 7          |        |
| Thickness trends                                         |        | 2 7          |        | 2 7          |        |
| Lithofacies trends                                       |        | 2 7          |        | 2 7          |        |
| Upper boundary of Interval C                             |        | 2 8          |        | 2 8          |        |
| West Texas                                               |        | 2 8          |        | 2 8          |        |
| Midcontinent region                                      |        | 2 8          |        | 2 8          |        |
| Rocks included                                           |        | 2 8          |        | 2 8          |        |
| Thickness and lithofacies trends                         |        | 2 8          |        | 2 8          |        |
| Upper boundary of Interval C                             |        | 2 9          |        | 2 9          |        |
| Significance of chalcocite bed                           |        | 2 9          |        | 2 9          |        |
| Southwest region                                         |        | 2 9          |        | 2 9          |        |
| Formations included                                      |        | 2 9          |        | 2 9          |        |
| Thickness trends                                         |        | 2 9          |        | 2 9          |        |
| Lithofacies trends                                       |        | 2 9          |        | 2 9          |        |
| Significance of evaporite deposits                       |        | 2 9          |        | 2 9          |        |
| Upper boundary of Interval C                             |        | 2 10         |        | 2 10         |        |
| Utah and western Colorado                                |        | 2 10         |        | 2 10         |        |
| Formations included                                      |        | 2 10         |        | 2 10         |        |
| Thickness trends                                         |        | 2 10         |        | 2 10         |        |
| Lithofacies trends                                       |        | 2 10         |        | 2 10         |        |
| Upper boundary of Interval C                             |        | 2 10         |        | 2 10         |        |
| Idaho, Wyoming, and South Dakota                         |        | 2 1          |        | 2 1          |        |
| Formations included                                      |        | 2 1          |        | 2 1          |        |
| Thickness and lithofacies trends                         |        | 2 1          |        | 2 1          |        |
| Upper boundary of Interval C                             |        | 2 1          |        | 2 1          |        |
| West Coast region                                        |        | 2 2          |        | 2 2          |        |
| Problem of age assignment                                |        | 2 2          |        | 2 2          |        |
| California formations included                           |        | 2 2          |        | 2 2          |        |
| Oregon formations included                               |        | 2 2          |        | 2 2          |        |
| Washington formations included                           |        | 2 2          |        | 2 2          |        |
| INTERVAL D (PL. 7)                                       |        | 2 2          |        | 2 2          |        |
| Atlantic Coast region                                    |        | 2 2          |        | 2 2          |        |
| Gulf Coast region                                        |        | 2 2          |        | 2 2          |        |
| Formations included                                      |        | 2 2          |        | 2 2          |        |
| Thickness trends                                         |        | 2 2          |        | 2 2          |        |
| Lithofacies trends                                       |        | 2 2          |        | 2 2          |        |
| West Texas                                               |        | 2 2          |        | 2 2          |        |
| Midcontinent region                                      |        | 2 2          |        | 2 2          |        |
| Formation included                                       |        | 2 2          |        | 2 2          |        |
| INTERVAL E (PL. 8)                                       |        | 2 2          |        | 2 2          |        |
| Southwest region                                         |        | 2 2          |        | 2 2          |        |
| Formations included                                      |        | 2 2          |        | 2 2          |        |
| Thickness trends                                         |        | 2 2          |        | 2 2          |        |
| Lithofacies trends                                       |        | 2 2          |        | 2 2          |        |
| Upper boundary of Interval E                             |        | 2 2          |        | 2 2          |        |
| Utah and western Colorado                                |        | 2 2          |        | 2 2          |        |
| Formations included                                      |        | 2 2          |        | 2 2          |        |
| Thickness trends                                         |        | 2 2          |        | 2 2          |        |
| Lithofacies trends                                       |        | 2 2          |        | 2 2          |        |
| Upper boundary of Interval E                             |        | 2 2          |        | 2 2          |        |
| Idaho, Wyoming, and South Dakota                         |        | 2 2          |        | 2 2          |        |
| Formations included                                      |        | 2 2          |        | 2 2          |        |
| Thickness trends                                         |        | 2 2          |        | 2 2          |        |
| Lithofacies trends                                       |        | 2 2          |        | 2 2          |        |
| Upper boundary of Interval E                             |        | 2 2          |        | 2 2          |        |
| West Coast region                                        |        | 2 2          |        | 2 2          |        |
| California formations included                           |        | 2 2          |        | 2 2          |        |
| Oregon formations included                               |        | 2 2          |        | 2 2          |        |
| Washington formations included                           |        | 2 2          |        | 2 2          |        |
| INTERVAL F (PL. 9)                                       |        | 2 2          |        | 2 2          |        |
| Southwest region                                         |        | 2 2          |        | 2 2          |        |
| Formations included                                      |        | 2 2          |        | 2 2          |        |
| Thickness trends                                         |        | 2 2          |        | 2 2          |        |
| Lithofacies trends                                       |        | 2 2          |        | 2 2          |        |
| Upper boundary of Interval F                             |        | 2 2          |        | 2 2          |        |
| Utah and western Colorado                                |        | 2 2          |        | 2 2          |        |
| Formations included                                      |        | 2 2          |        | 2 2          |        |
| Thickness trends                                         |        | 2 2          |        | 2 2          |        |
| Lithofacies trends                                       |        | 2 2          |        | 2 2          |        |
| Upper boundary of Interval F                             |        | 2 2          |        | 2 2          |        |
| Idaho, Wyoming, and southeastern Idaho                   |        | 2 2          |        | 2 2          |        |
| Formations included                                      |        | 2 2          |        | 2 2          |        |
| Thickness and lithofacies trends                         |        | 2 2          |        | 2 2          |        |
| Upper boundary of Interval F                             |        | 2 2          |        | 2 2          |        |
| South Dakota, Wyoming, and southeastern Idaho            |        | 2 2          |        | 2 2          |        |
| Formations included                                      |        | 2 2          |        | 2 2          |        |
| Thickness and lithofacies trends                         |        | 2 2          |        | 2 2          |        |
| Upper boundary of Interval F                             |        | 2 2          |        | 2 2          |        |
| West Coast region                                        |        | 2 2          |        | 2 2          |        |
| California formations included                           |        | 2 2          |        | 2 2          |        |
| Franciscan formation                                     |        | 2 2          |        | 2 2          |        |
| Knoxville formation                                      |        | 2 2          |        | 2 2          |        |
| Franciscan-Knoxville relations</td                       |        |              |        |              |        |

## PALEOTECTONIC MAPS OF THE JURASSIC SYSTEM

Edwin D. McKee, Steven S. Oriol, Vernon E. Swanson, Marjorie E. MacLachlan,  
James C. MacLachlan, Keith B. Ketner, June Waterman Goldsmith, Ruth Young Bell, and Dolores J. Jameson

### INTRODUCTION

Paleotectonic map compilation was begun by the U. S. Geological Survey in July, 1951. Work on the project was suspended in the fall of 1953, and from then on the staff of the paleotectonic map project has consisted of six to seven geologists. The objective of this program is to prepare folios that depict rock thicknesses, generalized lithology, ancient geography, and other regional relations for each of the geological systems of the United States, and to interpret these data in terms of tectonic evolution.

The Jurassic system is the first for which a synthesis has been prepared in the form of a folio. It was selected for this purpose because it appeared to be well suited for the development of the objective of the project. The folio of this system is of current economic interest; they also include a wide variety of types, but they are believed not to be as complex stratigraphically as extensive as those of most other systems.

Data have been compiled with the objective of developing a permanent, useful, and accurate record that can be continuously updated. The file consists of punch cards arranged by State. A card is prepared for each formation at every locality for which data are available; each card contains the formation name, locality or map number, geologic age, source of data, and a summary of additional data. The cards are arranged in the paleotectonic map project located in the Federal Center at Denver, Colo., are open and available for the use of all geologists, except for relatively few data obtained in confidence.

In accumulating information, initial efforts normally are directed toward the published record which is systematically arranged in the cards. Among unpublished materials the most important are well logs and measured section files. Through the courtesy of sample log companies, oil companies, and university and survey well-log libraries, data from thousands of wells have been made available to the project staff. Other significant sources of data have been the records of the cooperative geological surveys, the records from individuals, from State surveys, and from various groups within the U. S. Geological Survey. These data have contributed much toward the solution of local and regional problems.

With few exceptions, all accumulations of data on Jurassic rocks were taken from the literature. Strigraphic data were compiled for each State at a scale of 1:1,000,000. They are presented on maps covering nine folios in this folio. Seven of the maps are of the United States on a scale of 1:5,000,000. They were prepared as objectively as possible, although a certain amount of interpretation was necessary to make the data, collected from diverse sources, mutually consistent. Also in this folio are two plates made up of maps of a more subjective nature; they represent interpretations of the factual data.

The interpretive maps include a series of nine paleogeographic maps and a summary map (pl. 8) prepared by the project. The maps are based upon his extensive and detailed studies of Jurassic faunas and sections, show the positions of shorelines, land masses, and sources of sediments during short time intervals. Other interpretive maps included in the folio are environmental maps on plate 9. These portray details of depositional environments in certain areas, control points and sections, and data sheets. These maps are speculative presentations prepared by various members of the project from data compiled in connection with the other maps.

The Jurassic folio represents the cooperative efforts of the entire staff of the paleotectonic map project. Each is responsible for the preparation of compilation for a particular region, with coordination by the project chief and general guidance as to scope and procedures from a steering committee of eight appointed by the Chief Geologist. Distribution of assignments among project staff was as follows:

Edwin D. McKee  
Midcontinent region  
Steven S. Oriol  
Southwest region  
Edwin D. McKee  
Utah and western Colorado  
James C. MacLachlan  
Wyoming, Montana, North Dakota,  
South Dakota  
June Waterman Goldsmith  
Nevada  
Keith B. Ketner  
West Coast region  
Vernon E. Swanson

The project was directed by James Gilluly in the early stages and by Edwin D. McKee later, with an over-lapping period of joint responsibility. During the early stages, Wyoming, Montana, North Dakota, and South Dakota was by Ruth Young Bell and on Utah and Idaho by Dolores J. Jameson.

### INDEX TO LOCALITIES AND SOURCES

The index that immediately precedes the folio is a list of localities. It is designed to enable the reader to determine the precise location and the original source data for each point used on the maps in this folio. Citations, necessarily brief because of the number of control points, include publications and unpublished reports, well-log sections, and personal communications.

This index is not intended to be a complete bibliography, although it does include references to all publications used in establishing control points on the maps. The bibliographic reference list for the folio appears at the end of the text.

### ACKNOWLEDGMENTS FOR INFORMATION

Many individuals and organizations have generously contributed information in the form of measured sections, well-log data, and other detailed records that were used for the successful preparation of this folio. The list of names on the locality index indicates those to whom the project is indebted. This folio would be incomplete, however, if the names of those who contributed most extensively were not mentioned here.

