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INTRODUCTIONIL 18 R____L\ 9%-
The Puget Sound region is a seismically active area 

with hundreds of earthquakes occurring each year 
(Crosson, 1974, 1975, Crosson and Millard, 1975, 
Crosson and Noson, 1978a, 1978b, 1979). Most of the 
earthquakes are so small that they can be detected only 
by sensitive seismographs such as those operated by the 
University of Washington. Not all of the earthquakes have 
been small, however, for several damaging ones have 
occurred in historic time. Little is known about the 
geologic structures responsible for generating these 
earthquakes, and knowledge of the causative structures is 
fundamental to an adequate evaluation of the earthquake 
risks for the Puget Sound region. The purpose of this map 
is to summarize the current knowledge about tectonic 
deformation, seismicity, and the tectonic framework of the 
Puget Sound region in order to provide a basis for 
detailed geologic and geophysical studies that will lead 
to better understanding of the structures and forces 
responsible for generating earthquakes in the area. 

This map is a compilation of all known and inferred 
faults, including what is known about their age of 
movement. Also shown are some deformed deposits of 
Quaternary age and earthquake epicenters. Few of the 
faults have been studied in sufficient detail to establish 
whether or not they have been active or inactive during 
late Tertiary or Quaternary time, but most of the faults are 
the result of tectonic forces that were active during early 
and middle Tertiary time. These faults may or may not be 
related to the tectonic forces responsible for the current 
seismicity. Approximately 5 percent of the earthquakes 
recorded in the Puget Sound region originated at depths 
of 40 Km or more (Crosson, 1972, fig. 11), and these 
are probably not directly related to exposed or near-
surface structures. Most of the earthquakes occur at 
shallower depths and may be associated with near-surface 
structures, but no earthquakes have been definitely 
identified with mapped faults. 

The faults and other tectonic features shown on this 
map are compiled from the work of others or were 
discovered or inferred through our own reconnaissance 
and local detailed field studies, interpretation of subsurface 
well data, and analysis of geophysical data consisting of 
aeromagnetic and gravity anomalies and marine seismic 
reflection profiles. The locations of the principal sources of 
information on bedrock structures are shown on figure 1, 
but in some instances modifications and additions have 
been made by the authors. While the location of 
structures resulting from Cenozoic tectonic activity is the 

principal purpose of this map, older structures are also 
shown where mapped in the pre-Tertiary ten-anes of the 
San Juan Islands and the northern Cascade Range. 

Faults are classified as to type of displacement and 
age of movement. A minimum age of the most recent 
movement is given for a few of the faults that have been 
studied in detail. The locations of deformed Quaternary 
deposits, including large-scale deformation such as 
faulting, folding, and tilting, are shown on the map and 
described in table 1. Only deformation which is 
considered to be of possible tectonic origin is listed in 
table 1. Soft-sediment deformation that could best be 
explained by glacial processes or features that appear to 
be related to slope failure are not shown. It should be 
recognized, however, that the forces resulting from the 
thick ice that overrode the Puget Sound Lowland several 
times during the Pleistocene epoch could have formed 
structures not readily distinguishable from those formed by 
tectonic forces. Many of the deformed Quaternary 
deposits shown on the map may owe their origin to 
causes other than tectonic activity. 

Major structures inferred from interpretation of linear 
gravity and aeromagnetic anomalies are shown on the 
seismotectonic map and figure 2 and are described in 
table 2. These geophysical anomalies, subject to various 
interpretations, may have been formed by geologic 
processes other than faulting. Gravity anomalies result 
from juxtaposition of rocks of differing density and 
thickness, and magnetic anomalies result from 
juxtaposition of rocks of different magnetic intensity. Such 
relationships, although commonly formed by faulting, can 
also be formed by steep folding or nontectonic means 
such as abrupt changes of thickness. 

