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INTRODUCTION 

The Lynndyl 30- by 60-minute 1: 100,000-scale 
quadrangle is located in west-central Utah at the eastern 
edge of the Great Basin (fig. 1). The Sevier River, which 
drains part of the western Colorado Plateaus province, 
flows through the southeast corner of the quadrangle and 
terminates at Sevier Lake. The rocks and sediments 
exposed in the quadrangle represent a fairly complete 
sequence ranging in age from Middle Proterozoic to 
Holocene excluding most of the Mesozoic, which is 
present to the east in the Colorado Plateaus. The 
presence of major ore deposits in the East Tintic 
Mountains stimulated geologic interest in this region, and 
early stratigraphic work was concentrated around the 
Tintic ore deposits. Tower and Smith (1899), Crane 
(1917), and Lindgren and Loughlin (1919) established the 
basic geologic framework that stood for many years. 
Subsequent updating of the stratigraphy by Morris and 
Lovering (1961; 1979), Morris (1978), and Christie-Blick 
(1982) and the regional structure by Morris (1983) and 
Christie-Blick (1983) is shown on this map. 

Geologic data for the bedrock areas of the Lynndyl 30-
by 60-minute quadrangle were compiled from a variety of 
published and unpublished sources, many of which were 
used by Morris (1978) in his compilation of the Delta 2° 
quadrangle (see index to geologic mapping, fig. 2). The 
intervening areas of surficial deposits were mapped by the 
author largely in a reconnaissance fashion between 1981 
and 1983, with the exception of an area east of Lynndyl 
that was mapped in great detail by Varnes and Van Horn 
(1984). The physical properties of bedrock and surficial 
units were not determined for this map, but some soils 
engineering data are available in public documents, for 
example, Utah State Department of Highways (1971), 
Stott (1977), and numerous private site investigations 
reports prepared for the Intermountain Power Agency and 
the U.S. Air Force, pertaining to the Intermountain Power 
Project site and the M-X Missile siting scheme, 
respectively. The ground-water hydrology and its relation 
to surficial deposits in a large part of the map area has 
been described by Holmes (1984). 

The quality of geologic source materials used in this 
map is shown in the reliability diagram (fig. 3), mainly to 
indicate the state of geologic knowledge in the quadrangle 
and where future geologic studies might best be directed. 
The rocks have not changed in historic time but 
interpretations based on them hqve, and ongoing 
improvements in access, mapping and laboratory 
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techniques, and topographic base maps will benefit future 
interpretations. 

Map units selected for use on this map correspond as 
nearly as possible to a division of geologic periods into 
epochs. The map-unit boundaries, in most cases, match 
epoch boundaries, but where a formation boundary 
straddles a time boundary the formation is arbitrarily 
included tn one or the other adjacent unit, and owing to 
map scale and thickness of map units, the map pattern is 
not noticeably different than if the formation had been 
included in the other adjacent map unit. An attempt at 
consistency in usage is made, but differences in mapping 
style and interpretation in the source materials 
inadvertantly may cause some misidentifications or 
misassignments. In some cases the map units consist of a 
single formally recognized formation and in other cases 
two or more formations. 

The igneous rocks are separated into intrusive and 
extrusive units, and--where not formally named--are 
informally named to indicate their distribution throughout 
the quadrangle; the correlations are approximate and 
based on the available physical evidence and sparse 
radiometric dates. The igneous units in the Keg, Simpson, 
and Desert Mountains and in the area around Sage Valley 
need to be studied in detail before more meaningful 
relations can be established throughout the quadrangle. 

GEOLOGIC SETTING 

The geologic setting of the region including the 
Lynndyl quadrangle is controlled by the regional structure, 
and the reader is referred to papers by Morris ( 1983) and 
Christie-Blick (1983) for a comprehensive description of 
the regional structure. Paleozoic rocks herein are 
separated into three "facies" determined by their position 
relative to two major thrust faults, the Tintic Valley and 
Sheeprock thrusts (fig. 4). The Tintic Valley thrust is 
exposed in the east half of the Gilson Mountains and 
south end of the East Tintic Mountains, and its position 
under Tintic Valley is dictated by significant facies changes 
in Cambrian to Devonian rocks between the East and 
West Tintic ranges. The Sheeprock thrust is exposed in 
the West Tintic and Sheeprock Mountains and its 
presence under the Sand Hills, Black Mountains, and 
Jericho Ridge is indicated by lithologic differences in 
Lower and Middle Cambrian rocks and proximity of 
Pennsylvanian rocks. The Canyon Range thrust is 
considered to be part of the Sheeprock thrust displaced 
along the Leamington transcurrent fault (Morris, 1983). 
(The Canyon Range thrust fault and the Canyon Range 
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1. Blick (1979) and Christie-Blick (1982; 1983) 
2. Blick (1979) 
3. Faults from Bucknam and Anderson (1979a) and R.C. 