Applin, J. L. and E. R., U. S. Geological Survey, Jackson, Miss.  
Bass, N. W., U. S. Geological Survey, Denver, Colo.  
Callaghan, Eugene, and associates, New Mexico Bureau of Mines and Mineral Resources, Socorro, N. Mex.  
Childs, Orla, Phillips Petroleum Co., Denver, Colo.  
Cline, C. L., University of Colorado, Boulder, Colo.  
Clark, L. W., U. S. Geological Survey, Menlo Park, Calif.

Craig, L. C., and associates, U. S. Geological Survey, Grand Junction, Colo.

Danner, W. R., University of British Columbia, Vancouver, B. C., Canada.

Ferguson, H. G., U. S. Geological Survey, Washington, D. C.

Hadley, H. D., and associates, Billings Geological Service, Billings, Mont.

Hartshorn, W. E., U. S. Geological Survey, Denver, Colo.

Harschbarger, J. W., and associates, U. S. Geological Survey, Holbrook, Ariz.

Hazzard, R. T., Gulf Oil Co., Shreveport, La., The Texas Co., Denver, Colo.

Kelley, C. V., University of New Mexico, Albuquerque, N. Mex.

Knight, W. H., Union Oil Co., Jackson, Miss.

Love, J. D., U. S. Geological Survey, Laramie, Wyo.

Low, J. W., The California Co., Los Angeles, Calif.

Lynch, W. D., The California Co., Denver, Colo.

Maher, J. C., U. S. Geological Survey, Tulsa, Okla.

Mallory, W. W., Phillips Petroleum Co., Denver, Colo.

Merriam, D. F., Kansas Geological Survey, Lawrence, Kans.

Miller, P. C., University of Washington, Seattle, Wash.

Mitchell, J. G., American Stratigraphic Co., Denver, Colo.

Muller, S. W., Stanford University, Stanford, Calif.

Northrop, Stuart, University of New Mexico, Albuquerque, N. Mex.

Oppenheimer, Colorado School of Mines, Golden, Colo.

Reed, E. C., Nebraska Geological Survey, Lincoln, Nebr.

Talisferro, N. L., University of California, Berkeley, Calif.

Trowbridge, Raymond, Tyler, Tex.

Wells, A. A., and associates, U. S. Geological Survey, Albuquerque, N. Mex.

Wells, A. A., and associates, U. S. Geological Survey, Albuquerque, N. Mex.

MAP OF CONTROL POINTS  
(PL. 1)

Plate 1 shows the location of all control points used in the folio. It follows a legend designed to identify the source of data for any portion of the paleogeographic, isopach, or lithofacies maps. Numbers shown adjacent to control points on the map correspond to numbers in the locality index that precedes it. This map, with the accompanying index, should make it possible for the reader to (1) compare the significance of the location of a control point in this folio with his own, (2) evaluate the significance of various control points in making later interpretations of his own, and (3) compare maps prepared by various members of the project from data compiled in connection with the other maps.

The interpretive maps include a series of nine paleogeographic maps and a summary map (pl. 8) prepared by the project chief. These maps, based upon his extensive and detailed studies of Jurassic faunas and sections, show the positions of shorelines, land masses, and sources of sediments during short time intervals. Other interpretive maps included in the folio are environmental maps on plate 9. These portray details of depositional environments in certain areas, control points and sections, and data sheets. These maps are speculative presentations prepared by various members of the project from data compiled in connection with the other maps.

The Jurassic folio represents the cooperative efforts of the entire staff of the paleotectonic map project. Each is responsible for the preparation of compilation for a particular region, with coordination by the project chief and general guidance as to scope and procedures from a steering committee of eight appointed by the Chief Geologist. Distribution of assignments among project staff was as follows:

Edwin D. McKee  
Midcontinent region  
Steven S. Oriol  
Southwest region  
Edwin D. McKee  
Utah and western Colorado  
James C. MacLachlan  
Wyoming, Montana, North Dakota,  
South Dakota  
June Waterman Goldsmith  
Nevada  
Keith B. Ketner  
West Coast region  
Vernon E. Swanson

The project was directed by James Gilluly in the early stages and by Edwin D. McKee later, with an over-lapping period of joint responsibility. During the early stages, Wyoming, Montana, North Dakota, and South Dakota was by Ruth Young Bell and on Utah and Idaho by Dolores J. Jameson.

### INDEX TO LOCALITIES AND SOURCES

The index that immediately precedes the folio is a list of localities. It is designed to enable the reader to determine the precise location and the original source data for each point used on the maps in this folio. Citations, necessarily brief because of the number of control points, include publications and unpublished reports, well-log sections, and personal communications.

This index is not intended to be a complete bibliography, although it does include references to all publications used in establishing control points on the maps. The bibliographic reference list for the folio appears at the end of the text.

### ACKNOWLEDGMENTS FOR INFORMATION

Many individuals and organizations have generously contributed information in the form of measured sections, well-log data, and other detailed records that were used for the successful preparation of this folio. The list of names on the locality index indicates those to whom the project is indebted. This folio would be incomplete, however, if the names of those who contributed most extensively were not mentioned here.

Applin, J. L. and E. R., U. S. Geological Survey, Jackson, Miss.  
Bass, N. W., U. S. Geological Survey, Denver, Colo.  
Callaghan, Eugene, and associates, New Mexico Bureau of Mines and Mineral Resources, Socorro, N. Mex.

Childs, Orla, Phillips Petroleum Co., Denver, Colo.

Cline, C. L., University of Colorado, Boulder, Colo.

Clark, L. W., U. S. Geological Survey, Menlo Park, Calif.

Craig, L. C., and associates, U. S. Geological Survey, Grand Junction, Colo.

Danner, W. R., University of British Columbia, Vancouver, B. C., Canada.

Ferguson, H. G., U. S. Geological Survey, Washington, D. C.

Hadley, H. D., and associates, Billings Geological Service, Billings, Mont.

Hartshorn, W. E., U. S. Geological Survey, Denver, Colo.

Harschbarger, J. W., and associates, U. S. Geological Survey, Holbrook, Ariz.

Hazzard, R. T., Gulf Oil Co., Shreveport, La., The Texas Co., Denver, Colo.

Kelley, C. V., University of New Mexico, Albuquerque, N. Mex.

Knight, W. H., Union Oil Co., Jackson, Miss.

Lake, J. W., The California Co., Los Angeles, Calif.

Lynch, W. D., The California Co., Denver, Colo.

Love, J. D., U. S. Geological Survey, Laramie, Wyo.

Low, J. W., The California Co., Los Angeles, Calif.

Oppenheimer, Colorado School of Mines, Golden, Colo.

Reed, E. C., Nebraska Geological Survey, Lincoln, Nebr.

Taliferro, N. L., University of California, Berkeley, Calif.

Trowbridge, Raymond, Tyler, Tex.

Wells, A. A., and associates, U. S. Geological Survey, Albuquerque, N. Mex.

Wells, A. A., and associates, U. S. Geological Survey, Denver, Colo.

Wells, A. A., and associates, U. S. Geological Survey, Holbrook, Ariz.

Wells, A. A., and associates, U. S. Geological Survey, Jackson, Miss.

Wells, A. A., and associates, U. S. Geological Survey, Los Angeles, Calif.

Wells, A. A., and associates, U. S. Geological Survey, Menlo Park, Calif.

Wells, A. A., and associates, U. S. Geological Survey, Washington, D. C.

Wells, A. A., and associates, U. S. Geological Survey, Denver, Colo.

Wells, A. A., and associates, U. S. Geological Survey, Holbrook, Ariz.

Wells, A. A., and associates, U. S. Geological Survey, Jackson, Miss.

Wells, A. A., and associates, U. S. Geological Survey, Los Angeles, Calif.

Wells, A. A., and associates, U. S. Geological Survey, Menlo Park, Calif.

Wells, A. A., and associates, U. S. Geological Survey, Washington, D. C.

Wells, A. A., and associates, U. S. Geological Survey, Denver, Colo.

Wells, A. A., and associates, U. S. Geological Survey, Holbrook, Ariz.

Wells, A. A., and associates, U. S. Geological Survey, Jackson, Miss.

Wells, A. A., and associates, U. S. Geological Survey, Los Angeles, Calif.

Wells, A. A., and associates, U. S. Geological Survey, Menlo Park, Calif.

Wells, A. A., and associates, U. S. Geological Survey, Washington, D. C.

Wells, A. A., and associates, U. S. Geological Survey, Denver, Colo.

Wells, A. A., and associates, U. S. Geological Survey, Holbrook, Ariz.

Wells, A. A., and associates, U. S. Geological Survey, Jackson, Miss.

Wells, A. A., and associates, U. S. Geological Survey, Los Angeles, Calif.

Wells, A. A., and associates, U. S. Geological Survey, Menlo Park, Calif.

Wells, A. A., and associates, U. S. Geological Survey, Washington, D. C.

Wells, A. A., and associates, U. S. Geological Survey, Denver, Colo.

Wells, A. A., and associates, U. S. Geological Survey, Holbrook, Ariz.

Wells, A. A., and associates, U. S. Geological Survey, Jackson, Miss.

Wells, A. A., and associates, U. S. Geological Survey, Los Angeles, Calif.

Wells, A. A., and associates, U. S. Geological Survey, Menlo Park, Calif.

Wells, A. A., and associates, U. S. Geological Survey, Washington, D. C.

Wells, A. A., and associates, U. S. Geological Survey, Denver, Colo.

Wells, A. A., and associates, U. S. Geological Survey, Holbrook, Ariz.

Wells, A. A., and associates, U. S. Geological Survey, Jackson, Miss.

Wells, A. A., and associates, U. S. Geological Survey, Los Angeles, Calif.

Wells, A. A., and associates, U. S. Geological Survey, Menlo Park, Calif.

Wells, A. A., and associates, U. S. Geological Survey, Washington, D. C.

Wells, A. A., and associates, U. S. Geological Survey, Denver, Colo.

Wells, A. A., and associates, U. S. Geological Survey, Holbrook, Ariz.

Wells, A. A., and associates, U. S. Geological Survey, Jackson, Miss.

Wells, A. A., and associates, U. S. Geological Survey, Los Angeles, Calif.





## REFERENCES CITED

Albritton, C. C., Jr., 1938, Stratigraphy and structure of the Malone Mountains, Texas: *Geol. Soc. America Bull.*, v. 49, p. 1747-1806.

Anderson, A. L., 1930, The geology and mineral resources of the region about Orofino, Idaho: *Idaho Bur. Mines and Geology Pamph.* no. 34, 63 p.

Anderson, F. M., 1945, Knoxville series in the California Mesozoic: *Geol. Soc. America Bull.*, v. 56, p. 909-1014.

Anderson, S. B., 1953a, Summary of the Hunt Oil Company Shoemaker No. 1 Well: *North Dakota Geol. Survey Cire.* 8.

Anderson, S. B., 1953b, Summary of H. L. Hunt Oil Company Oliver Olson No. 1: *North Dakota Geol. Survey Cire.* 9.

