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INTRODUCfiON 

Risk of personal injury or property damage from rainfall-trig­
gered debris-flow events can be expressed in terms of expected 
losses if the probability that a potentially hazardous event will 
occur can be combined with economic data about the value of 
property and infrastructure that could be lost from such an event. 
A realistic forecast of expected losses could provide an economic 
basis for community choices about whether, when, and how to 
impose regulations for mitigation (such as grading or land use 
constraints) and assign responsibilities for warning and hazard 
response. Experience in some landslide-prone communities 
where grading codes require preconstruction site studies has 
demonstrated that sufficiently detailed geotechnical studies can 
provide site-specific deterministic assessments of risks that can be 
reduced through mitigation (see, for example, Slosson and 
Krohn, 1982). However, because detailed site studies are rela­
tively costly, geotechnical studies are not commonly made at sites 
where no significant financial commitment has already been 
made. Cost also commonly prohibits application of those meth­
ods to the kinds of regional assessments that are needed to sup­
port responsible decisions for community action. 

To be timely, regional risk assessments should take advantage 
of earth-science data (especially topographic, geologic, and soils 
maps) that already exist or can be acquired rapidly by reconnais­
sance techniques. To the extent that the elements of the map 
data are analogous to variables in established geotechnical mod­
els, their relations are expected to parallel those in the models; 
yet the use of existing regional map data and rainfall records 
from scattered gaging localities introduces greater uncertainty 
about spatial and temporal variations in earth materials and rain­
fall than is normally applied in geotechnical analyses of stability. 
Probability offers a means to characterize that uncertainty quanti­
tatively. A map sequence that displays changes in the spatial dis­
tribution of probabilities provides a way to identify the areas of 
greatest hazard potential and a visual way to evaluate their rela­
tions to topographic or cultural features that may be in harms 
way. 

It has been a fairly common practice for regional data to be 
synthesized into qualitative susceptibility maps delineating, for 
example, map units of high, moderate, and low potential for haz­
ard. The qualitative maps can be used by skilled professional 
planners to guide decisions about land use regulation. However, 
they cannot be applied directly to a quantitative economic assess­
ment of risk, and maps made by different individuals and agen­
cies for different areas may not be comparable even in a 
qualitative sense. Probability maps, which can be prepared by 
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using rigorously constrained procedures, address the quantifica­
tion of uncertainty in space and time and have the potential for 
comparing hazard levels in different map areas. Probability maps 
also offer the potential for applying economic analyses (Bern­
knopf and others, 1988; Bernknopf and others, 1993, p. 4-6) 
to regulatory decisions at the community or county level about, 
for example, whether to implement grading requirements for 
design and construction that will minimize potential landslide haz­
ards, or about when to issue warnings and where to recommend 
evacuation. 

As part of a multidisciplinary study to develop a method to 
estimate the spatial distribution of different levels of risk from 
rainfall-triggered debris flows, we used preexisting site studies of 
debris flows to provide input variables (duration data) for regres­
sion on the (time-dependent) survival function of a parametric 
probability distribution. The regression data base was assembled 
from published studies of the disastrous effects of the January 3-
5, 1982, storm in the San Francisco Bay region, collected chiefly 
in Ellen and Wieczorek (1988). These studies (1) reported obser­
vations of failure times, rainfall rate and duration, and geotechni­
cal characteristics at failure sites, (2) provided maps showing a 
comprehensive inventory of failures that occurred during the 
storm, and (3) reported results of scientific studies of geotechnical 
models and rainfall time-histories related to debris-flow initiation. 
The parameters determined by the regression were then applied, 
with variables derived from regional map data for a preliminary 
study area, to estimate the hazard function probability (of the 
same parametric distribution), that one or more debris flows will 
be initiated in a 100-m x 100-m area (a 100-m cell) after a spec­
ified duration of heavy rainfall. The calculations were made in a 
geographic information system (GIS), which provides a means for 
rapid map display of the spatial distribution of probabilities at dif­
ferent times during a storm, and a series of maps depicting a 
reconstruction of the January 3-5, 1982, storm was prepared. 

This is a progress report addressing only those cells where 
debris flows might be expected to originate from rainfall-triggered 
soil slips. Forecasting the probability that rainfall will initiate a 
soil-slip-debris-flow event in a cell after a specified rainfall inten­
sity and duration is the first step in characterizing debris-flow risk. 
Complete characterization of debris-flow risk, in terms of 
expected losses, would include probabilities that down-channel 
flow and deposition will encroach upon a particular location (for 
example, enter a specific cell) and will require additional informa­
tion about the spatial distributions of people and property values. 
However, forecasting when and where changes in the probability 
that debris flows will be initiated during a rainstorm, and the rapid 
(near real time) map display of the spatial distribution of those 
probabilities, may be of help to communities in making informed 
decisions about public warnings and emergency response. 



In December, 1991, at the request of the California State 
Geologist, the U.S. Geological Survey (USGS) began a study to 
forecast the risk of rainfall-triggered debris-flow damage in the 
hills northeast of Oakland, Calif., an area affected by a disastrous 
fire on October 20, 1991. Although the request was stimulated 
by the fire disaster, the procedures reported here do not directly 
address the special effects of fire on hillside materials. Natural hill­
side vegetation will generally recover within a few years, and 
eventually achieve a mature condition that can persist for 
decades. The issue for which we were asked to provide informa­
tion was not the short-term protection of undamaged property 
downstream from burned areas, but whether requirements for 
reconstruction should include mitigation measures to prevent 
damage from debris flows during the normal expected life of a 
rebuilt residential structure. 1 This study, therefore, focuses on 
events that are expected to occur on natural (ungraded) hillsides 
with mature vegetation. 