Bucknam, unpubl. data, 1982, with additions 
4. Faults from Bucknam and Anderson (1979a) and Crone 

(1983), with additions 
5. Cohenour (1959), modified by Morris (1978), with 

additions 
6. Costain (1960) and Morris (1978) 
7. Dommer (1980), with additions and modifications 
8. Galyardt and Rush (1981), with additions and modifications 
9. Groff (1959),modified by Morris (1978), with additions 

10. Higgins (1982) 
11. Kattelman (1968) and Rees and others (1973), modified by 

Morris (1978) 
12. Lindsey (1979) 
13. Mabey and Morris (1967) and Morris (1977) 
14. Morris (1964a) 
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15. Morris (1964b) 
16. Morris (1975) 
17. Morris (1975) 
18. Morris (1977) 
19. Morris (1978), with additions and modifications 
20. Regional structural features from Morris (1983) and H.T 

Morris, oral commun., 1984 
21. Morris and Kopf (1970a), with modifications 
22. Morris and Kopf (1970b; 1967), with modifications 
23. Morris and Lovering (1979) 
24. Muessig (1951a) 
25. Shawe (1972) and Lindsey and others (1975), modified by 

Morris (1978), with additions 
26. Staub (1975), modified by Morris (1978), with additions 
27. Thomas (1958), modified by Morris (1978; unpubl. data, 

1985) 
28. Varnes and Van Horn (1984; unpubl. data, 1981) 

Figure 2.-Index to geologic mapping, Lynndyl 30- by 60-minute quadrangle, Utah. (Bedrock and locally surficial geology compiled 
or adapted from these sources.) 

Formation of Stolle (1978) have their type areas in the 
Canyon Mountains, a physiographic unit known in the 
geologic literature as the Canyon Range.) The Frisco-Wah 
Wah thrust is not exposed in the Lynndyl quadrangle but 
its presence is required to explain lithologic differences 
between lower Paleozoic rocks of the western part of the 
quadrangle and those just beyond the west edge. The 
Precambrian to Middle Cambrian rocks of the part of the 
Drum Mountains in the Lynndyl quadrangle, however, are 
the same as and included with those of the Sheeprock 
plate. 

The Proterozoic section, most complete in the 
Sheeprock Mountains where it is more than 6,500 m thick 
(Christie-Slick, 1982), consists of metasedimentary rocks 
that include a thick section of tillite. Overlying the 
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Proterozoic rocks along the east edge of the quadrangle 
is a Paleozoic sedimentary section that exceeds 10,000 m, 
more than half of which is Pennsylvanian and Permian 
Oquirrh Formation (Morris, 1964a, 1964b, 1977) (fig. 5). 
Westward across the quadrangle, upper Paleozoic rocks 
are not exposed, but lower Paleozoic rocks are represented 
by about 4,200 m of Cambrian and Ordovician beds 
(Dommer, 1980), almost twice the thickness of equivalent 
rocks at the east edge of the quadrangle. The westward 
increase in thickness of Paleozoic rocks toward the axis 
of the Cordilleran geosyncline is emphasized by 
foreshortening across several major thrust faults. 
Unconformably above the Paleozoic rocks in the southeast 
comer of the q!ladrangle is as much as 1,000 m of coarse 
conglomerate (Higgins, 1982) resulting from thrusting in 
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EXPlANATION 

Few additions or modifications needed 

Some additions or modifications needed 

Late Cretaceous or early Tertiary time. This conglomerate 
is succeeded by--and in places equivalent to--finer 
fluviatile conglomerates and lacustrine limestones, the 
latter being widely exposed east of the quadrangle. Other 
local deposits of fluviatile conglomerate are present under 
and interlayered with a succession of Eocene to Miocene 
extrusive rocks widespread in the quadrangle; intrusive 
rocks closely related to the extrusive rocks are present in 
much of the area and in places cut the major faults. This 
period of igneous activity was followed by regional 
deposition of a thick sequence of fine-grained lacustrine 
deposits with volcanic ash interbeds-the Miocene and 
Pliocene Salt Lake Formation. In Pleistocene time local 
eruptions of basaltic lava and ash in and south of the 
quadrangle occurred during the accumulation of Lake 
Bonneville deposits. Although the major tectonic events 
preceeded late Cenozoic time, late Pleistocene or 
Holocene faulting is manifested by a swarm of faults that 
cut Lake Bonneville deposits in the southwest comer of 
the area (Bucknam and Anderson, 1979b; Crone, 1983). 

In general, igneous rocks of the east half of the 
quadrangle--and those west of the quadrangle--have been 
studied in greater detail than those in the west half, 
mainly because of their relations to ore deposits. Both 
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38 

Many additions or modifications needed 

Many additions and modifications needed 

in areas of surtficial deposits 

intrusive and extrusive rocks are predominantly of 
intermediate composition and consist of monzonite and 
quartz monzonite stocks and latite and quartz latite flows 
and tuffs, with some acidic and basic rocks present locally. 