Anderson, S. B., 1953c, Summary of the Ajax Oil Company Bell No. 1 Well: *North Dakota Geol. Survey Cire.* 10.

Anderson, C. H., 1946, Geology of the Quay County, New Mexico: *Geol. Soc. America Bull.*, v. 57, p. 1215-1230.

Anderson, S. B., 1953d, Summary of the Barnett Gaior No. 1 Well: *North Dakota Geol. Survey Cire.* 11.

Anderson, S. B., 1953e, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 12.

Anderson, S. B., 1953f, Summary of William Herbert Hunt Trust Estate Joe J. and Anna Wald No. 1: *North Dakota Geol. Survey Cire.* 12.

Anderson, S. B., 1953g, Summary of the Fritz F. Leutz No. 1 Well: *North Dakota Geol. Survey Cire.* 13.

Anderson, S. B., 1953h, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 14.

Anderson, S. B., 1953i, Summary of the Elvin Peplinski No. 1 Well: *North Dakota Geol. Survey Cire.* 17.

Anderson, S. B., 1953k, Summary of the McLean County No. 1 Well: *North Dakota Geol. Survey Cire.* 18.

Anderson, S. B., 1953l, Summary of the General Atas Carbon Company, Albert Kettlering No. 1: *North Dakota Geol. Survey Cire.* 19.

Anderson, S. B., 1953m, Summary of the S. D. Johnson-John Roth No. 1: *North Dakota Geol. Survey Cire.* 34.

Anderson, F. E., 1936, Geology of the Pinnacles National Monument: *California Univ. Dept. Geol. Sci. Bull.*, v. 24, p. 1-38.

Appin, P. L., 1951, Preliminary report on buried pre-Mesozoic rocks in Florida and adjacent States: *U. S. Geol. Survey Cire.* 91, 28 p.

Appin, P. L., and Appin, E. R., 1953, The core section in George Vason's well #1, Stone County, Miss.: *U. S. Geol. Survey Cire.* 29.

Appin, P. L., 1953, Geology and oil resources of the Gasquel quadrangle, in Florida and adjacent States: *U. S. Geol. Survey Cire.* 91, 28 p.

Baker, A. A., 1933, Geology and oil possibilities of the Moab district, Grand and San Juan Counties, Utah: *U. S. Geol. Survey Bull.*, 84, 95 p.

Baker, A. A., 1936, Geology of Monument Valley-Najavo Mountain region, San Juan County, Utah: *U. S. Geol. Survey Bull.*, 95, 122 p.

Baker, A. A., 1947, Stratigraphy of the Wasatch Mountains in the vicinity of Provo, Utah: *U. S. Geol. Survey Oil and Gas Inv. Prelim. Chart* 30.

Baker, A. A., Dame, C. H., and Garfield Counties, Utah: *U. S. Geol. Survey Bull.*, 95, 122 p.

Baker, A. A., 1948, Correlation of the Jurassic formations of parts of Utah, Arizona, New Mexico, and Colorado: *U. S. Geol. Survey Prof. Paper*, 183, 66 p.

Baker, C. L., 1947, Deep borings of western South Dakota: *South Dakota Geol. Survey Rept.* Inv. 57.

Baker, C. L., 1948, The Pennington-Haakon County central boundary area with general discussion of its surroundings: *South Dakota Geol. Survey Rept.* Inv. 64.

Baker, C. L., 1951, Well borings in South Dakota, 1948-50: *South Dakota Geol. Survey Rept.* Inv. 67.

Baker, C. L., 1950, Geology of the Rawlins uplift, Carbon County, Wyo.: *Unpubl. M.A. thesis*, Univ. Wyoming.

Baker, N. W., 1946, Subsurface maps of the Rangeley anticline, Rio Blanco County, Colo.: *U. S. Geol. Survey Oil and Gas Inv. Prelim. Map* 67.

Bass, N. W., Straub, C. E., and Woodbury, H. O., 1947, Structure contour map of the surface rocks of the Model anticline, Las Animas County, Colo.: *U. S. Geol. Survey Oil and Gas Inv. Prelim. Map* 68.

Bauer, E. J., 1952, Geologic map and structure sections of the Wagonhound Creek area, Carbon County, Wyo.: *Unpubl. M.A. thesis*, Univ. Wyoming.

Bergstrom, J. R., 1950, Geology of the east portion of the Casper Mountain and vicinity: *Unpubl. M.A. thesis*, Univ. Wyoming.

Bissell, H. J., 1952, Stratigraphy and structure of northeast Strawberry Valley quadrangle, Utah: *Am. Assoc. Petroleum Geologists Bull.*, v. 36, p. 575-634.

Bissell, H. J., 1954, The Kaiparwotis region, in *Intermountain Assoc. of Petroleum Geologists Guidebook*, Fifth annual field conference, p. 63-70.

Blair, R. W., 1951, Subsurface geologic cross sections of Mesozoic rocks in northeastern Colorado: *U. S. Geol. Survey Oil and Gas Inv. Chart* 42.

Blanpied, B. W., and Hazzard, R. T., 1944a, Development in north Louisiana and south Arkansas in 1942: *Am. Assoc. Petroleum Geologists Bull.*, v. 28, p. 257-277.

Blanpied, B. W., and Hazzard, R. T., 1944b, Field and wildcat developments in south Arkansas in 1942: *Am. Assoc. Petroleum Geologists Bull.*, v. 28, p. 326-332.

Blanpied, B. W., and Hazzard, R. T., 1944c, Interesting wildcat wells drilled in north Louisiana in 1942: *Am. Assoc. Petroleum Geologists Bull.*, v. 28, p. 544-561.

Blixt, J. E., 1933, Geology and gold deposits of the North Moccasin Mountains, Fergus County, Mont.: *Montana Bur. Mines and Geology Mem.* 8.

Brainerd, A. E., Carter, S. L., and Curtis, B. F., 1947, Frannie oil field, Park County, Wyo., in Wyoming Geol. Assoc. Guidebook, Field conference in the Bighorn basin, p. 241-246.

Branner, J. C., Newsom, J. F., and Arnold, R., 1959, Description of the Santa Cruz Quadrangle, Calif.: *U. S. Geol. Survey Quadrangle Atlas*, folio 163.

Anderson, S. B., 1953a, Summary of the Hunt Oil Company Shoemaker No. 1 Well: *North Dakota Geol. Survey Cire.* 8.

Anderson, S. B., 1953b, Summary of H. L. Hunt Oil Company Oliver Olson No. 1: *North Dakota Geol. Survey Cire.* 9.

Anderson, S. B., 1953c, Summary of the Ajax Oil Company Bell No. 1 Well: *North Dakota Geol. Survey Cire.* 10.

Anderson, S. B., 1953d, Summary of the Taylorville region, California: *U. S. Geol. Survey Bull.*, 353, 128 p.

Diller, J. S., and Kay, G. F., 1924, Description of the Riddell quadrangle: *U. S. Geol. Survey Geol. Atlas*, folio 218.

Burbank, W. S., 1940, Structural control of ore deposition in the Uenom-pahge district, Ouray County, Colo.: *U. S. Geol. Survey Bull.*, 39, p. 189-265.

Burk, C. A., 1953, Electric log correlation of the Triassic rocks of south-eastern Wyoming, in Wyoming Geol. Assoc. and Univ. Wyoming Guidebook, Eighth annual field conference, p. 29-33.

Caldwell, J. W., 1953a, Summary of the Continental-Pure Oil Co., Paul H. McCay No. 1: *North Dakota Geol. Survey Cire.* 21.

Caldwell, J. W., 1953b, Summary of the Fritz F. Leutz No. 1 Well: *North Dakota Geol. Survey Cire.* 13.

Caldwell, J. W., 1953c, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Caldwell, J. W., 1953d, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Caldwell, J. W., 1953e, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Caldwell, J. W., 1953f, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Calahan, J. T., 1951a, Plateau, v. 23, p. 49-57.

Calahan, J. T., 1951b, The geology of the Glen Canyon group of the Echo Cliffs region, Ariz.: *Unpubl. M.S. thesis*, Univ. Arizona, 91 p.

Camp, C. L., 1942, Ichthyosaurus rostrum from central California: *Jour. Paleontology*, v. 16, p. 362-371.

Carlson, C. E., 1949, Areal geology and stratigraphy of the Red Fork-Powder River area, Johnson County, Wyo.: *Unpubl. M.A. thesis*, Univ. Wyoming.

Carpenter, C. B., and Schroeder, H. J., 1943, Magnolia oil field, Columbia County, Ark. Part I, Petroleum engineering study: *U. S. Bur. Min. Rept.* Inv. 3720.

Anderson, S. B., 1953n, Summary of the Elmer Heine No. 1 Well: *North Dakota Geol. Survey Cire.* 29.

Anderson, S. B., 1953o, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 17.

Anderson, S. B., 1953p, Summary of the McLean County No. 1 Well: *North Dakota Geol. Survey Cire.* 18.

Anderson, S. B., 1953q, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953r, Summary of the General Atas Carbon Company, Albert Kettlering No. 1: *North Dakota Geol. Survey Cire.* 19.

Anderson, S. B., 1953s, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953t, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 13.

Anderson, S. B., 1953u, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953v, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953w, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953x, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953y, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953z, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953aa, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953bb, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953cc, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953dd, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953ee, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953ff, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953gg, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953hh, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953ii, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953jj, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953kk, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953ll, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953mm, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953nn, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953oo, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953pp, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953qq, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953rr, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953ss, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953tt, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953uu, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953vv, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953ww, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953xx, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953yy, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953zz, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953aa, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953bb, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953cc, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953dd, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953ee, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953ff, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953gg, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953hh, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953ii, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953jj, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953kk, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953ll, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953mm, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953oo, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953pp, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953qq, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953ss, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953tt, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953uu, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953vv, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953ww, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953xx, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953yy, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953zz, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953aa, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953bb, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953cc, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953dd, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953ee, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953ff, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953gg, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953hh, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953ii, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953jj, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953kk, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953ll, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953mm, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953oo, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953pp, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953qq, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953ss, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953tt, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953uu, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953vv, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953ww, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953xx, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953yy, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.

Anderson, S. B., 1953zz, Summary of the Henry O. Bakken No. 1: *North Dakota Geol. Survey Cire.* 16.

Anderson, S. B., 1953aa, Summary of the Wanete Oil Company, M. O. Lee and Silas Engen No. 1: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953bb, Summary of the Peter Lenerz No. 1 Well: *North Dakota Geol. Survey Cire.* 24.

Anderson, S. B., 1953cc, Summary of the Emma Kleven No. 1 Well: *North Dakota Geol. Survey Cire.* 33.</p

TABLE 2.—GENERALIZED CORRELATION CHART SHOWING STRATIGRAPHIC UNITS IN MAJOR JURASSIC DIVISIONS

The figure is a geological cross-section diagram for the Western Interior Region, spanning from the Toarcian stage (Interval A) to the Morrison formation (Interval D). The diagram is organized into four main vertical columns representing the Western, Interior, and Region sections, with a fifth column for European stages.