Mitigation measures, including the grading code provisions of 
Chapter 70 of the Uniform Building Code (International Confer­
ence of Building Officials, 1979), and engineered structures such 
as those described by Hollingsworth and Kovacs (1981) and Bald­
win and others (1987) have been applied by communities in both 
southern California and the San Francisco Bay region. It was 
expected that postfire reconstruction offered an opportunity to 
implement regulations for grading or to require protective struc­
tures that might prevent damage from future rainfall-triggered 
debris flows. The preliminary results of the present probability 
model, which addresses only the initiation of debris flows, does 
not include the potential for hazard to a downslope or down­
stream area from debris flows originating at higher elevation, and 
may not be sufficient to influence community decisions to regu­
late for mitigation. However, a capability to map time-dependent 
changes in the expected abundance of debris flows in different, 
relatively small drainage basins as rainfall persists, may be appli­
cable to hazard warning and mitigation issues. 

It has long been recognized that chaparral fires affect hillside 
materials in ways that increase the potential for rainfall-triggered 
debris-flow occurrences immediately following a fire and during a 
recovery period of a few months to a few years. These effects 
have been described by researchers such as Wells (1987), Morton 
(1989), and Spittler (1989). On unburned slopes, there is usually 
some time delay between the start of storm rainfall and the initia­
tion of the earliest debris flows, and those slopes may respond 
only to storms having prolonged heavy rainfall. Recently burned 
areas commonly produce debris flows in response to less intense 
rainfall and in storms of shorter duration. In storms with pro­
longed heavy rainfall, which are generally large in area, burned 
areas commonly yield debris flows earlier than unburned areas. 
Although the differences in mechanisms are not fully understood, 
it is possible that further research will permit modification of a 
probability model to accommodate the changed expectations for 
the immediate postfire condition. 

Previous probabilistic analyses of landslide expectations have 
been generally static, aimed at developing guides for decisions 
regarding long-term mitigation (for example, Bernknopf and oth-

1Another issue, the short-term protection of undamaged property 
adjacent to (especially downstream from) burned areas, from debris flows 
originating in the burned area, was already being vigorously pursued by 
other Federal agencies, as well as by State and local disaster response 
agencies, and by private contractors. 
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ers, 1988) and possibly used to evaluate the expected benefits of 
adding mitigation measures to requirements for reconstruction in 
the disaster area. However, dynamic models of the sort devel­
oped in this study, which address temporal and spatial changes in 
degree of hazard, dependent on the specifics of a given storm, 
have a potential for short-term applications. A reliable forecast of 
the times and locations of different degrees of potential hazard 
might provide a rational basis for short-term evacuation warnings 
as one form of emergency response. Display of the forecast in 
map form would aid in clearer communication between emer­
gency response managers and the public. 

In this study, we generated a time-dependent statistical hazard 
function to forecast the probability that a debris flow will be initi­
ated in a specified 100-m x 100-m area (a 100-m cell) after a 
specified duration of heavy rainfall. The hazard function is an 
equation that estimates the probability of initiating a rainfall-trig­
gered debris flow at a hillside site after a specified duration of 
storm rainfall, conditional on no failure having been initiated at 
that site earlier in the storm. The equation, derived by regression, 
is used in a GIS environment to calculate estimates of predicted 
probability of failure in each 100-m cell of a study area in the hills 
of Oakland, Calif. The GIS environment permits rapid input of 
map information into computerized analytical procedures and 
rapid display of analytical results in map form. Indeed, if the spa­
tial data were in place at the beginning of a storm, and storm 
rainfall were monitored by continuously recording gages, hourly 
changes in predicted probability could be mapped in near real 
time. 
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OVERVIEW OF OUR APPROACH 

Historically, debris flows originating on natural slopes during 
prolonged heavy rainfall have posed a substantial threat of per-



Table 1.-Tabular data for the eleven sites of rainfall-triggered debris flows in the San Francisco Bay 
region that occurred during the storm of January 3-5, 1982. All failures occurred on January 4, 1982, 
at the time of day shown in 24-hour format 

[Time-of-failure (Pacific Standard Time (PST)) is the observed time of the debris flow (generally assumed to be less than 20 
minutes after time-of-failure of parent soil slip); duration of survival (hours of rainfall at a rate 1>10) from start of rainfall at 
rates exceeding threshold rainfall rates, !0 (which are assigned to the site depending on whether mean annual precipitation is 
greater than or less than 660 mm (26 in) at the nearest recording rain gage); slope angle at soil-slip scar as reported in case 
studies or measured from contours; shear resistance estimated from reported observations of soil properties, including geo­
technical measurements of strength, where tested; thickness of colluvium as reported in case studies; and an estimate of the 
number of censored sites in the vicinity of each failed site based on statistical relations reported in Wieczorek and others 
(1988)] 

lime-of-
Duration of Duration of 

Site survival survival lo failure 
no. 

(PST) 
(/>0.25 mm/h) (1>10) (mm/h) 

(hours) (hours) 

1 1930 25 18 
2 1310 18 11 
3 2115 28 16 
4 2310 29 14 
5 1900 25 17 
6 2100 28 1 
7 1200 25 6 
8 1400 20 8 
9 1030 23 5 

10 1234 20 10 
11 2000 28 17 

sonal injury and property damage in hillside communities in 
many parts of the world. Researchers have explored a variety of 
deterministic physical models of the mechanisms by which these 
flows begin, move to lower elevations, and deposit (for example, 
Johnson, 1970; Campbell, 1975; Ellen, 1988; Wilson, 1989). A 
premise that underlies all of the physical models is that prolonged 
heavy rainfall results in an increased likelihood for debris flows to 
occur in the area receiving the rainfall. A probability model for 
the initiation of debris flows during rainstorms can utilize vari­
ables of the sort employed by deterministic physical models, even 
though the probability model itself has no physical counterpart 
that is more specific than the premise. Statistical analysis was not 
used to identify the significant explanatory variables because we 
felt that the deterministic models identified an appropriate set of 
variables. Although careful geotechnical measurements are not 
everywhere available, experienced observers tend to include 
descriptions of properties that are useful for estimating variables 
known to be of importance in the deterministic models. 2 Statisti­
cal analysis was used, primarily, to evaluate the statistical associa­
tions of a variety of explanatory variables to specific outcomes in 
the context of an established probability model. 