The hundreds of shallow earthquakes recorded each 
year by the University of Washington regional 
seismograph network may be related to surface and near-
surface faults. The location of earthquakes recorded for 
the period July 1970 through December 1978 with 
hypocenters shallower than 35 km are shown on the 
seismotectonic map. Deeper earthquakes with hypocenters 
of 40 km or more are probably related to the deep-seated 
regional crustal structures shown schematically on figure 4. 
The epicenters and focal depths of these deeper 
earthquakes are shown on figure 3. 

Map users should keep in mind that fault lines, 
though located as accurately as possible on a map of this 
scale, are intended only as guides for more detailed work 
in the field. 

'Geophysics Program, University of Washington, Seattle, Washington 
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TABLE1.—Localities of Quaternary deformation1 

Map 
Description of deformationnumber 

1 Anticlinal fold in stratified clay and silt underlying undisturbed 
Vashon Drift exposed in sea cliffs between Point Whitehorn 
and Neptune Beach. Limbs of fold dip 73 

2 Anticlinal fold in probable glacial outwash deposits. interpreted 
from offshore high-resolution seismic profiles. 

3 Tilted stratified clay and silt cut by numerous small normal 
faults with as much as 40 cm displacement. 

4 Steep, up to 87°. south-dipping stratified clay, silt, and iron-
stained gravel exposed in valley of Tumwater Creek about 
650 m south of Highway 101. Clay gouge at south end of 
exposure may be along inferred south-dipping thrust fault. 
To the north strata dip 10° 5. Tilted strata are 
overlain by apparently undeformed Vashon Drift. 

5 Tilted stratified clay, silt, and sand dipping 13° 5. 
Tilted strata appear to be overlain by undeformed Vashon Drift. 

6 Overturned glacial drift in fault contact with Oligocene 
siltstone along south-dipping thrust fault exposed in roadcut 
along US 101 on east side of Morse Creek. 

7 Gentle arching of stratified Vashon glacial outwash along Swamp 
Creek anticline near mouth of Swamp Creek. 

8 Normal fault striking N. 50° W. and dipping 68° NE. Offsets glacial 

outwash gravel and sand about 2 m, down on northeast side. 

9 Gentle arching of iron-stained early(?) Pleistocene gravel and 
sand overlain by undeformed outwash deposits of Fraser Glaciation. 

10 Marine high-resolution seismic reflection profiles 
show evidence of faulting of Holocene deposits. 

11 Several east-striking, north-dipping thrust faults in 
stratified glacial deposits. 

12 East-striking, steeply north-dipping thrust fault in 
stratified glacial deposits. 

13 Numerous normal faults in stratified sand and silt 
exposed in lower part of sea cliff. Faults trend 
east-west and have displacements as much as 5.5 m. 
Strata in upper part of sea cliff do not appear to 
have been deformed. 

14 Several west-trending folds in stratified sand and silt 
exposed in wave cut bench and lower part of sea cliff. 

Limbs of folds dip up to 70; overlying Fraser glacial 
deposits in upper part of sea cliff appear to be undeformed. 

15 Stratified silt, clay. grit, and small pebble gravel tilted 55° 
SE.. exposed in ditch along east side of road and overlain by 
undeformed glacial outwash. 

16 Laminated to very thin-bedded silt and sandy gravel, and till dipping 
52° N., exposed in roadcut 50 m north of Beaver Valley. 

Age of 
Reference3 

deformed sediment2 

Pre-Fraser Easterbrook, 1963 

Pleistocene Snavely and others, 
1976 

Pre-Fraser Fred Pessl, oral 
commun., 1978 

Pre-Fraser 

Pre -Fraser 

Pre-Fraser P.D. Snavely, Jr. 
oral commun.. 
1977 

Post-Fraser Brown and others, 
1960 

Post-Fraser(?) 