**Western Section:** This column shows the stratigraphy from the Toarcian to the Morrison formation. Key formations include the Nugget sandstone, Twin Creek formation, Carmel formation, Rierdon formation, Arapien shale, Entrada sandstone, and various members of the Entrada and Carmel formations.

**Interior Section:** This column shows the stratigraphy from the Toarcian to the Morrison formation. Key formations include the Navajo sandstone, Nugget sandstone, Kayenta formation, Entrada sandstone, and various members of the Entrada and Carmel formations.

**Region Section:** This column shows the stratigraphy from the Toarcian to the Morrison formation. Key formations include the Navajo sandstone, Nugget sandstone, Kayenta formation, Entrada sandstone, and various members of the Entrada and Carmel formations.

**European Stages:** This column provides the European stage equivalents for the geological intervals.

**Intervals:**

- Interval A:** Toarcian, Pliensbachian, Sinemurian, Hettangian. Shows the development of the Nugget sandstone and its facies changes.
- Interval B:** Callovian, Bathonian, Bajocian. Shows the development of the Twin Creek, Carmel, and Rierdon formations, along with the Arapien shale and Entrada sandstone.
- Interval C:** Oxfordian. Shows the development of the Swift, Stump sandstone, Curtis, and Redwater shale member formations, along with the Sundance, Winsor, and Summerville formations.
- Interval D:** Portlandian, Kimmeridgian. Shows the development of the Morrison formation, including the Brushy Basin, Westwater Canyon, Recapture, Salt Wash, and Bluff sandstone members, along with the Junction Creek, Wanakah (restricted), Middle shale, and Cow Springs formations.

The figure is a geological cross-section diagram showing the stratigraphy of the Western US, from Nevada to the Gulf of Mexico, across four intervals (A, B, C, D) and various geological stages. The diagram illustrates the thickness and lateral extent of various formations and groups, including the Schuler, Malone, and Buckner formations, and the Amador group.

**Map intervals and European stages:**

- Map intervals: NEVADA, WEST, COAST, REGION, TEXAS, GULF REGION.
- European stages: Eastern and southern Nevada, Western Nevada, North-central Washington, Southwestern Oregon, East-central Oregon, western Idaho, Western California, North-central California, Northeastern California, East-central California, Eastern California, West Texas, East Texas to Alabama.

**Geological Units (from top to bottom):**

- Interval D:**
  - Portlandian: Schuler formation.
  - Kimmeridgian: Malone formation, Cotton Valley group, Bossier formation.
- Interval C:**
  - Oxfordian: Buckner member, Smackover formation, Norphlet formation.
  - Galice formation.
  - Rogue formation.
  - Dothan formation.
  - Trowbridge shale.
  - unnamed shale and volcanic rocks (Idaho).
  - Amador group: Hinchman sandstone, Bicknell sandstone.
  - Mariposa slate.
  - Foreman formation.
  - Lonesome formation.
  - Dewdney Creek formation.
  - Shuskan formation.
  - Nooksack formation (lower part).
  - Nooksack formation (upper part).
- Interval B:**
  - Callovian: unnamed volcanic rocks.
  - Bathonian: unnamed volcanic rocks.
  - Bajocian: Izee group, Colpitts group.
  - Dothan formation.
  - Trowbridge shale.
  - unnamed shale and volcanic rocks (Idaho).
  - Amador group: unnamed volcanic rocks, Mormon sandstone, Thompson limestone.
  - Milton formation (upper part).
  - Louann salt, Werner formation.
- Interval A:**
  - Toarcian: Dunlap formation.
  - Pliensbachian: Mowich group.
  - Sinemurian: Potem formation.
  - Hettangian: Fant andesite.
  - Lias: Bagley andesite.
  - Aztec sandstone: Hardgrave sandstone.
  - Navajo sandstone: Trail formation.
  - Nugget sandstone: Arviston formation.
  - Sunrise formation: Donovan formation.

## INDEX TO LOCALITIES AND SOURCES (PL. 1)

Citations of sources of data used in compilation of the maps fall into five categories (see below). Complete bibliographic data for individual sources are given in the index to sources as these are listed under References Cited at the end of the text. An asterisk (\*) denotes that the source is not a formal publication of the organization and, therefore, is not listed in the Bibliography.

1. Published data are shown as author's name; year of publication; page, plate, or figure, as cited in the text.

2. Unpublished reports and these are referred to in the same manner as 1, except that the date of the report is given in parentheses.

3. Unpublished measured sections from the files of organizations are indicated by asterisk (\*). Names of individual sections are not given (if known, otherwise date is omitted).

4. The names of organizations in the files of organizations are cited as follows: name of organization; asterisk; representative committee or individual who made the report (if known, otherwise date is omitted).

5. Unpublished maps are shown as follows: name of organization; company; drilling well number; name of area; name of map; date of map; organization consulted for interpretation of well; year samples were examined (if known).

Abbreviations used in the index include the following:

AmStrat, American Stratigraphic Company

Bd, Bureau, Geological Survey

Bu, Bureau, Geological Survey

Chem, Chemical

Corp, Corporation

Devol, Development

Dilling, Dilling

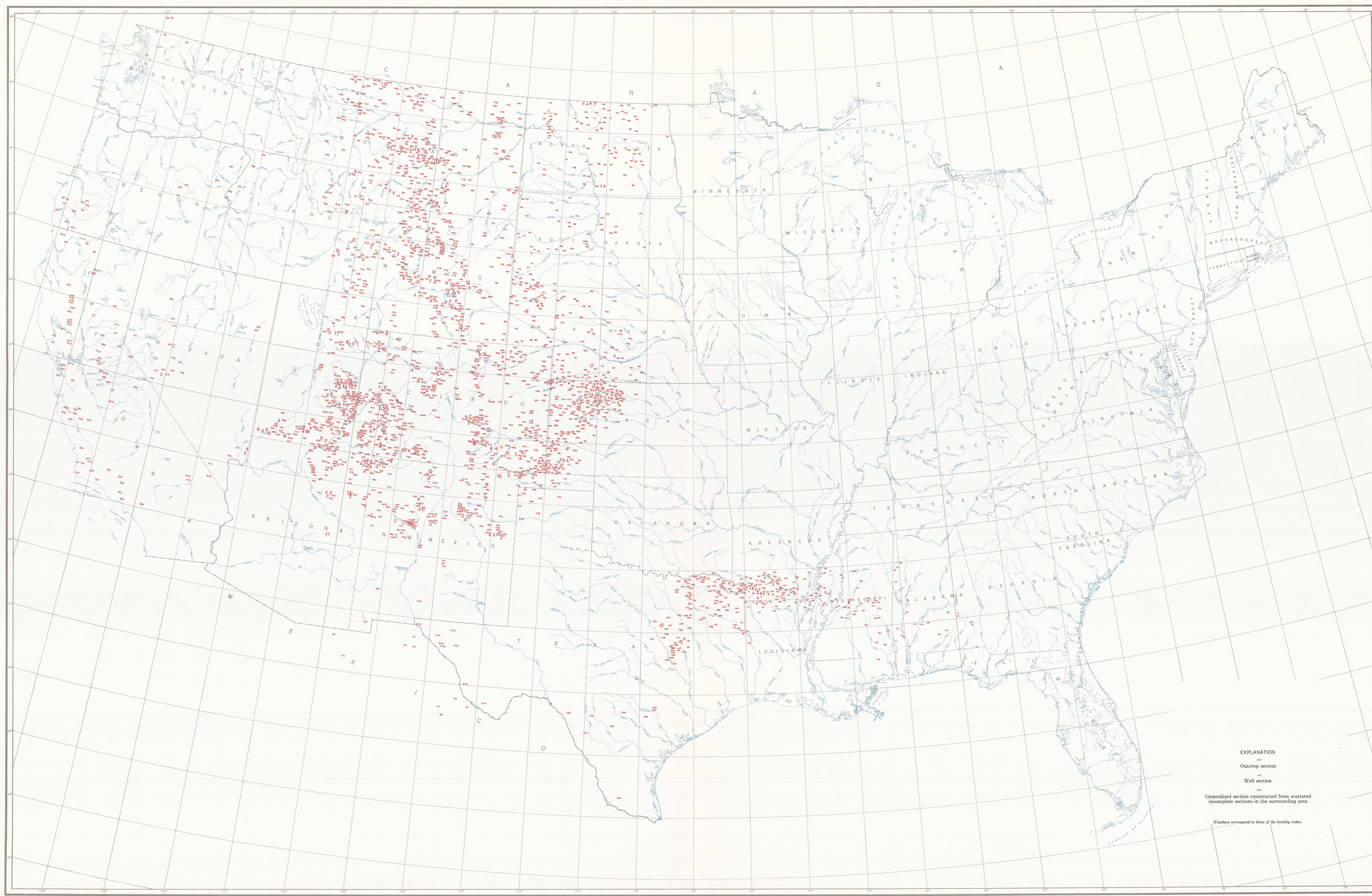
Eng, Engineering

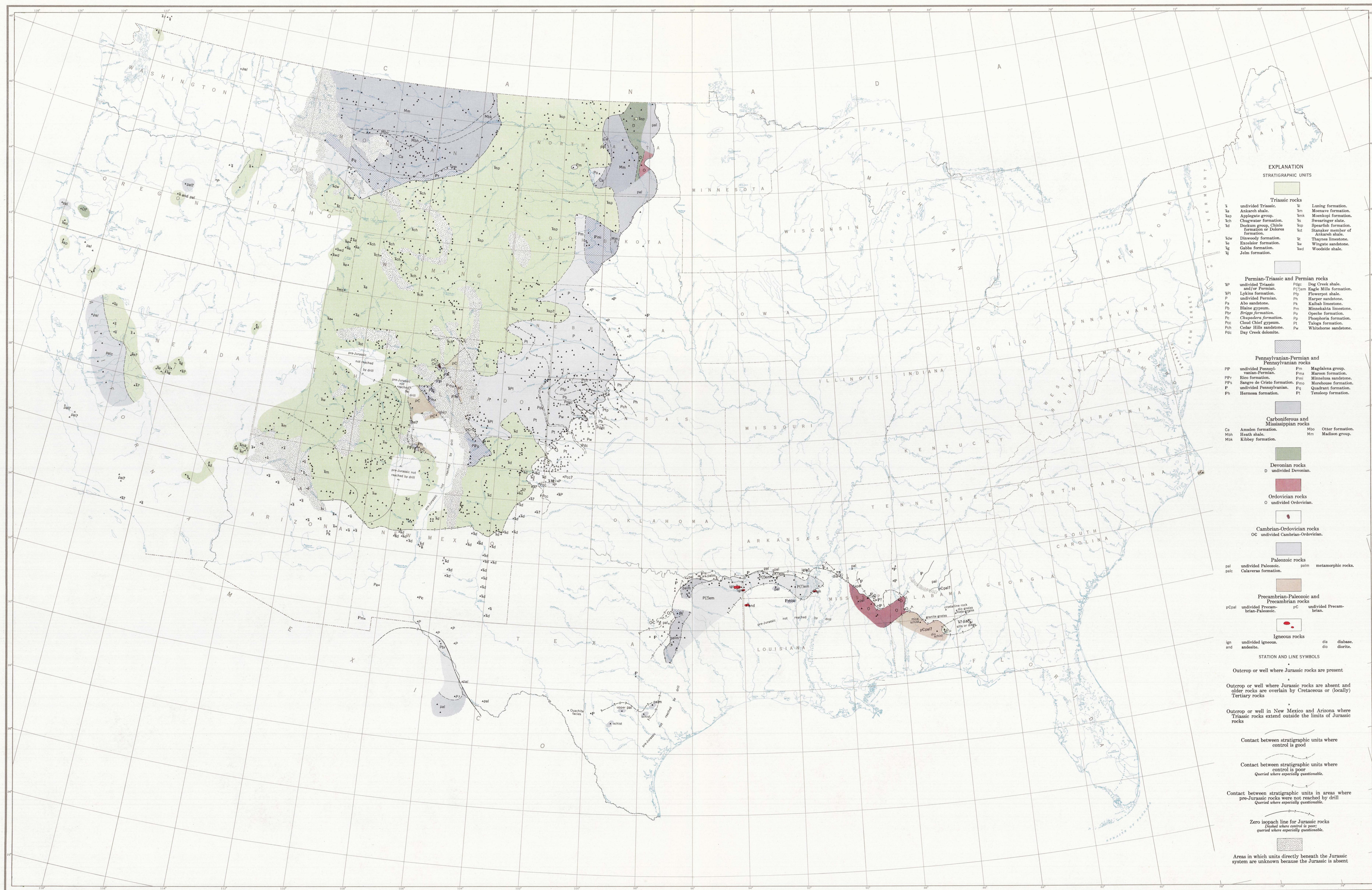
Explor, Exploration