20f course, some geotechnical variables, such as cohesion, unit 
weight of soil, and void ratio, were reported from too few individual sites 
to be used in the regression; nor could they be systematically estimated 
from descriptions. In addition, the vertical depth of colluvium was used as 
a surrogate for the depth to a potential failure surface, even though fail­
ures occurred on slip surfaces both above and slightly below actual bed­
rock-colluvium interfaces. The inability to quantify variations in these 
properties increases the uncertainty with which different levels of suscep­
tibility can be discriminated. 

6.86 
6.86 
6.86 
4.57 
6.86 
4.57 
4.57 
6.86 
6.86 
4.57 
4.57 

Thickness 
Number of 

Slope 
Shear of 

censored 
resistance colluvium 

cells (m) 

30° 30° 4.5 13 
38° 35° 4.3 9 
30° 40° 1.8 13 

26°-39° 40° 3.9 8 
31° 40° 7.7 8 
26° 40° 1.0 9 
20° 40° 2.0 3 
26° 40° 2.0 5 
23° 40° 2.0 4 
26° 40° .5 11 
170 30° 1.5 16 

Observations recorded during and after the January 3-5, 
1982, storm in the San Francisco Bay region provide a data set, 
consisting of spatially and temporally significant variables, suit­
able as duration (or survival) data for hazard function analysis by 
regression. The 11 sites identified on the index map {fig. 1; figs. 
1-8 are on the plate; figs. 9-13 are in this pamphlet) are widely 
scattered over four San Francisco Bay region counties. The same 
spatial variables were observed (or could be reasonably inferred 
from maps and text descriptions) for each site, and the times-of­
occurrence of debris flows also were observed and described, 
chiefly in Ellen and Wieczorek (1988). 

Data from eight continuously recording rain gages, each 
located near (within a few kilometers) one or more of the sites 
(from S.D. Ellen, written commun., 1992) were used to define 
the beginnings and ends of periods when the effect of heavy rain­
fall would be cumulative. These gage records provide measures of 
the total duration (in hours) of exposure of cells in the vicinity of 
each gage, as well as the duration of survival (time-to-failure), T, 
for cells where soil slips occurred. The cumulative rainfall at each 
gage station, adjusted to show incremental increases only for 
times that rainfall intensity exceeds threshold minima that depend 
on the mean annual precipitation at the station (see Cannon and 
Ellen, 1988), provides a time-varying variable, CRIT (cumulative 
rainfall index), that can be calculated from records for rain gages 
near the sites of failure. 

The spatial data from the 11 sites are summarized in table 1, 
which also shows site numbers for associated continuously 
recording rain gages and lists the threshold rainfall intensities (10) 

used to calculate the CRI (for detailed information, see Campbell 
and others, 1994, appendix A, p. 23-27). The length of time 
from the beginning of heavy rainfall in a storm to the time of 
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failure, or to the end of the period of observation, provides the 
duration of survival, T, which becomes the dependent variable in 
a regression on a probability function. Because each incremental 
increase in the CRI that does not result in failure produces a sep­
arate observation of the duration of survival, T, the resulting data 
set attains a size that is the product of the number of sites and 
each time increment3 between the beginning of the storm and 
the time of failure at the observed site. The time of failure is also 
termed the time that a failed cell exits from the set being 
observed. Unfailed cells in the vicinity of a failed site, that have 
virtually the same properties and essentially the same exposure as 
a failed site, are termed censored; they have survived beyond the 
end of the period of observation (the end of heavy rainfall). Using 
times-of-failure and times-of-censoring in a probability survival 
function as the dependent variable, regression yields coefficients 
for the independent variables and parameters appropriate for cal­
culating the related probability density, distribution, and hazard 
functions (Kiefer, 1988). 

Hillside attributes for the Oakland hills study area were 
acquired in a GIS from regional maps of geology (fig. 2, on 
plate), soils (fig. 3, on plate), and a landslide inventory (fig. 4, on 
plate). Digital line graph (DLG) data for roads, streams, and con­
tours (fig. 5, on plate) were used for the base map. Slope was cal­
culated from the contour DLG (fig. 6, on plate), shear resistance 
was estimated from the regional geology and landslide inventory 
data, and thickness of colluvium was approximated from descrip­
tions of soils map units. Records from a nearby rain gage were 
used to reconstruct the CRI curve for the 1982 storm. The hill­
side attributes and rainfall characteristics were used to calculate 
the probability estimates in the GIS environment, and the results 
are displayed in a panel of maps (fig. 7 A-J, on plate) that show 
the spatial distribution of probabilities as reconstructed for 4-hour 
intervals during the storm. A comparison of the distribution of 
actual failures resulting from that storm (from post-storm inven­
tory mapping reported in Ellen and Wieczorek, 1988) with the 
distribution of probabilities forecast by the model for storm hour 
32 (the time of highest hazard function probability in all cells) 
indicates that the distribution of actual failures constitutes a repre­
sentative sample of the probability population at that hour (fig. 8, 
on plate; fig. 9). 

Procedures for evaluating the performance of a probability 
map as a predictor of inventory data differ from the visual com­
parisons often used for evaluating susceptibility maps that show 
categories of high, moderate, or low potential for landslide haz­
ard. In a landslide susceptibility map, one expects to find the 
greatest spatial concentrations of failures in areas designated as 
having the highest susceptibility, fewer or less concentrated in 
areas designated as moderate, and very few or none in those of 
low susceptibility. A map showing a post-storm inventory of 
debris-flow scars can be compared visually with a susceptibility 
map by counting the frequency with which inventoried events 
occur in each susceptibility category. Such a visual comparison 
may be sufficient to evaluate the performance of the susceptibility 
map. However, a simple visual comparison may not be appropri­
ate for use with a probability map. The cell-by-cell calculation of 