Pre- Fraser P.D. Snavely, Jr., 
oral commun., 1978 

Holocene Wagner and 
Wiley, 1980 

Fraser or Gerald W. Thorson 
Post-Fraser oral commun., 1980 

Gerald W. Thorson 

Post-Fraser 
Fraser or 

oral commun., 1980 

Pre - Fraser Gerald W. Thorson 
oral commun., 1980 

Pre-Fraser Gower, 1978, 1980 

Pre-Fraser 

Pre-Fraser 
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TABLE-1 (continued) 

Map Age ofDescription of deformation Reference' 
number deformed sediment' 

17 Thin-bedded, laminated silt, clay, sand, and iron-stained gravel 
striking N. 30° W. and dipping as much as 33° NE. Beds are 
contorted locally. Section cut by small high-angle reverse faults 
striking N. 35° W. and dipping 62° NE., east side upthrown about 30 cm 

18 Peat, 15 cm thick, interbedded with clay, silt, and very fine 
grained sand striking N. 82° W. and dipping 17° S. 

19 Steeply dipping to vertical glacial outwash gravels. May have 
been deformed by ice rather than by tectonic forces. 

20 Stratified sand tilted 24° to the west and cut by several small 
faults with up to 30 cm displacement. 

21 High-angle reverse fault exposed in trench. Cuts Salmon Springs 
Drift. East side upthrown. Presence of scarp which presumably 
would have been obliterated by glaciation suggests some post-
Fraser movement. 

22 Saddle Mountain East fault, a left-lateral oblique-slip fault striking 
N. 22° E., dipping 75° SE. In trench at locality 22 apparent dip-
slip displacement is 3.5 m, with the early and middle Eocene 
Crescent Volcanics in fault contact with glacial drift. Movement 
along fault presumably raised the level of Price Lake and formed a 
small lake north of Saddle Mountain. Radiocarbon dating of stumps of 
drowned trees in Price Lake and the small lake to the north yielded 
ages of 1,315 -± 80 and 1,155-Lt 85 yr B.P., respectively. 

23 High-angle reverse fault. In trench at locality 23 fault strikes 
N. 50° W., dips 59° NE., and appears to offset Salmon Springs 
Drift 1.7 m. 

24 1,100-m-long linear "rift" valley that may have been formed by late 
Quaternary fault. 

25 Folded stratified Salmon Springs Drift, including varved lacustrine 
silt and clay. Limbs of folds dip up to 42°. 

26 Apparent movement along fault during earthquake in 1948. This may 
have been landsliding rather than tectonic movement along the fault. 

27 Possible fault scarp on bottom of Puget Sound off the Nisqually Delta 
associated with magnetic anomaly. 

28 Faulted and slightly tilted gravel at east end of Fox Island. 

29 Folded pre-Salmon Springs Drift cut by many normal faults with 
displacements up to 0.6 m. Limbs of folds dip up to 38°. 
Overlying Vashon(?) Drift is not deformed 

30 Steeply dipping "fault" contact between sheared clay on the east 
and crossbedded sand on the west. Strike of contact varies 
from N. 10° E. to N. 70° W. Dip of sand steepened owing to 
drag along contact. Interpreted as diapiric intrusion of clay 
into sand. Overlying Vashon(?) Drift appears to be undeformed. 

Pre-Fraser 

Pre-Fraser 

Pleistocene 

Pleistocene 

Post-Fraser(?) Wilson and 
others, 1979 

Holocene Wilson and 
others, 1979; 
Carson, 1973 

Pre-Fraser Wilson and others, 
1979; Carson and 
Wilson, 1974; 

Fraser or Carson and Wilson, 
Holocene 1974; Wilson and 

Pre-Fraser or 
others, 1979 

younger 

Historic(?) Pease and Hoover, 
1957 

Holocene(?) Univ. of Washing-
ton, Dept. of Geol 
Sci., unpubl. 
report on the 
Nisqually Delta 

Pre-Fraser Bretz, 1913, p. 227 

Pre-Fraser Smith, 1972 

Pre-Fraser 
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TABLE-1 (continued) 

Map Age of
Description of deformation Reference'deformed sediment'number 

31 In sea bluff exposures in N1/2 sec. 29, south of Saltwater State Pre-Fraser or Waldron, 1961 
Park, lacustrine deposits of Salmon Springs Drift dip about 14° N. younger 

32 Fault in Salmon Springs Drift in NE1/4 sec. 14. Downthrown on Pre-Fraser or Waldron, 1961 
north. Amount of displacement is unknown but is believed to younger 
be no more than a few tens of feet. 