Lacustrine deposits of the Salt Lake Formation crop 
out in the eastern half of the Lynndyl quadrangle above 
the Bonneville shoreline, from about 1,567m up to about 
1, 920 m. Below the Bonneville shoreline, which ranges 
from an elevation of about 1,559 m to 1,593m across the 
map area, the Salt Lake deposits either are covered, 
eroded, or reworked and indistinguishable from fine­
grained Lake Bonneville deposits. An isolated exposure of 
Salt Lake deposits is present at the south edge of Crater 
Bench in a quarry opened in 1982 to supply ballast for 
the spur railroad between Lynndyl and the Intermountain 
Power Project site. There, reddish-brown to pink, fine 
clastic sediments are unconformably overlain by the Basalt 
of Crater Bench. These beds, lithologically identical to the 
Salt Lake deposits north of the Gilson Mountains, appear 
to be a remnant of the Salt Lake Formation protected 
from erosion in Lake Bonneville by the basalt cap. Crater 
Bench is surrounded by wave-worked basalt scree and is 
capped with patches of fossilferous fine-grained deposits of 
Lake Bonneville. Three sections of Lake Bonneville 
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Figure 4. Generalized map showing structural framework of the Lynndyl quadrangle as determined from distribution of 
pre-Mesozoic sedimentary rocks, after Morris (1983). F-W, Frisco-Wah Wah thrust; IS, Indian Spring transcurrent fault; 
S, Sheeprock thrust; TV, Tintic Valley thrust; L, Leamington transcurrent fault; CR, Canyon Range ( = Sheeprock) 
thrust. Faults are dotted where inferred : sawteeth are on upper plate of thrust faults; arrows indicate re!ative 
movement. The Sheeprock, Tintic Valley, and Leamington faults form the boundaries of three Paleozoic lithologic 
facies, A, B, and C (see correlation of map units). Also shown ·are localities of geomorphic features described by Gilbert 
(1890): 1, Lower River Bed section (p. 189-191); 2, Reservoir Butte (p. 148-149, pis. VII, XXIV, XXV, XXXI); 3, Upper 
River Bed section (p. 194-196, pl. XXXII); 4, Cup Butte (p. 55, 138, pis. VI, XXIII, XXXI): 5, The Snowplow (p. 138, 
147-148, pis. VII, XIX, XXIII, XXXI); 6, Old River Bed (p. 181-184, pl. XXXXI); 7, Fumarole Butte (p. 332-335, pl. 
XXXI); 8, Leamington section (p. 192-193). 

deposits, originally used by Gilbert (1890) to derive his 
theory of lake-level oscillations, lie within the Lynndyl 
quadrangle; the Upper and Lower River Bed and 
Leamington localities (fig. 4). Modern studies by Varnes 
and Van Horn (1961) and Currey and others (1983) 
have reinterpreted the history of Lake Bonneville on the 
basis of these same stratigraphic sections. The quadrangle 
also contains lacustrine geomorphic features described by 
Gilbert (1890), for example, Reservoir Butte (Table 
Mountain on modern maps), Cup Butte, The Snowplow, 
and the Old River Bed (fig. 4). 

Metallic mineral resources of the quadrangle consist 
chiefly of gold, silver, lead, and zinc with lesser amounts 
of copper, manganese, and tungsten, and traces of 
beryllium, thorium, samarian, and uranium. Major base­
and precious-metal ore bodies in the East Tintic 
Mountains have been worked since the early 1870's 
(Billingsley and Crane, 1933); smaller deposits in the West 
Tintic, Sheeprock, and Simpson Mountains and at Desert 
Mountain also have been productive. The base- and 
precious-metal deposits occur as narrow veins in igneous 
rocks and as replacement veins and bodies in carbonate 
rocks, and are thought to represent the culmination of 
Tertiary igneous activity. Thorium-and samarium-bearing 
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minerals are found in pegmatite dikes cutting granite, and 
beryl is disseminated in the same granite in the Sheeprock 
Mountains (Cohenour, 1959). The uranium appears to be 
localized in fluorite, which occurs in some base-metal 
veins. For detailed information on the history of mining 
and the stratigraphic and structural controls and 
mineralogy of these ore deposits the reader is referred to 
papers by Lindgren and Loughlin (1919), Butler and 
others (1920), Billingsley and Crane (1933), Stringham 
(1942), Cohenour (1959), and Morris (1968). The world's 
largest beryllium deposits are in the Thomas Range, about 
15 km west of the quadrangle, and this range also 
contains well-known deposits of topaz (Staatz and Carr, 
1964. 

Nonmetallic resources of the quadrangle are halloysite 
clay, high-purity limestone, high-silica quartzite, and 
construction materials. The major United States source of 
catalytic grade halloysite is just south of Eureka where 
it occurs in pipelike bodies in lower Paleozoic limestone 
near the monzonite porphyry contact. Summary 
statements on the metallic and nonmetallic commodities of 
this area are found in a report on the mineral resources 
of Utah (U.S. Geological Survey, 1964). 
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