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DESCRIPTION OF MAP UNITS

TABLE 1.—Locations where rates of late Cenozoic tectonic movement can be calculated.
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wwwwwww e o s 2 e e = e e eolian, and glacial deposits. Excludes Arikaree and Ogallala Formations on the eastern plains and other
~~~~~~~~~~ P | rocks not associated with major structural basins. Consists primarily of basin-fill sediments, but includes 1 fault west side, San Pedro 100 3.5 29 Kirkham and Rogers
i interbedded volcanics. These rocks were deposited mostly in structural basins associated with Miocene Mesa (1981)
and younger faulting and(or) down-warping. Modified from Tweto (1978, 1979b)
2 fault east side, San Luis 5000 38 132 Tweto (1978)
Late Eocene erosion surface. In areas shown, the surface is either preserved beneath thick volcanic Valley horst
rocks, or forms the present land surface, where it is slightly eroded and locally covered by thin
sedimentary rocks. The late Eocene erosion surface is best known in central Colorado, east of the Upper 3 Sangre de Cristo San Luis Valley 7000 38 184 Tweto (1978)
Arkansas and San Luis Valleys, where it was originally a surface of low relief sloping gently to the east fault
and southeast (Epis and Chapin, 1975; Scott, 1975); in these areas, it is now extensively preserved
at or near the land surface with remnants of its former cover of Oligocene and Miocene volcanics and 4 fault west side, northern 760 38 20 Kirkham and Rogers
Miocene alluvium. The surface is less well known west of the San Luis and Upper Arkansas Valleys, but San Luis Valley (1981)
is probably present beneath the Oligocene volcanics of the San Juan and West Elk Mountains, with a
possible residual high in the Needles Mountains (Epis and Chapin, 1975). Extent of the erosion surface 5 fault north side, Poncha 3500-3700 26 135-142 Tweto (1978)
east of the Upper Arkansas and San Luis Valleys, including overlying Oligocene volcanics and Miocene Pass block 1200 5 240 Epis and others (1976)
alluvium modified from Scott (in press) and Tweto (1979b). Surface beneath the base of Oligocene
volcanics west of the Upper Arkansas and San Luis Valleys from Tweto (1979b). Enclosed blank areas 6 fault Poncha Pass 1100 26 42 Knepper (1976)
indicate that the surface is not exposed in the interiors of the San Juan and West Elk Mountains; dotted
line indicates concealed or inferred outcrop of the surface 7 feuilt Poncha Pass 1850-2750 26 71-106 Knepper (1976)
8 Sawatch Range Buena Vista 3050 26 117 Tweto (1978)
EXPLANATION OF MAP SYMBOLS e
Contact or unit boundary—Dotted where concealed 9 Sawatch Range Leadville 2300-2400 26 88-92 Tweto (1978)
fault
Faults showing late Cenozoic movement —Dashed where age of movement is inferred; dotted where
concealed beneath valley fill. Inferred Neogene faults are identified primarily by stratigraphic and(or) 10 Dead Horse Mosquito Range 125 35 4 Knepper (1976)
structural relations and association with other faults or structures of known Neogene age. Inferred fault
Quaternary faults are identified primarily by geomorphic features, such as fault-line scarps and drainage ) ) ]
; anomalies, and association with other faults or structures of known Quaternary age. Concealed faults are 11 fault west side, southern 600 35 17 Epis and Chapin (1978)
f known mostly from geophysical and(or) well-log data. Latest known movements on all faults are normal: Mosquito Range Knepper (1976)
- symbols are on downthrown side and indicate age of most recent known movement (see below). Lack . .