33 Several normal faults in Vashon Drift, striking N. 40° E. and dipping Fraser Waldron, 1961 
northwest. Displacements are all less than 65 m. 

34 Salmon Springs drift and Puyallup Formation in fault contact along Pre-Fraser Waldron, 1961 
nearly vertical northeast-trending fault, downdropped on the 
northwest. 

35 North-trending fault in Vashon Drift. Apparent scarp suggests possible Holocene Allan Fiksdal, 
Holocene movement. Vertical displacement estimated to be oral commun., 
6 to 9 m. 1977 

36 Northwest-striking, nearly vertical, normal fault exposed in bluff Fraser Crandell, 1963 
at northwest outskirts of Sumner. Vashon Drift has been 
downdropped about 24 m on the southwest. 

37 Two faults offset the Lilly Creek Formation, exposed in the valley Pre-Fraser Crandell, 1963 
of Kings Creek in the 5W1,4 sec. 34. One fault strikes N. 60° W. 
and dips 50° SW. The other strikes N. 5° E. and dips 55 W. Both 
faults have plastic-clay gouge zones 15 cm to 60 cm wide. 

38 Prominent lineation identified by photointerpretation and field Holocene(?) Crosson and Frank, 
investigations may be fault-related to July 1973 earthquake and 1975 

aftershocks. 

39 Near-vertical north-trending fault in glaciolacustrine and fluvial Pre-Fraser Mullineaux, 1970 
deposits of the Orting(?) Drift. East side downdropped about 9 m. 

40 Uplifted shallow-water marine sand and gravel deposits containing 
Holocene (3,260±80 B.P.) mollusks and some wood. Mollusk shells 
collected 4.9 m above present sea level yielded radiocarbon date 
of 3,260:180 B.P. Wood from about 2.4 m above sea level was radio-
carbon dated at 4,530±- 90 B.P. 

41 Sand in Magnolia Bluff is "somewhat bowed up- just south of West Point. Pre-Fraser Bretz, 1913, p. 227 

'Age and stratigraphic divisions are shown in map explanation 

(symbols for age of faulting). 

'Term "Fraser- used here refers to the Fraser Glaciation. 

Descriptions of deformation not referenced are the result of 

observations by the authors during reconnaissance field studies. 

Pacific plate. This movement has been taking place at an 
estimated rate of 5.8 cm per year (Atwater, 1970) along 

REGIONAL TECTONIC SETTING AND PROPOSED 
SEISMOTECTONIC MODEL 

the Queen Charlotte fault northwest of Vancouver IslandOF PUGET SOUND REGION 
and the San Andreas fault zone in California. In the 

The current tectonics and seismicity of the Puget vicinity of Oregon and Washington the interaction 
Sound region are the result of stresses imposed by the between these two major plates is complicated by the 
interaction of three lithospheric plates; the Pacific, presence of the Juan de Fuca plate, a small oceanic plate 
American, and Juan de Fuca plates (fig. 4). The that has spread eastward from the Juan de Fuca Ridge. 
movement between the two largest plates is right lateral, During late Cenozoic time the Juan de Fuca plate was 
that is the American plate is moving south relative to the being actively subducted beneath western Washington at 
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TABLE 2—Structures inferred from interpretation of liear geophysical anomalies. 
[Structures are shown on the seismotectonic map and figure 21 

Inferred 
Description

structure 

A Southern boundary of a high-amplitude magnetic anomaly. Considered to be 
the westward continuation of the Devils Mountain fault separating 
highly magnetic ophiolite on the north from weakly magnetic metamorphic 
rocks on the south. Youthful appearance of topographic lineations along 
the fault west of Lake Cavanaugh suggest that this structure may have been 
active in late Quaternary time; however, no geologic units younger than 
Oligocene(?) are definitely known to have been offset by the Devils 
Mountain fault. 