3Where time is measured in hours, each hour of survival becomes a 
new observation. Time increments, however, do not need to be equal 
and, as a practical matter, if a rainfall rate is relatively constant for a 
period of two or more hours, that multihour period can be used as a sin­
gle observation. 
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probability produces a continuum of unique numbers that must 
be grouped into discrete intervals for contouring or color map 
display. (By implication, all the cells in an interval have the mean 
probability of the cells in that interval, and the difference between 
cells that fail and those that do not fail is a consequence of ran­
dom chance.) Each probability interval is a map unit and is 
expected to have a number of failures that is the product of the 
mean probability of the interval and the number of cells (area) in 
the interval. The customary division of a continuum of numbers 
into equal intervals does not closely approximate customary cate­
gories of susceptibility. Therefore, comparing a post-storm inven­
tory of scars with a map that displays a range of probabilities as a 
small number of discrete probability intervals is not as visually 
simple as comparing the same inventory with a susceptibility 
map, unless the intervals are selected so that high, moderate, 
and low categories of susceptibility can also be defined and delin­
eated in probabilistic terms. 4 The intervals used to display the 
probability maps in this report are a compromise selected to illus­
trate temporal changes in probability during a storm and to per­
mit some approximate visual comparisons between the peak 
probabilities (in hour 32 of the storm) with the post-storm inven­
tory of debris-flow scars. 

PROBABIUTY MODEL 

The probability model under study is an adaptation of statisti­
cal procedures for the development of hazard functions from the 
analysis of time-to-failure (or duration of survival) data, summa­
rized by Kiefer (1988). Kiefer attributes the early development of 
these techniques to industrial engineering, where they have been 
used to describe the useful lives of various machines, and in the 
biomedical sciences, to describe events such as the survival times 
of heart transplant recipients. To paraphrase Kiefer's description, 
using the probability of a soil-slip-debris-flow event during a spell 
of heavy rainfall as an example, the central concept is not the 
unconditional probability of an event taking place (for example, 
the probability that failure will occur at a specific location after 
exactly 12 hours of storm rainfall), but the conditional probability 
of failure in the 12th hour of the storm, given that no failure 
occurred at that location in the preceding 11 hours. 

Hazard function analyses commonly utilize a probability model 
that can be described by a density function, that is, one having a 
continuous distribution (Cox and Oakes, 1984, p. 13). Kiefer 
(1988, p. 649) discusses difficulties in the application of normal 
and lognormal distributions, describes how a few of the most 
commonly used parametric probability distributions have been 
applied to the analysis of duration (or survival) data, and identifies 
how the behavior of the functions relates to reasonable natural 
conditions. For example, the constant hazard rate of an expo­
nential distribution (Kiefer, 1988, p. 654) would seem to be inap­
propriate for rainfall-triggered soil slip-debris flows, because the 
frequency of debris-flow events is expected to increase with time 
as high rates of rainfall continue. 

41f, for the probability maps in this study, we define high susceptibility 
as referring to areas that should include more than 50 percent of the 
expected failures and low susceptibility as referring to areas that should 
include fewer than 5 percent of the expected failures, 4 percent probabil­
ity is equivalent to the lower limit of high susceptibility, 0.5 percent prob­
ability is equivalent to the upper limit of low susceptibility, and moderate 
susceptibility lies between 0.5 and 4 percent probability. 
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Figure 9.-Cumulative curves comparing frequency of expected failures in the cell population of the map area 
at hour 32 with post-storm inventory of failures. The Kolmogorov-Smirnov test for goodness-of-fit measures 
the deviation of the observed cumulative distribution of a sample from the hypothesized cumulative distribu­
tion of a population. It tests for type 1 error. If the null hypothesis, H0 , states that the population distribution 
is the same as the sample distribution, the type 1 error is the probability that H0 will be rejected when H 0 is 
correct. For a sample size of 35, a maximum deviation less than 0.23 (23 percent) indicates that rejecting the 
H 0 will be incorrect with a type 1 error of 0. 01. 

The test is applied only to cells that have average slopes of 14 degrees or greater because areas that have 
slopes of less than 14 degrees were excluded from the regression data set by the procedure used to estimate 
the number of censored cells. Although the hazard function equation can be used to calculate probabilities in 
all the cells that have data, its application to cells with average slopes of less than 14 degrees is less appropri­
ate than to steeper cells. Rainfall-triggered soil slips were not observed on slopes less than 14 degrees in the 
1982 storm (Wieczorek and others, 1988), and soil slips in cells with low average slopes in figure 7 may be 
attributed to short steep slopes, too short to be captured by the resolution of the digital elevation model. 

We specify the conditional probability, P, that a soil slip-debris 
flow will be initiated during a rainstorm after a given duration, t, 
at a given place, k, on the condition that no soil slip-debris flow 
began exactly there earlier in the storm. (In other words, the 
material that failed at time, T, was in place, unfailed, at time T-
1.) This condition specifies Pas a Markov process5 that has a dis­
crete state space (s={O, 1} slide at k)6 and a continuous parameter 
space (time, t={0,1, ... ,T}) (Bhat, 1984). In this kind of probability 

model, the rainfall record supplies a clock for time-dependent 
changes in the probability that a site will survive successive time 
increments of the storm. As rain persists at a rate exceeding 
some threshold minimum, the conditional probability that a soil 
slip-debris flow will occur is expected to rise, and a change in 
state (from s=O to s= 1) can be viewed as the consequence of 
time-dependent reductions in stability at k. The model is used to 
test the null hypothesis, 7 H0 , in equation 1. 

5 A Markov process is defined as a limited-memory sequence having 
the property of a one-stage memory. That is, an outcome at the second 
stage is only dependent on the outcome of the first stage, and not on out­
comes at stages prior to the first. For example, if material is removed 
from a place, k, at time, T, the state of kat T-1 must have included the 
presence of the material, regardless of the states of k at T -2, T -3, etc. 

6Soil slip-debris flow either occurs at k (s= 1) or does not occur at k 

H0:P~(D =P~ (0); where t=O,l, ... ,T; k=l, ... , K (1) 

7Simply stated, the null hypothesis, Ha. is that the probability of a soil 
slip-debris flow occurring in any cell, k, at some future time, when t=T, 
during a rainstorm, is the same as the probability at the beginning of the 
rainstorm, when t=O. The alternative hypothesis, H1, is that the probabil­
ities for the same cell, k, are different for t=O and t= T. 
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Figure 10.-Logistic functions for the sample (24 hours) extrapolated to 96 hours using mean values for X; 

from the regression data set. Survival function, S(t)=1/(1+(A.t)P); probability distribution function, F(t)=1-S(t); 
probability density function, f(t)=dF(tYdt; and hazard function, h(t)=f(tYS(t)=A.p(A.t)P--1 /(1 +(A.t)P), where A. and 
p are scale and shape parameters determined by regression. 