Fig, Figure

Geol, Geologic

Geolgeol, Geologic

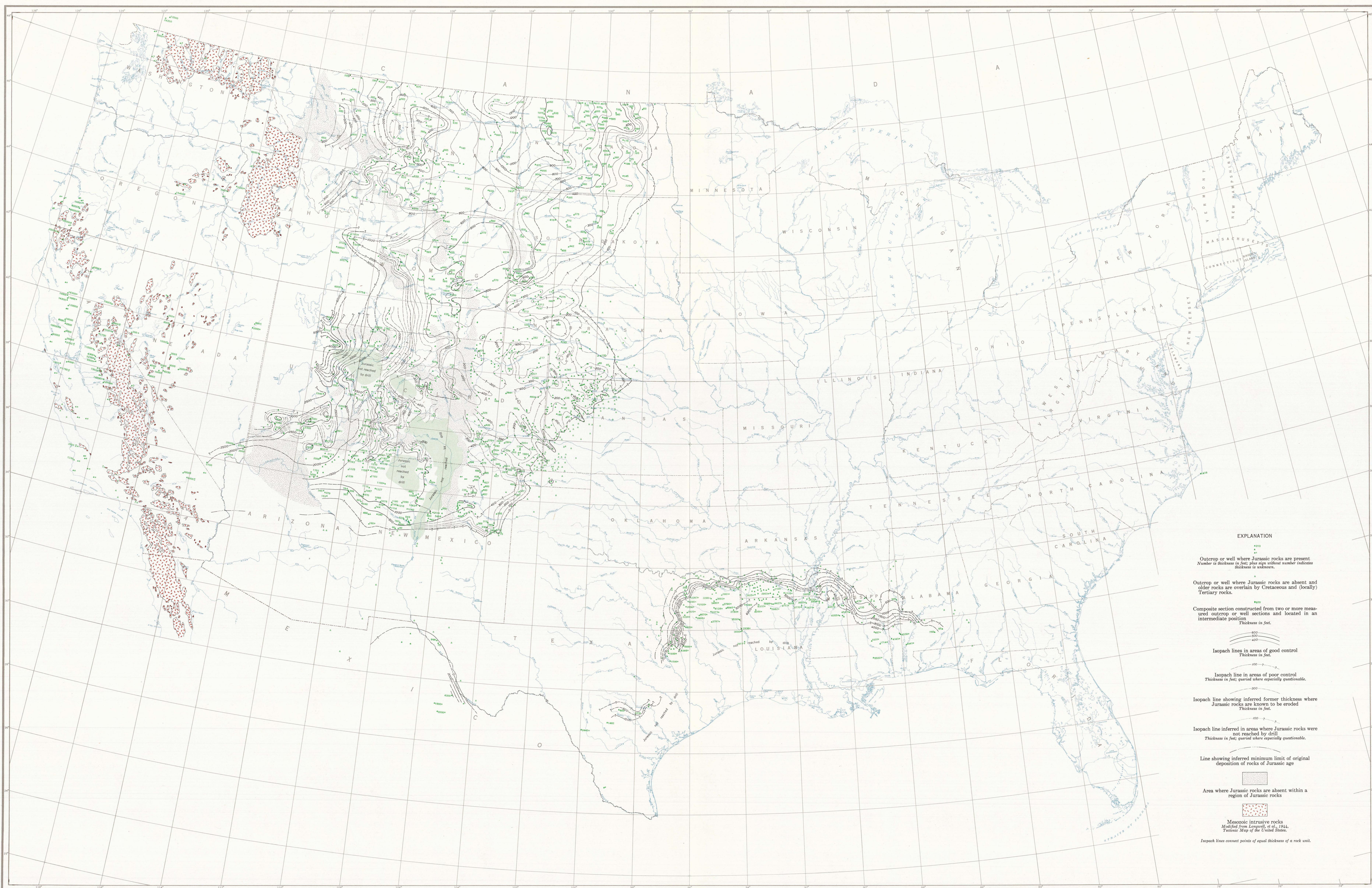

Gen, General


Geol, Geologic

Geolgeol, Geologic

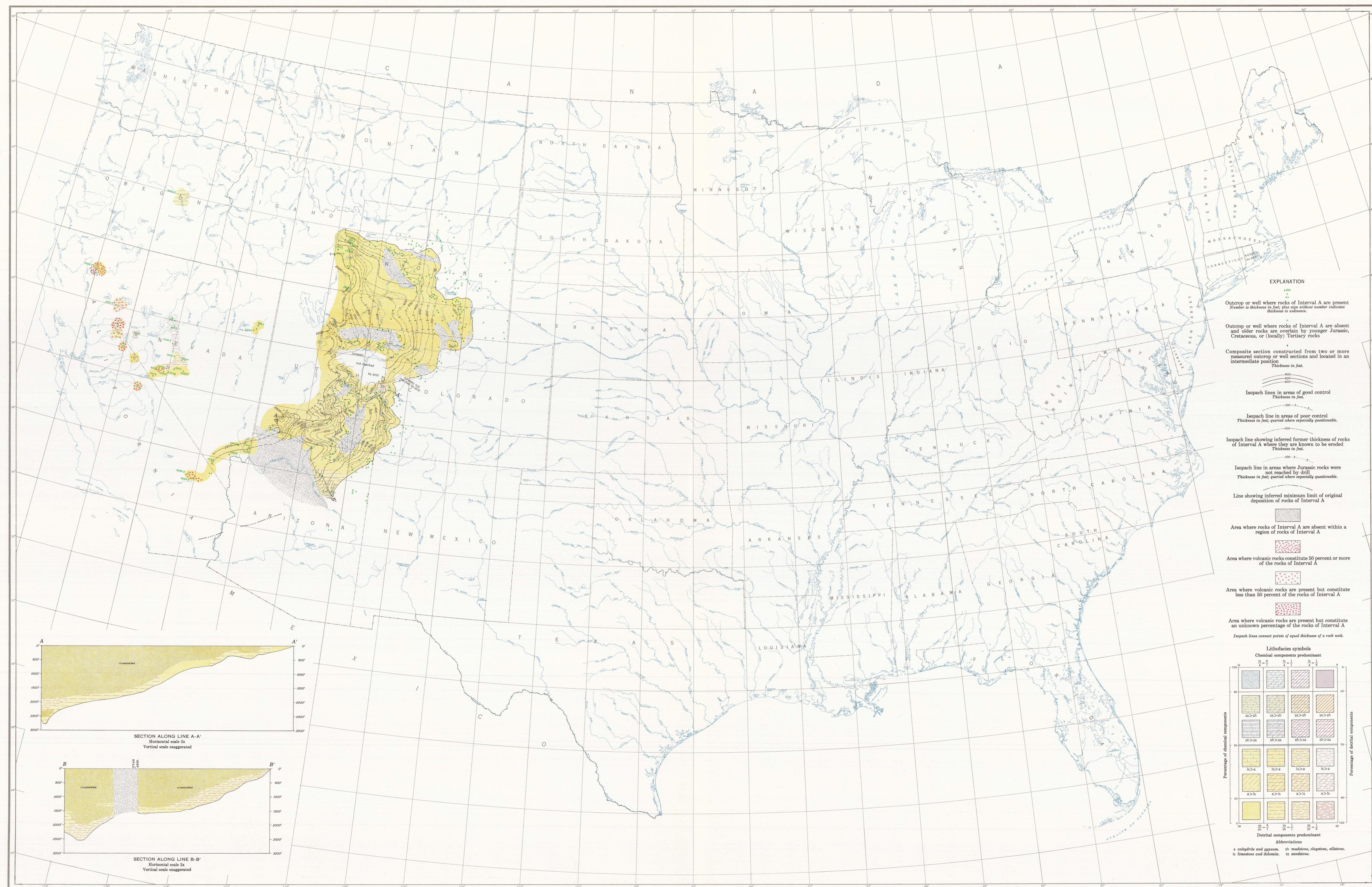
Geolgeol,

## INDEX TO LOCALITIES AND SOURCES (PL. 1)



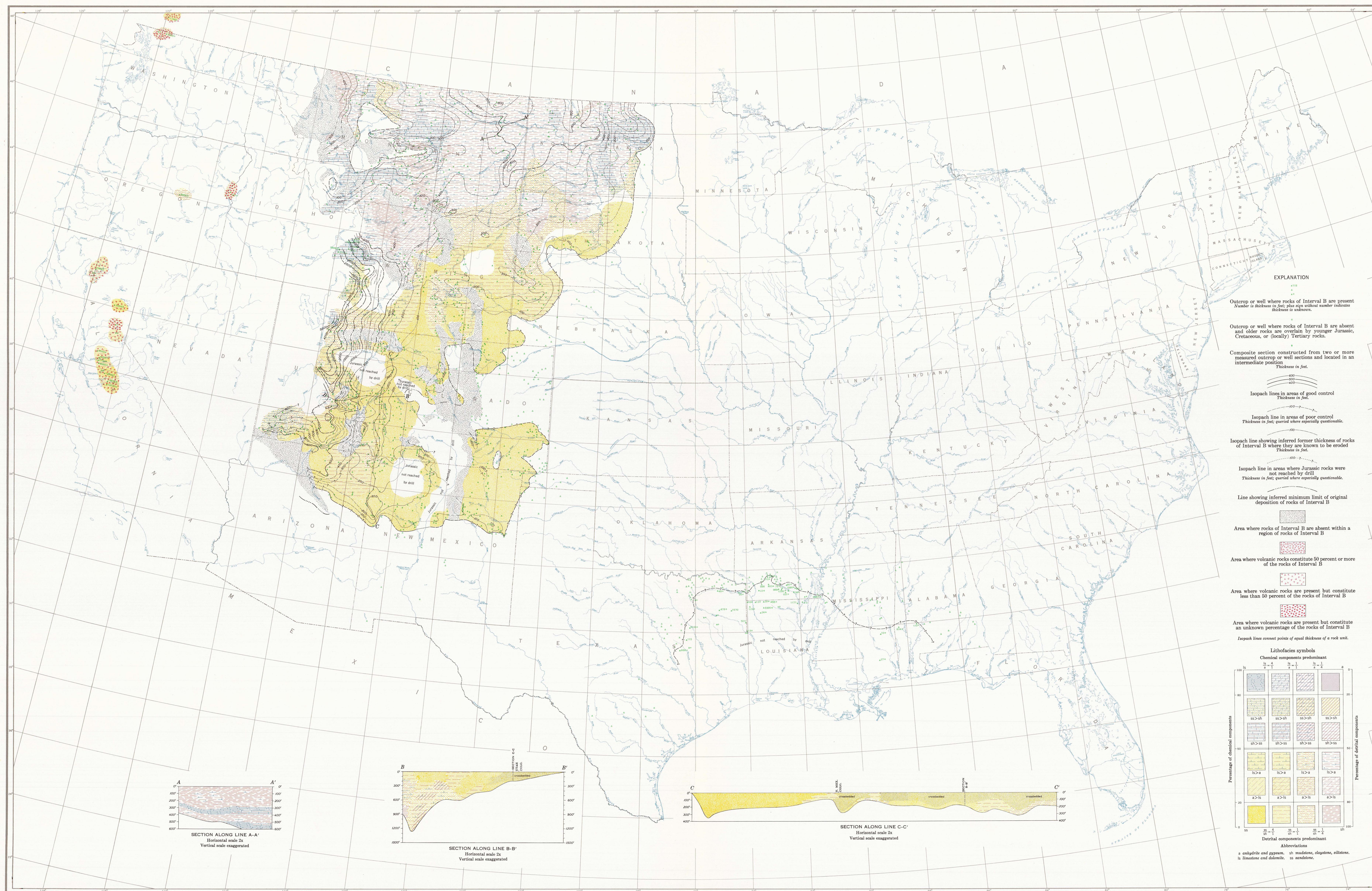