O of symbol indicates movement direction not known. Small circles indicate Quaternary faults too small 12 Mosquito fault Leadville 1000 26 38 Tweto (1979a)
‘ g to show at map scale. Many faults shown are reactivated older features 13 Mosquito fault Clithax 2740 30 91 Tweto (1978)
f* il md Age symbols: 14  Gore Fauilt Gore Range 350 20-24  14-17 Tweto (1979a)
b | —®——  Latest documented movement is Holocene (less than 10,000 yr) 15 Frolral.tal (B;uelt Gore Range 1220 26 47 Kirkh;(ﬂinggr{;j Rogers
; ! —&——  [atest documented movement is late Pleistocene (about 10,000 to 150,000 yr) tver) fau
1 —————  Latest documented movement is middle to early Pleistocene (about 0.15 to 1.8 m.y.) or Pleistocene 16 Alvarado fault Wet Mountain Valley 3800 38 100 Tweto (1979a)
!L | undifferentiated 3000 26 I'l5 Taylor (1975)
f! ] Latest documented movement is Neogene (about 2.0 to 24 m.y.) 17 Alvarado fault Huerfano Valley 5800 38 153 Tweto (1979a)
oy Many faults, especially those designated as Neogene, may have moved at a later time than indicated,
I\ but documentation of such movement is impossible because of a lack of diagnostic younger deposits or 18 Westcliffe fault Wet Mountain Valley 2900 38 76 Tweto (1979a)
3 i fault- hol
Bessuseot severs evsion of inilt-sempanummlulogy Ly 19 Westcliffe fault Huerfano Valley 4850 38 128 Tweto (1979a)
| - Faults associated with salt structures —In the Eagle Valley evaporite basin, Kirkham and Rogers
r‘ (1981) cite evidencg of disp]aceq Quenxternary landslide anfi pediment deposits. In the anticlinal yalleys 20 Mee Eguil TannerPealk 500 28 18 Taylor (1975)
i5 of the Paradox Basin, geomorphic evidence suggests relatively recent movement on faults, possibly as
; young as Holocene (Kirkham and Rogers, 1981), but only one lacality where Quaternary deposits are 21 Illse Fault Locke Park 370 28 13 Taylor (1975)
: displaced (along Dry Creek, south of Paradox Valley) is known 55 it : v
j( Neogene synclines —Mostly associated with fault-bound Neogene depositional basins Sel=an Wixon Divide 370 28 13 Taylor (1975)
Pl Locations where magnitude and average rate of late Cenozoic faulting can be estimated—Numbers 23 We‘; .Mlo untain easltv[side, Wet 1900 28 36 Tweto (1979a)
g L correspond to Table 1 sl Sl
T ‘ . Locations from which other important late Cenozoic tectonic data are known— Numbers correspond 24 Wet Mountain Tanner Peak 1130 28 40 Taylor (1975)
LR . to Table 1 fault
' Y 25 Wet Mountain south of Canon City 1080 29 37 Scott (1975)
5 "~ fault
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/ % INTRODUCTION 26 faults southeast of 1500 28 54 Taylor (1975)
- This map draws heavily on previous compilations of late Cenozoic tectonics in Colorado, but differs from these Greenhorn Peak
F"“"L studies in several ways. It attempts to show, in addition to faults, all available data pertaining to Miocene and younger
q tectonism in Colorado. The late Eocene erosion surface is also represented because of the structural datum that it 27 Currant Creek Currant Creek 400 29 14 Taylor (1975)
‘f provides. Miocene sediments that fill structural basins are shown, along with synclines associated with some of the fault
Lo basins. Total displacements and average rates of displacement since the end of the Oligocene are shown, as are the . )
¢ few localities where total absolute uplift has been estimated (table 1). A scale of 1:1,000,000 has been used both for 28 Oil Creek Fourmile Creek 450 34 13 Taylor (1975) .
| convenience and for compatibility with similar maps being prepared for nearby states. Earlier syntheses used in the fault zone EP}S and Chapin (1975)
% present compilation include Epis and Chapin (1975), lzett (1975), Larson and others (1975), Lipman and Mehnert Epis and others (1976)
(1975), Scott (1975), and Taylor (1975). Other pertinent general references include Tweto (1978) and Trimble (1980). ) )
| < Map compilations by Witkind (1976), Tweto (1978), and particularly Kirkham and Rogers (1981) were especially 29 faults nort}?we’st of 1000 28 36 Epis and Chapin (1975)
valuable sources. Pike’s Peak
Following the close of the Laramide orogeny in Eocene time, Colorado and surrounding areas experienced a . - )
period of tectonic quiescence, during which erosion reduced much of the area to an undulating surface of low relief. e o fCrTek Divide e 28 LL Episand others (1976)
This late Eocene erosion surface was later buried by voluminous volcanic rocks from the San Juan, West Elk, Thirty- ault zone
b nine Mil?, and F)ther volcanic centers ix.m Oligocene and Miocene tir_ne,. but was appargntly little disturbed by tectonic 31 fault Elotissant 125-150 28 4.5 Epis and others (1976)
P deformation until near the end of the Oligocene. Just before the beginning of Miocene time, Colorado abruptly entered
‘ f a period of major uplift and normal faulting. The late Eocene erosion surface and its Oligocene volcanic cover were 32 Ute Pass east of Divide 370 28 13 Epis and Chapin (1975)
e disrupted by faulting and the Rio Grande rift and associated structural basins began to form and fill with sediments. Fault zormie Taylor (1975)
b Uplift apparently accelerated in late Miocene and Pliocene time, resulting in an episode of intense canyon cutting in
1 el wn the mountains and a change from aggradation to incision along streams on the eastern plains. Tectonic deformation 33 Rampart Range north of Colorado 450 28 16 Tweto (1979a)
NL ji extended into Quaternary time, and Holocene faulting in the Rio Grande rift suggests that this late Cenozoic period fault Springs Scott (1970)
s of uplift and faulting continues to the present. Most of the faults that have moved in late Cenozoic time have had long Epis and Chapin (1975)
b previous histories of repeated movement, but Colorado’s major late Cenozoic structural system, the Rio Grande rift,
i % began to form less than about 28 m.y. ago. 34 Kennedy Gulch Conifer 300 28 11 Scott (1975)
! fault
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