To prepare an example, we used data available for the excep­
tional storm of January 3-5, 1982, in the San Francisco Bay 
region, when times-of-failure were observed for sites of several 
debris flows (Ellen and Wieczorek, 1988) and applied the model 
to an area of the Oakland hills. 

The conditional probability of initiating a soil slip is derived 
from a (cumulative) probability distribution of duration, F(t)= 
PlT~t), of the current physical state, s=O, for which the survivor 
function is S(t)= 1- F(t)=PlT>t) (Kiefer, 1988; Lancaster, 1990). 
The model assumes that the probability of survival continues to 
decrease with time as high-intensity rainfall continues. Initially, 
we chose the weibull distribution to model duration data from the 
1982 storm because it has the assumed property when the shape 
parameter, p, is greater than 1 (Campbell and others, 1994). 
However, subsequent trials and testing led to present use of a 
logistic distribution, for which the hazard function more closely 
follows increases and decreases in the CRI (Campbell and Bern­
knopf, 1997). In the notation of Greene (1991, p. 724), the 
model for the logistic survivor function is equation 2. 

where X; are independent variables (Greene, 1991). The coeffi­
cients, B, and parameter, p, determined in the regression also 
control the scale and shape, respectively, for the related logistic 
probability density, probability distribution, and hazard functions 
(fig. 10). 
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SPECIFYING THE VARIABLES 

The dependent variable is a function of time and requires 
defining (1) a time of origin, (2) a scale for measuring time, and 
(3) a failure time that occurs only once for each site (Cox and 
Oakes, 1984). Cells in which a failure event occurs at an 
observed time are said to exit from the set of cells that makes up 
the population under study. The time-dependent functions (fig. 
10) assume that sites that survive the period of observation have 
failure times later than the end of the period of observation, and 
their durations of survival are termed censored. Clearly, there are 
several ways to specify the times of origin and ending of a rain 
storm from rain gage records. In the example reported here, the 
time of origin of the period of observation is specified as the 
beginning of a 1-hour (or longer) period in which rainfall intensity 
exceeds a specified threshold minimum (10) at the rain gage near­
est to the site of an observed failure. The end of the period of 
observation is defined by the end of continuous measureable rain­
fall or a CR!y of 0, whichever is earlier, at the same gage (see 
rainfall curves, fig. 11). The duration of survival, therefore, 
extends to either the time-of-failure (fig. 11), for sites where fail­
ure occurred, or beyond the censoring time at the end of storm 

"rainfall (fig. 11), for sites that survived the entire storm. Note that 
the time of origin for total cumulative storm rainfall may preceed 
the origin time for the period of observation by several hours. 
As shown on figure 11B, the observation period (duration of sur­
vival) at gage A-5 begins after 13 hours of recorded continuous 
rainfall. 
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Figure 11.-Rainfall curves illustrating the cumulative rainfall index (CRI) at two different gages: (A) SZ-4, a 
gage in Santa Cruz County near site 2 in an area that has a high (>660 mm) mean annual precipitation (MAP) 
and (B) A-5, a gage in Alameda County near site 11 in an area that has a low ( <660 mm) MAP. At both 
gages, the upper curve is total cumulative rainfall and the lower curve is cumulative rainfall index from equa­
tion 3, using an /0 of 6.8 mm/h (0.27 in/h) for SZ-4 and an /0 of 4.6 mm/h (0.18 in/h) for A-5. Time lines 
show relation of rainfall curves to start and end of observation period, time-to-failure (duration of survival), and 
duration of continuous rainfall at intensity greater than 10. 
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The San Francisco Bay region case studies, which were under­
taken for a variety of specific purposes immediately following the 
storm disaster, did not anticipate the kind of statistical application 
used in our present study; therefore, none of the San Francisco 
Bay region case studies reported direct measurements or esti­
mates of the number of censored (survivor) cells in the vicinity of 
a failed cell. To be included in the same set of cells as a failed cell, 
a censored cell should have the same spatial attributes (within the 
range of observation or measurement error) as the cell that failed 
at a known time. In the absence of direct observations, we esti­
mated a proportion of censored cells in the vicinity of each 
observed failed cell by extrapolating from statistical data on over­
all slope frequency and failure frequencies in different slope cate­
gories assembled for San Mateo County by Wieczorek and others 
(1988). Post-storm inventory maps (Ellen and Wieczorek, 1988, 
pis. 5, 6, and 8-12) provided a partial check on the results. 
(Details of the procedure are described in Campbell and others, 
1994, appendix B, p. 28-29 .) 

The independent variables of slope, shear resistance, and 
thickness of colluvium reflect (1) the prestorm stability at each site 
and (2) the destabilizing effect of rainfall. To use hillside charac­
teristics in a probability model, they must be represented bynum­
bers (for example, slope in degrees or percent). Moreover, the 
same variables must be reported (or readily inferred from descrip­
tive records) for all the sites contributing to the regression data 
base and must also be available from the regional map data for 
areas where the regression equation will be applied. The vari­
ables summarized for failure sites in table 1 meet these criteria 
(for detailed information, see Campbell and others, 1994, 
appendix A, p. 23-27). However, it seems clear that greater 
comprehensiveness and more uniform quantitative results would 
be achieved if additional case study observations were made with 
the specific objective of measuring and recording the variables 
used in this statistical analysis. 