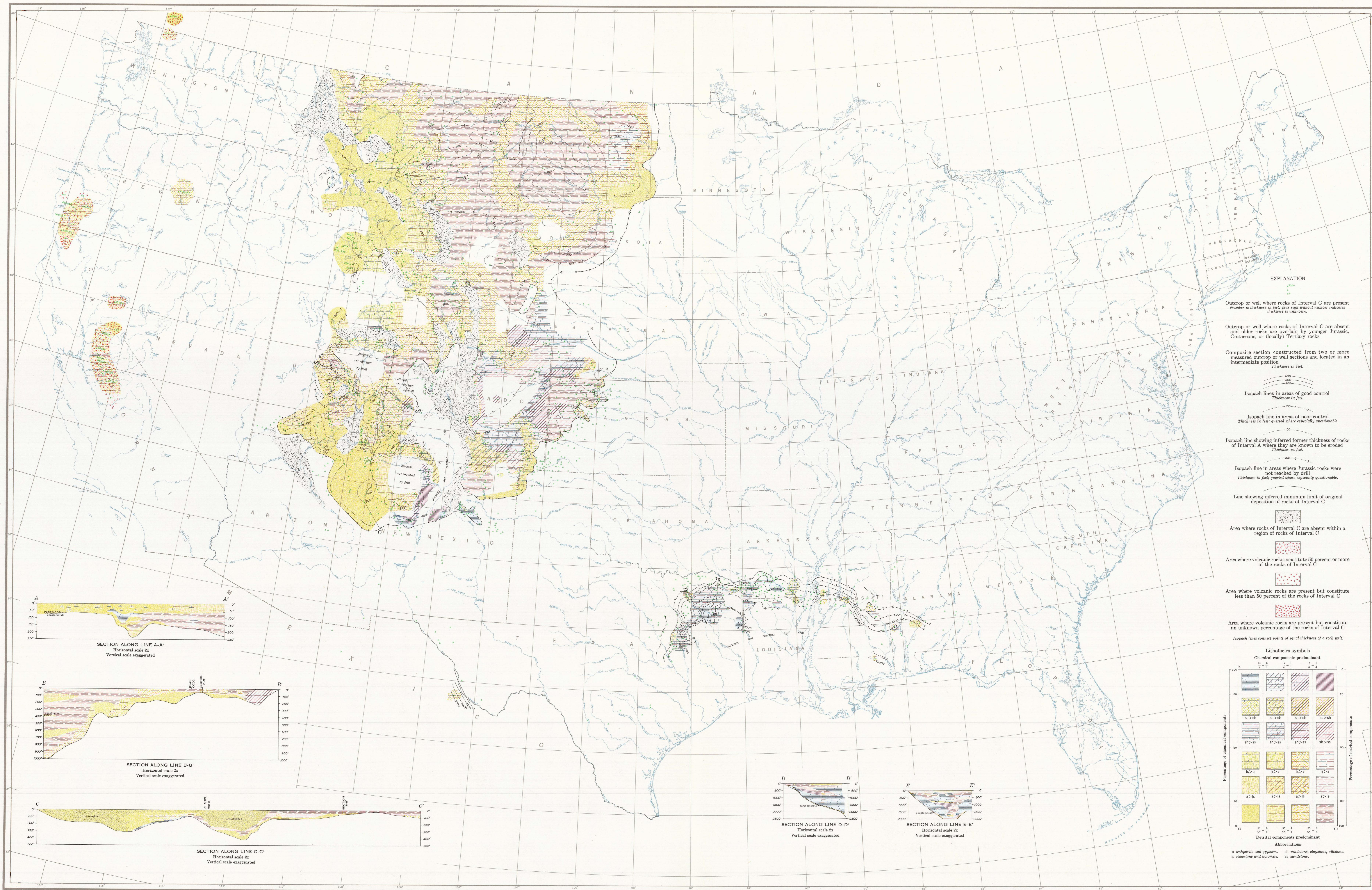

GEOLOGIC UNITS DIRECTLY BENEATH JURASSIC SYSTEM

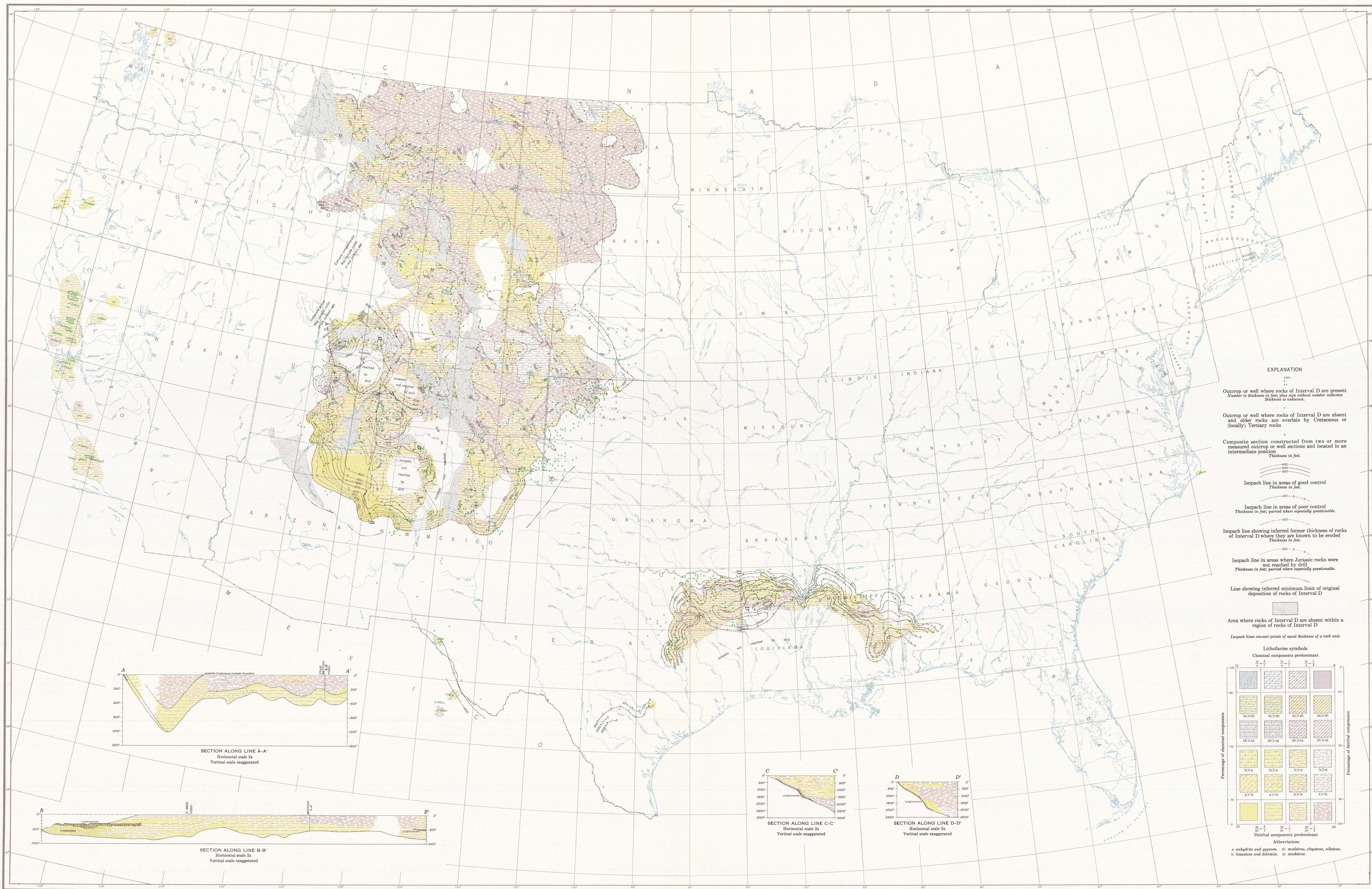

Scale 1:5000000

1956



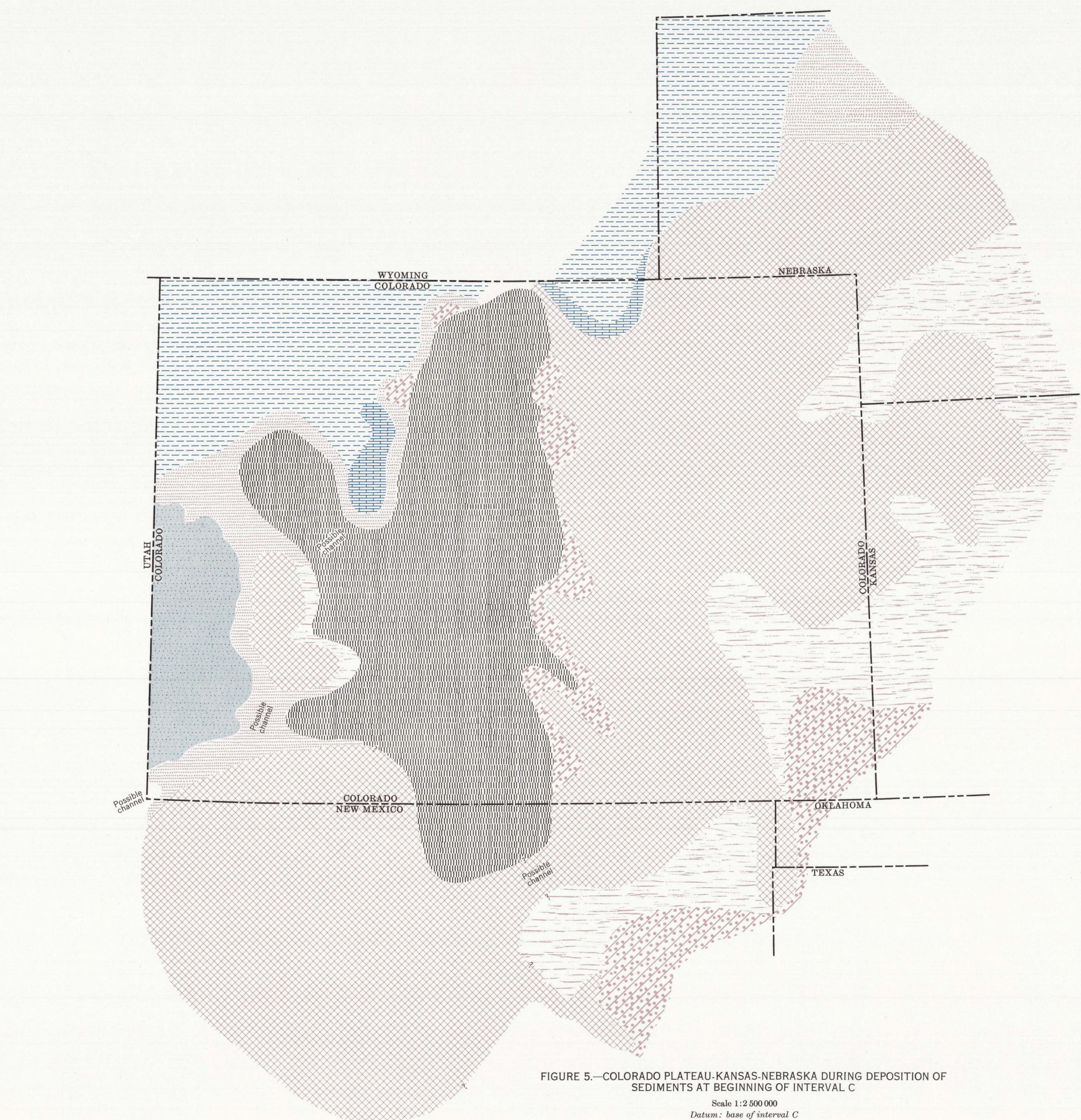
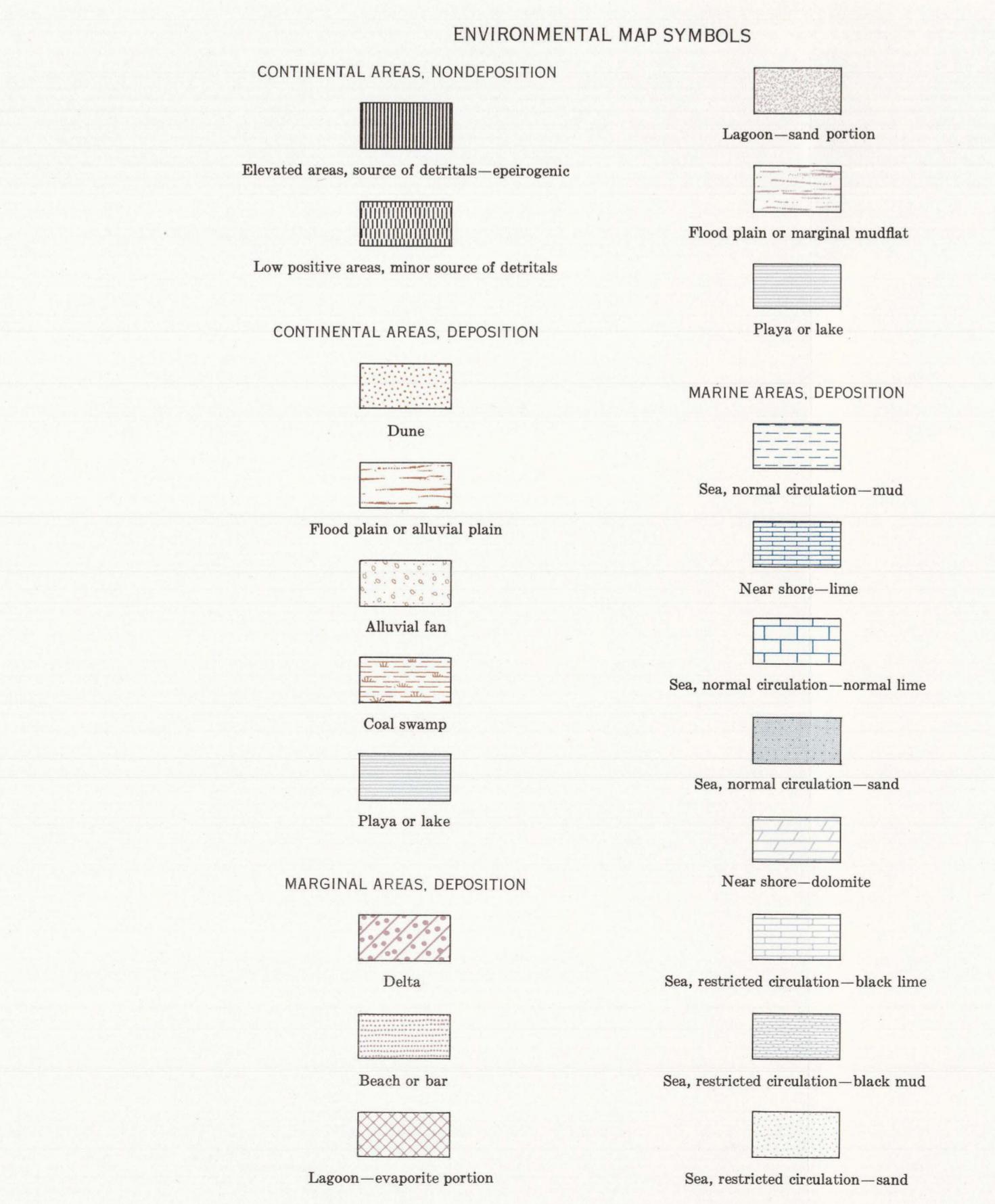
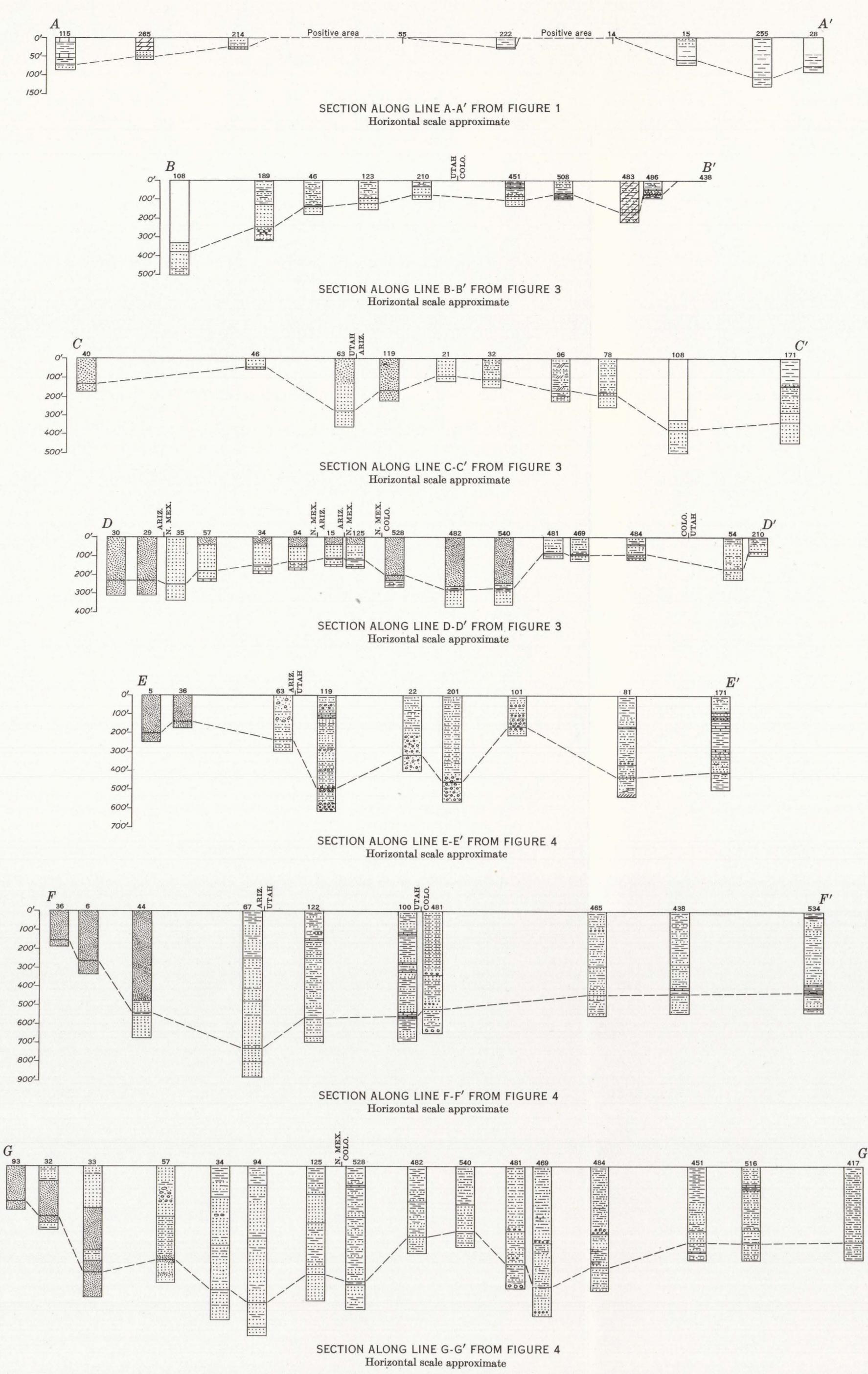