B Sharp east-trending gravity nose bounding the north side of a large 
gravity low to the southeast. Coincides with linear alinement of series 
of small magnetic lows that may be related to the inferred fault zone. 
Considered to be westward and eastward continuation of the northern Whidbey 
Island fault. This anomaly appears to bound pre-Tertiary metamorphic rocks 
at or near the surface on northern Whidbey Island from a thick section of 
unconsolidated Quaternary deposits on the south. It may also form the 
northern boundary of basin of Tertiary sedimentary rocks to the south. 
Faulting of sediments deposited prior to the Fraser Glaciation (locality 3) 
occurs along the strike of this inferred structure. Overlying Fraser 
glacial deposits are apparently not deformed along this structure. 

CandD A pronounced linear magnetic high extending southeast from near Victoria 
on Vancouver Island. Has been interpreted as a northeast-dipping slab 
of the lower and middle Eocene Metchosin Volcanics of Clapp (1917), a 
correlative of the Crescent Formation, bounded on both sides by faults 
(structures C and D). MacLeod and others (1977) consider C to he the 
offshore continuation of the Leech River fault of Vancouver Island. 

E Northeast side of linear magnetic anomaly probably reflecting a fault 
in lower and middle Eocene basement rocks. 

F Northern edge of a high-amplitude magnetic anomaly bounding Eocene 
volcanic rocks; in part overlain by a thin section of Tertiary 
sedimentary rocks on the south and a thick section of Tertiary 
sedimentary rocks on the north. Interpreted as a fault with the 
north side down. 

G Linear magnetic high and southern boundary of a pronounced gravity low. 
Interpreted as northwest-trending fault, the southern Whidbey Island 
fault, of probable Quaternary age. Evidence for Quaternary displacement 
includes the large difference (1,374 ft) in depth to bedrock in wells on 
opposite sides of fault and apparent Holocene faulting observed on high-
resolution seismic reflection profiles crossing the northwest end of 
this structure (map location 10). 

H An east-trending gravity high interpreted as an east-plunging anticlinal 
fold. Bedrock at shallow depth along its axis suggests that it has had 
Quaternary movement. 

Reference 

U.S. Geological Survey, 
1977; 
J. T. Whetten, oral 
commun., 1977 

Rogers, 1970; 
U.S. Geological Survey, 
1977; 
MacLeod and others, 1977; 
Gower, 1980 

MacLeod and others, 1977 

MacLeod and others, 1977 

MacLeod and others, 1977; 
U.S. Geological Survey, 
1977; 
Gower, 1980 

U.S. Geological Survey, 
1974, 1978; Gower, 1980; 
Wagner and Wiley, 1980 

Gower and Yount, 1985 
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TABLE-2 (continued) 

Inferred 
Descriptionstructure 

The anomaly associated with this feature is one of the steepest gravity 
anomalies in the United States and is interpreted as a major fault 
zone, down to the north. It also coincides with the northern boundary 
of a large magnetic high and is associated with steeply dipping 
Tertiary strata. Danes and others (1965) calculated a total of about 
11 km of displacement along two parallel faults to account for this 
large gravity anomaly. The possible Quaternary fault mapped to the north 
may be the location of Quaternary faulting associated with this anomaly. It 
has been estimated that the area to the north of this possible fault is 
underlain by more than 1,100 m of unconsolidated deposits, suggesting 
possible large movements during the Quaternary. In addition, at map 
locality 40. immediately south of the possible fault, uplifted shallow 
water marine deposits indicate more than 4.9 m of uplift in past few 
thousand years. The position of the possible Quatemary fault shown 
on the seismotectonic map is drawn north of steeply dipping upper 
Cenozoic sedimentary rocks at or near the surface on Bainbridge Island 
and north of Lake Sammanish State Park near Eastgate. 

J Eastern boundary of a northeast-trending gravity high underlain by thick, 
steeply dipping section of the Crescent formation. This may be the fault 
against which the east-west structure I terminates. 

K Southern boundary of pronounced gravity and magnetic highs. Interpreted 
as fault or steep monoclinal fold, down to the south. 

Northeast side of prominent northwest-trending positive gravity anomaly. 
May represent northeast dipping homocline of Eocene basalt. 