The independent variables were not identified through statisti­
cal factor analyses. They are, instead, analogs of variables that 
are commonly significant in geotechnical analyses8 of slope sta­
bility, even though calculations based on properties estimated 
from descriptions and regional map data are clearly not geotech­
nical stability analyses. Slope, shear resistance, and thickness of 
colluvium are fairly widely reported, or can be inferred from nar­
rative descriptions, for sites where landslides have been studied, 
and there is a body of scientific and engineering literature model­
ing their relations to slope stability (see, for example, Morgen­
stern and Sangrey, 1978). Other workers (for example, Carrara 
and others, 1978; Mark, 1992) have found some geomorpho­
logic features and vegetation associations to be significant in sta­
tistical analyses of factors affecting slope stability. Data on 
geometric factors, such as planar and profile curvature of land­
forms, if available, could be incorporated into the regression 
model. However, including factors such as aspect, vegetation 
type and density, or various classes of erosional characteristics, 
would not be consistent with our use of variables analogous to 
those having recognized applications in geotechnical analysis. 

8Because the numerical values for the variables are estimates, rather 
than the results of laboratory or in situ tests, it would be inappropriate to 
use them in an actual stability analysis. We did not attempt to estimate 
some variables, such as unit weight and void ratio, for use in the regres­
sion data base. 
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Geotechnical models of slope stability utilize relatively few vari­
ables, and these are subject to uncertainty about how accurately 
they were measured and uncertainty about how well the measure­
ments represent the materials in areas adjacent to a sample local­
ity. If these variables are estimated from site-specific descriptive 
narratives, uncertainty is significantly increased. And if these vari­
ables are estimated from regional map information (without ben­
efit of testing for soil properties at closely spaced sample 
intervals), uncertainty is even greater. In addition, the areal distri­
bution of rainfall is hardly ever uniform over an area of more 
than a few square kilometers, and a widely spaced gaging net­
work cannot capture the entire range of rainfall rates or their 
local distributions. It is not surprising, therefore, that many rain­
fall-triggered soil slips occur in settings where adjacent, seemingly 
identical areas remain unfailed at the end of a storm. Presumably, 
undetected spatial differences in properties or rainfall determine 
that a failure event will occur in one area and not in another. 
Where map information is based on reconnaissance, the unde­
tected differences may be large; where the map information is 
detailed and comprehensive, the undetected differences are 
expected to be small. 

Most site descriptions include either a direct observation of the 
slope angle or a detailed topographic map from which slope can 
be calculated for the locations where failures occurred. At a few 
sites, however, slopes could only be measured from the contours 
of the 7 .5-min quadrangle maps. Within the Oakland hills study 
area, a digital line graph of the topographic contours was avail­
able, providing the basis for a good quality digital elevation model 
(OEM) at 30-m spacing. From the OEM, slope angles were 
derived for each 100-m cell in the area (fig. 6, on plate). 

An angle of shear resistance was estimated for the colluvium at 
each of the 11 failure sites. Geotechnical measurements of sam­
ples were available only for site 4, where results of direct shear 
tests are reported as internal friction angles ranging from 26° to 
39° (Howard and others, 1988, p. 180). Because test measure­
ments were not generally available, we adopted a systematic pro­
cedure to estimate shear resistance from descriptions of the 
colluvium and underlying parent material. The same procedure 
could also be applied to regional map data in the Oakland hills. A 
shear resistance angle of 40° was assigned to colluvium derived 
from metamorphic rocks, unaltered igneous rocks, or very well 
indurated sedimentary rocks; 35° was assigned to colluvium 
derived from moderately indurated sedimentary rocks, including 
shales; and 30° was assigned to colluvium derived from unconsol­
idated surficial deposits, including preexisting landslide deposits. 
These three categories also represent the expectation that the 
stronger bedrock materials give rise to colluvium that contains 
larger and more abundant clasts and is, therefore, stronger. The 
categories fall within the range of angles of shear resistance 
reported by Terzaghi and Peck (1967, p. 107) for sands and silts. 
The selection of shear resistance categories was aided by G.F. 
Wieczorek (written commun., 1992) who, with coauthors (Wiec­
zorek and others, 1985), developed a categorization of shear 
strengths for analysis of regional slope instability during earth­
quakes. In the Oakland hills area, categorization of shear resis­
tance was assisted by the observations of Radbruch (195 7), 
Radbruch and Case (1967), and Nilsen (1975), and by descrip­
tions of hillside materials units provided by S.D. Ellen and C.M. 
Wentworth (written commun., 1992) from a manuscript they 
were preparing on hillside materials and slopes of the San Fran­
cisco Bay region, California (Ellen and Wentworth, 1995). 
Although our estimation procedure may not be suitable for some 



applications, for methods development purposes it does provide 
consistent preliminary estimates of broad categories of shear 
resistance in slope materials. 

Thickness of colluvium was observed and reported for many of 
the failure sites summarized in table 1; for the remainder, thick­
ness could be reliably estimated from published photographs and 
maps, tabulated descriptions of sample locations, or regional 
associations (see Campbell and others, 1994, appendix A, p. 
23-27). Within the Oakland hills study area, thickness was esti­
mated based on the descriptions of soils series map units in 
reports prepared by the U.S. Soil Conservation Service (Welch, 
1977, 1981). 

Functional combinations of some variables also were prepared 
and tested in the regression analysis. An example of a functional 
combination is the stability index (Sl) (table 2), defined as the ratio 
of the tangent of the angle of shear resistance (SR) to the tangent 
of the slope angle (SLOPE). This ratio has the form of a dry 
factor-of-safety, to which it is analogous; but it is clearly not 
the result of, nor a substitute for, a geotechnical analysis of slope 
stability.9 

A separate independent variable represents the cumulative 
effect of rainfall at time, T, as a function of rainfall intensity and 
duration. Several workers have suggested that debris flows are 
triggered only after minimum conditions of rainfall intensity and 
duration have been achieved (for example, Campbell, 1975), and 
some have suggested functional forms for limiting minimum com­
binations of intensity and duration (for example, Caine, 1980; 
Wieczorek and Sarmiento, 1988; Cannon and Ellen, 1988). 
Keefer and others (1987) have applied empirically derived thresh­
olds to procedures for monitoring a network of telemetered rain 
gages to provide regional warnings about the potential of an 
ongoing storm to trigger debris flows in the San Francisco Bay 
region. The empirical thresholds are thought to represent a 
dynamic balance between rates of rainfall input to slope-surface 
materials and output from those materials by deep percolation, 
lateral drainage, or surface runoff. Where input rates exceed out­
put rates, water can accumulate in the pores and, in sufficient 
amounts, cause increases in pore pressure and a consequent 
reduction in shear resistance at a potential slip surface, com­
monly at or near the base of the colluvium. Wilson (1989) has 
developed a theoretical deterministic model that describes these 
physical relations. 