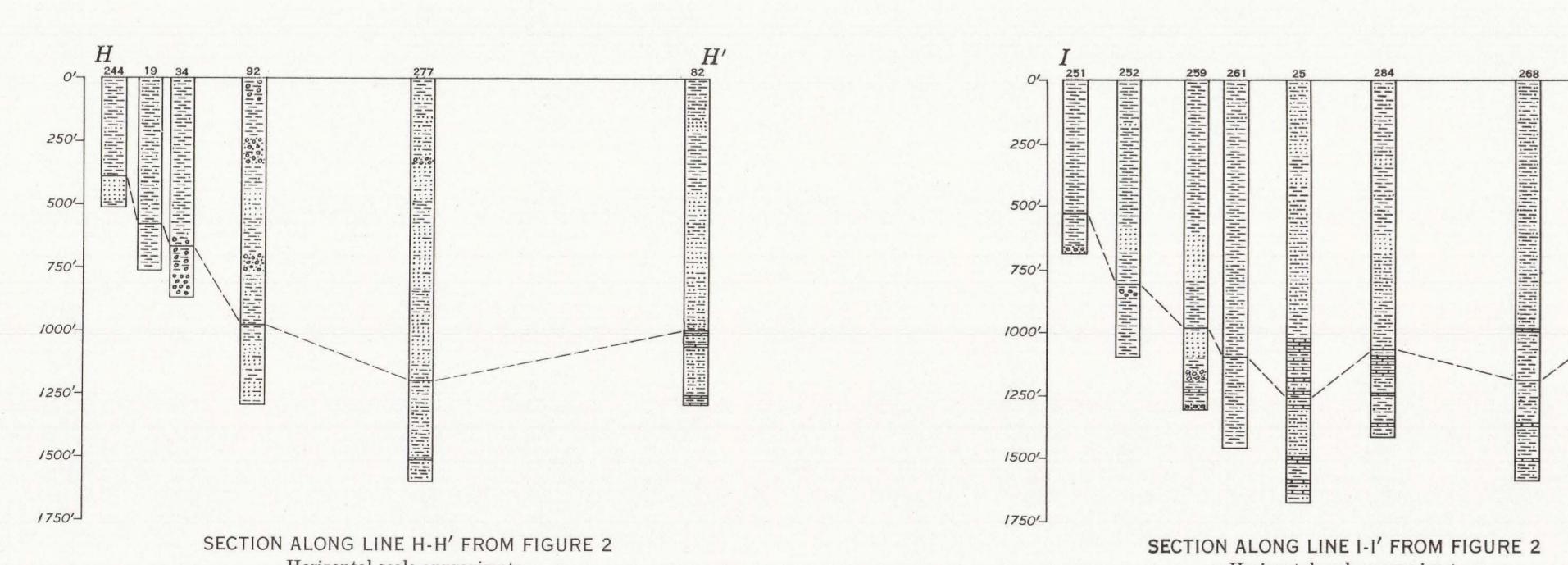
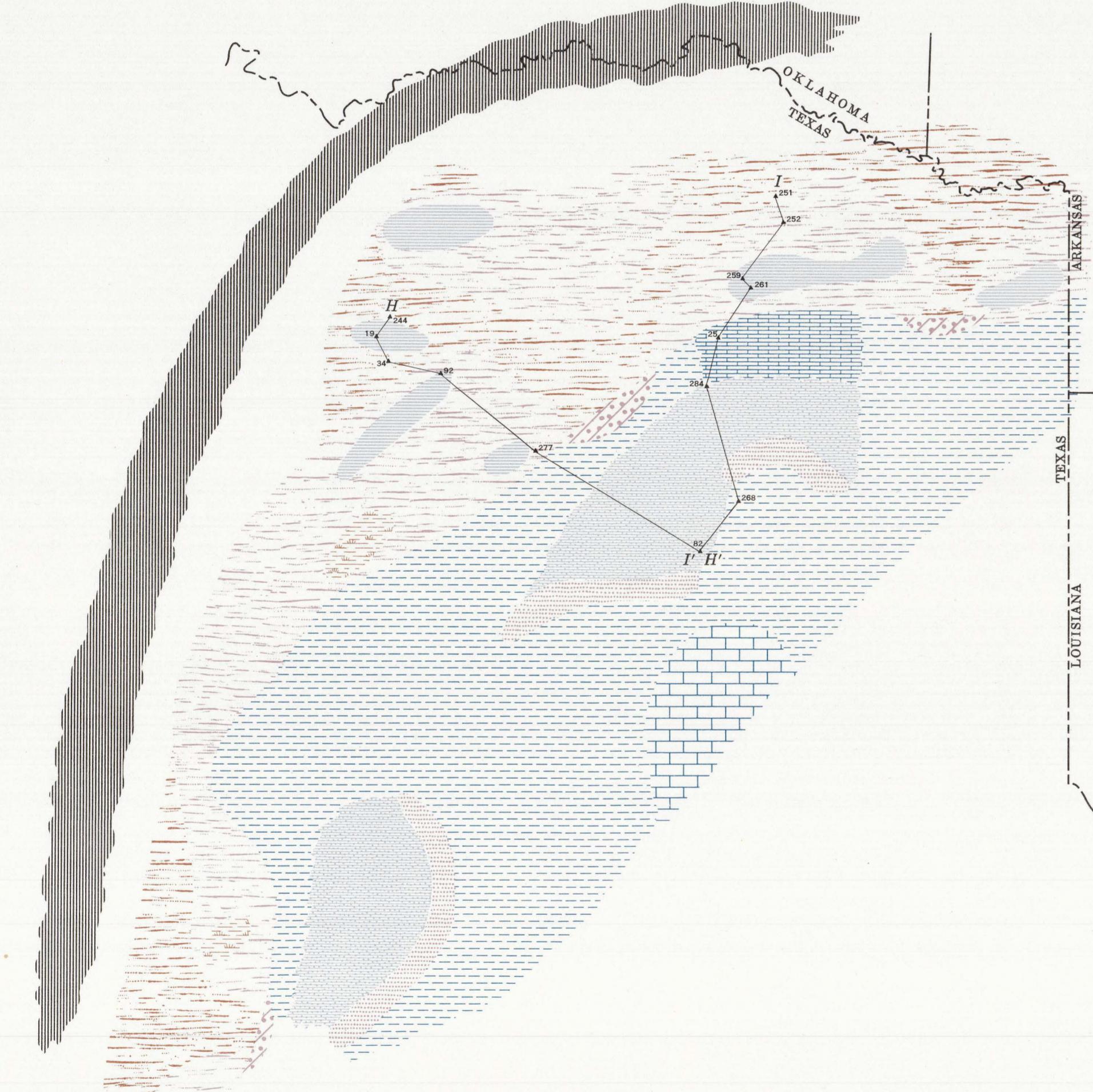
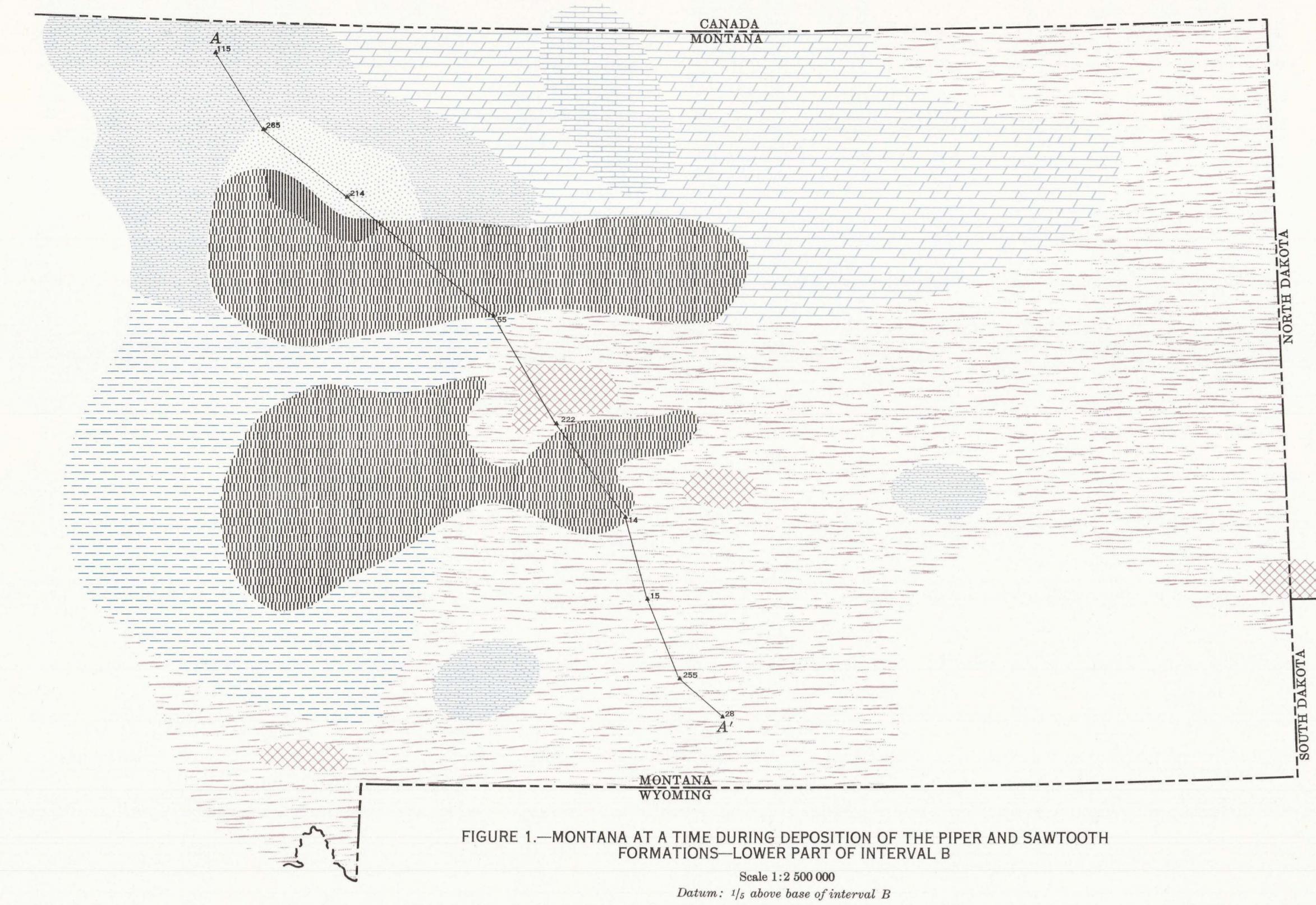

## SUMMARY OF JURASSIC ROCK THICKNESSES


Scale 1:5000000  
1956




## &lt;divLITHOFACIES AND THICKNESSES, INTERVAL B

Scale 1:5 000 000






## LITHOFACIES AND THICKNESSES, INTERVAL D