Reference 

Rogers, 1970: Danes and 
others, 1965: U.S. Geological 
Survey 1974, 1977: Hall and 
Othberg, 1974. 
Cower and Yount. 1985 

Danes and others, 1965 

Danes and others, 1965 
Rogers, 1970: U.S. Geological 
Survey 1974, 1977 

Danes and others, 1965 

a rate estimated at 5.8 cm per year'(Silver, 1971; Atwater, 
1970). Areas of active subduction throughout the world 
are associated with pronounced active Benioff zones, 
seismic zones typically inclined approximately 45° along 
which earthquakes occur to depths of 600 km or more. 
The absence of such a distinct Benioff zone beneath 
western Washington and Oregon suggests that subduction 
may now be occurring at a slower rate or may even have 
ceased. Atwater (1970) and Riddihough and Hyndman 
(1976) have suggested that the lack of a well-defined 
Benioff zone may be the result of the Juan de Fuca plate 
having been so young, thin, and hot that it readily 
reheated as it descended beneath western Washington. 
Thus, because of its elevated temperature and resultant 
lack of strength,the plate is incapable of producing deep 
earthquakes. 

Recent strain measurements in the vicinity of Seattle 
by Savage and others (1981) indicate an east-northeast 
contraction although at a rate so low as to be barely 
detected. This may be consistent with oblique 

convergence between the Juan de Fuca and American 
plates. Earthquake data, however, are inconsistent with 
these strain measurements. 

Earthquakes in the Puget Sound region occur in two 
separate depth zones separated by a nearly aseismic 
interval (fig. 5). Most of the recorded earthquakes occur 
in the upper seismic zone, which reaches a depth of 
approximately 30 km. Hypocenters for the lower seismic 
zone form an eastward-deepening zone ranging in depth 
from 40 km on the west to more than 70 km on the east. 
The focal-mechanism solutions available suggest that the 
two seismic zones belong to separate and different stress 
regimes. Focal mechanisms for the upper zone show 
north-south compression (Crosson, 1972) and are 
consistent with, and presumably related to, the regional 
stress field associated with the right-lateral movement 
between the Pacific and American plates. Even though the 
lctwer seismic zone lacks the high seismicity or very deep 
earthquakes of typical active subduction zones, it probably 
defines the top of the subducted lithosphere of the Juan 
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EXPLANATION 
Figure 3 

Earthquake depth in kilometers 
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— — Estimated depth to inferred Benioff zone 90-150 km (Dickinson. 
1970, fig 3). See figure 5 

A A' Line of section for figure 5 

de Fuca plate (fig. 4). Focal-mechanism solutions showing 
an east-west extension in this lower seismic zone may 
result from tension generated in the subducted oceanic 
slab by gravitational sinking of the slab beneath the Puget 
Lowland (Isacks and Molnar, 1971); however, further 
studies need to be made of the deep earthquakes before 
definite conclusions can be made. 

Although stresses imposed by the relative southward 
movement of the American plate and tension in the 
subducted leading edge of the Juan de Fuca plate may be 
the principal forces responsible for generating earthquakes 
in the Puget Sound region, some of the current seismicity 
may also be related to residual stresses and continuing 
isostatic adjustments resulting from the withdrawl of the 
Puget lobe of the continental ice sheet during late 
Wisconsin time. The Puget lobe, which is outlined on the 
seismotectonic map. reached a thickness of about 1 km in 
the vicinity of Seattle and up to 1.3 km in the northern 
part of the Puget Sound (Thorson, 1980). Nearly all of 
the recorded seismicity occurs within the area formerly 
covered by the ice. This close relationship between 
seismicity and area covered by ice may be fortuitous, 
because the physiographic depression occupied by the ice 
probably owes its origin to the same forces respQnsible for 
the current seismicity. 