Our probability model incorporates the notion of an empirical 
threshold (or thresholds) in a time-varying variable that is derived 
from recording rain gage records using a simple difference equa­
tion. The equation permits selecting any threshold intensity, /0, 

between 0 and the maximum rate recorded at a site. Although 
we have used constant /0 ' s in the present study, the difference 
equation could, if desired, apply a time-dependent function such 
as that of Caine (1980) or Cannon and Ellen (1988) to determine 
a threshold intensity for a selected time. The cumulative rainfall 
index, CR/y, is a convenient way to characterize a cumulative 
effect at time, T, for bursts of rainfall rates, I, in time interval, t, 

9The statistical regression is not sensitive to the limit equilibrium impli­
cations of the SI and recognizes it as simply another set of numbers. 
Therefore, although the slope and shear resistance variables reported or 
estimated for site 2 (see table 1; also Campbell and others, 1994, appen­
dix D) yield an SI slightly less than 1, the hazard function probabilities for 
the site are very much less than 100 percent (see Campbell and others, 
1994, appendix E). 

that exceed selected minimum rates, /0 (fig. 11). It is calculated 
as: 

CRir = CRlr_1 +(/1-10)t; Subject to: CRir ~ 0 (3) 

The I0 's used in preparing the regression data base (see Camp­
bell and others, 1994, appendix D, p. 32-43) are 6.8 mm/h 
(0.27 in/h) and 4.6 mm/h (0.18 in/h), where gages are in areas 
having a mean annual precipitation (MAP) greater or less than 
660 mm (26 in), respectively (fig. 1, on plate). The use of two 
thresholds follows the work of Cannon and Ellen (1988) which 
shows that, in the San Francisco Bay region, areas receiving 
MAP greater than 660 mm have higher threshold intensities than 
areas receiving MAP less than 660 mm. In the present study, the 
specific minima were chosen because, at the observed times of 
failure, they were exceeded by the rainfall rates at all gages near 
the failure sites (fig. 11). The CRIT may be combined with spa­
tially variable hillside characteristics if the independence of the 
variables is not compromised. For regression and computation in 
the present example, the CR[y can be used alone or in combina­
tion with the thickness of colluvium (estimated from case studies 
and soils maps) in a ratio M so that the product, MSI, is a time­
varying fraction of SI. 

The foregoing variables were selected for specification 
because they had been observed and reported at case study sites 
and nearby rain gages, or could be easily estimated from maps 
and descriptive reports that included the case studies. In addition, 
the same variables could be estimated from regional data avail­
able for selected areas where a probability equation using them 
might be applied. Although some combined forms, such as the 
stability index, may be analogous to some simple deterministic 
geotechnical models, it would be misleading to regard them as 
physical models. The probability model treats them simply as 
convenient combinations of individual variables. The probability 
model would accept more variables (and more complex combina­
tions of variables) if the relevant data were available for both 
regression and map area application. 

REGRESSION 

Table 1 lists debris flows that occurred during the storm of 
January 3-5, 1982, their observed time of occurrence on Janu­
ary 4, thresholds for rainfall rate, /0, at the nearest recording rain 
gages, the hillside characteristics at those sites, and an estimate 
of the number of unfailed (censored) sites in the vicinity of each 
site of failure. The spatial variables were examined by regression 
in combination with each of two time-varying variables, cumula­
tive rainfall CUMR and CRI, both individually and in combination 
with other spatial variables. Table 2 shows the results of regres­
sions on 20 different sets of variables, including some functional 
combinations. 

Regression on the survival function, equation 2, yields the 
kinds of coefficients and other statistics tabulated in table 3 for 
model 20 (table 2). Regressions were run by using the commer­
cial econometrics software package UMDEP, version 6.0 
(Greene, 1991).10 Regression was repeated for the combinations 

10Campbell and others (1994) provide an example of a LIMDEP 
regression command, appendix C, p. 30-31; the data file used for 
regression to a weibull model in the early part of this study, appendix D, 
p. 32-43; and a UMDEP report on regression results, appendix E, p. 
44-57. 
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Table 2.-Comparison of different regression models 

[Explanatory variables include CUMR, cumulative rainfall from start of continuous measurable rainfall; CRI, indexed cumulative rainfall (from equation 3 ); SLOPE, tangent of the slope angle at site of initiation; SR. tangent of 
the angle of shear resistance; CT, thickness of colluvium; Sf, stability index, a ratio of SR to SLOPE; Mm, a ratio of CUMR to CT; Mi, a ratio of CRI to CT. In at-distribution having 109 degrees of freedom, the critical limit for 
90 percent acceptance is 1.28 or higher. All the variables are significant at or above that level in one or more models; however, in six ofthe models (1, 2, 5, 9, 12, 13) at least one variable is not significant. Four models (1, 2, 7, 
8) yield parameters, p, less than 1, for which the hazard functions will decrease with time, and are, therefore, incompatible with the underlying premise of increasing probability with increasing duration of intense rainfall. 
The same four models (1, 2, 7, 8) also show unrealistically short durations of survival (the average at the 11 sites listed in table 1 is 11.2 hours). Of the 12 models remaining, all appear to be statistically acceptable. -,not 
applicable] 

T-ratios for the variables Survival distribution (hours) 