The three principal observations relevant to 
seismotectonic features in the Puget Sound region are: (1) 
Earthquakes deeper than about 40 km apparently 
originate in the subducted oceanic lithospheric slab (Juan 
de Fuca plate), owing to residual stresses in the slab or 
stress resulting directly from sinking of the slab. The 
current state of relative motion of the system is unknown; 
underthrusting may be continuing at a slow rate or the 
system may be either temporarily or permanently locked. 
(2) Shallow earthquakes seem to arise from a regional 
stress (approximately N-S compression) which is consistent 
with the relative motions of the Pacific and American 
plates. (3) Some small shallow earthquake activity may 
result from adjustment to residual stresses imposed by 
advance and withdrawl of the Puget lobe of the 
continental ice sheet. 

POTENTIAL EARTHQUAKE-GENERATING 
STRUCTURES 

All of the large historic earthquakes for which focal 
depths have been determined appear to be relatively 
deep, suggesting that they are related to the inferred 
sinking oceanic slab beneath Puget Sound. The largest 
earthquake instrumentally recorded in the region was the 
7.1-magnitude earthquake northeast of Olympia in 1949. 
The focus of this earthquake was at a depth of 70 km 
(Nuttli, 1952). The second largest recorded earthquake, 
the 6.5-magnitude Seattle earthquake in 1965, occurred 
at a focal depth of 60 km (Algermissen and Harding, 
1965). The epicenters of these earthquakes are plotted on 
figure 3. Earthquakes of similar magnitude associated with 
the inferred subducted oceanic slab may be expected 
elsewhere beneath the Puget Sound region, presumably at 
shallower depths to the west and at greater depths to the 
east and northeast. The maximum depth at which the 
subducting slab is capable of generating large earthquakes 
is uncertain. 

Although all of the historic large earthquakes in the 
Puget Sound region appear to have been deep. there are 
several known or inferred faults, described below and 
listed in table 2, that may be capable of generating 
significant earthquakes at shallow depths. It should be 
emphasized that none of these faults is known to be 
currently active and the potential hazard they pose is 
uncertain. Each will require detailed geophysical and 
geological studies of associated Quaternary deposits to 
adequately assess their potential hazard. 

The Devils Mountain fault, a major west-trending fault 
with apparent large left-lateral movement during 
Oligocene or post-Oligocene time, is marked by a 
pronounced alinement of physiographic depressions and 
linear ridges suggesting possible movement following the 
Fraser Glaciation. However, no definite offset of 
Quaternary deposits has been identified with this fault. 

The northern Whidbey Island fault, inferred structure 
B on the seismotectonic map, appears to bound bedrock 
on the north and a thick section of Quaternary deposits. 
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on the south (Gower, 1980). Faulting of pre-Fraser glacial 
deposits on the east side of Whidbey Island, map locality 
3, indicate that this structure was active during Pleistocene 
time. The fault appears to have been inactive since the 
deposition of the Fraser glacial deposits. 

The southern Whidbey Island fault, inferred structure 
G, shows possible offset Holocene marine sediments along 
its trend northwest of Whidbey Island as interpreted from 
marine seismic reflection profiles (Wagner and Wiley, 
1980). There is, however, no clear .inement of 
earthquake hypocenters along this feature. 

The fault zone trending west through the southern 
part of Seattle marks the approximate boundary between 
steeply dipping upper Cenozoic strata at or near the 
surface on the south and a thick section of as much 
as 1,000 m of probable Quaternary deposits on the 
north. Marine deposits at Blakely Harbor (map locality 40) 
have been uplifted more than 4.9 m in the past 
3,260 ± 80 years, suggesting possible Holocene uplift of 
the south side of the fault. However, there is no surface 
indication that it is currently active as no evidence of 
displaced Fraser glacial deposits has been found along this 
structure. 

In addition to these larger structures there is also 
potential seismic risk from smaller faults. Quaternary faults 
have been observed in a number of places (table 1), but 
little is known about their extent, for they have been 
traced beyond a single outcrop only at a few localities. 
Many other Quaternary faults, no doubt, have not been 
recognized. The Holocene movement on the Saddle 
Mountain East fault (map locality 22) clearly demonstrates 
that surface displacements of as much as several meters 
are possible in the Puget Sound region. 
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