Model p 

CUMR CRI SLOPE SR CT Sl Mm Mi MSI 95% 75% 50% 25% 

1. CUMR 0.974 - - - - - - - 0.542 0.01 0.35 2.66 20.2 

2. CR/ - -0.232 - - - - - - - .447 .00 .02 .22 2.61 

3. SLOPE, CUMR -3.68 - 8.76 - - - - - - 1.78 1.45 4.09 7.59 14.1 

4. SLOPE, CRI - -4.28 19.0 - - - - - - 2.05 3.16 7.76 13.2 22.6 

5. SR, CUMR -.756 - - 9.31 - - - - - 2.28 4.78 10.7 17.4 28.2 

6. SR, CRI - 2.46 - 32.8 - - - - - 2.92 7.31 13.8 20.0 29.2 

7. CT, CUMR -2.51 - - - 4.27 - - - - .714 .01 .16 .75 3.47 

8. CT, CRI - -3.59 - - 7.64 - - - - .815 .01 .12 .44 1.70 

9. SLOPE, SR, CT, CUMR -2.69 - 1.60 1.94 .076 - - - - 2.17 3.13 7.32 12.1 20.1 

10. SLOPE, SR, CT, CRI - -2.62 1.84 1.51 4.14 - - - - 2.41 4.56 9.80 15.5 24.4 

11. SLOPE, SR, CUMR -1.32 - 1.68 1.92 - - - - - 2.20 3.51 8.14 13.4 22.1 

12. SLOPE, SR, CRI - -.31 1.71 3.78 - - - - - 2.76 6.36 12.4 18.5 27.5 

13. S/, CUMR 1.25 - - - - 11.1 - - - 2.38 6.22 13.5 21.5 34.1 

14. S/, CRI - 12.9 - - - 45.2 - - - 3.68 10.6 17.5 23.6 31.8 

15. S/, CT, CUMR -3.39 - - - 5.93 12.8 - - - 2.22 3.02 6.93 11.4 18.6 

16. S/, CT, CRI - 1.53 - - 5.21 33.7 - - - 3.16 8.26 14.8 21.0 29.7 

17. S/, Mm - - - - - 36.2 -3.96 - - 2.38 4.94 10.7 17.0 26.9 

18. S/, Mi - - - - - 38.6 - -4.23 - 2.28 4.64 10.4 16.9 27.3 

19. S/, MSI=Mm x S/ - - - - - 36.0 - - -4.11 2.44 5.14 10.9 17.2 26.9 

20. S/, MSI=Mi x S/ - - - - - 39.3 - - -4.27 2.32 4.82 10.7 17.2 27.6 



Table 3.-Regression results for model 20 (Sf, MSI), where MSf=(CRfT/(39 X en) X 

Sf 

[Both variables are significant, and the coefficients have the expected signs. These coefficients and 
parameter, p, are those used in equation 4 to calculate the conditional (hazard function) probabilities 
shown in fig. 7A-J (on plate). Log-likelihood= -407.4; p = 2.32; 'A= 0.06; median time to failure= 17 
hours; correlation coefficient for Sf, MSI = 0.04] 

Variable 

Sf 
MSI 

Coefficient (~) 

1.95 
-2.11 

of variables listed in table 2. Six of the models (1, 2, 5, 9, 12, 13) 
include one or more variables for which t-ratios are below the 
critical limit (1.28) for 90 percent acceptance. Four models (1, 2, 
7, 8) yield shape parameters, p, that are less than 1.0 and pro­
duce inappropriate percentile distributions for survival; these 
models, therefore, yield probabilities that decrease with duration 
of high-intensity rainfall from an instantaneous high at hour 1, 
which is not compatible with the premise that higher frequencies 
of debris-flow events are expected to occur with greater duration 
of high-intensity rainfall. The curve for model 14 (Sf, CRI) has p 
= 3.68, which provides for a slow increase in failure probability 
during the early hours of the storm, but the probability of survival 
drops to zero after only about 64 hours, the shortest survival time 
among the four models. The curve using Sf and MSf (where 
M=CRfT/39 X en shows the shape and scale that seems to best 
reproduce the observed data. For this model, the variables are 
conveniently expressed in the same physical units, their correla­
tion coefficient is low, and their signs relate them in a manner 
analogous to a physical model in which initial stability, Sf, is 
incrementally reduced by a fraction, MSf, that is a function of 
rainfall rate and duration. Therefore, we selected this model for 
use in calculating the time-dependent spatial distribution of prob­
abilities in the area chosen for mapping. 

MAPPING SOIL-SUP-DEBRIS-FLOW PROBABILITY 

The coefficients and parameters determined by the regression 
are then used to calculate hazard function probability estimates 
for each cell (k) in the Oakland hills study area for each hour of 
the storm. For the selected model, the hazard function, h(t), is 

h='Ap(At)p-1/(l+(At)P); where p = 2.32, 'A = e-<L95SI-Z.l1MSJ) (4) 

Map data, as plotted in figs. 2-5 (on plate) were prepared digi­
tally as covers in ARC/INFO, version 5.1, for the northwestern 
quarter of the Oakland East 7 .5-min quadrangle. Rain gage data 
from gage station A-5 were used to reconstruct the CRf and 
CUMR curves (fig. liB) for the January 3-5, 1982, storm as 
representative of the study area. Base map data are from USGS 
digital line graphs (DLG's) for roads, streams, and contours in the 
quadrangle. The contour DLG was used to prepare a digital ele­
vation model from which a shaded relief map (fig. 5, on plate) 
and a slope map (fig. 6, on plate) were derived. Geologic map 
units (fig. 2, on plate) were digitized from the map of Radbruch 
(1969), and additional landslides and surficial features, such as 

T-ratio 

39.3 
-4.27 

Mean 

1.48 
.117 

Standard 
deviation 

0.34 
.20 

quarry areas (fig. 4, on plate), were digitized from the landslid 
inventory of Nilsen (1975). Angles of shear resistance were the1 
assigned to each of the map units, following the procedun 
described in the section on Specifying the Variables and calcu 
lated into the polygon attribute tables (.PAT's) of the map covers 
Soils map units for Alameda and Contra Costa Counties (Welch 
1977, 1981) were digitized, joined, and reprojected (fig. 3 or 
plate). From the descriptions of the soils units, average thick 
nesses were assigned to the map units and calculated into th( 
.PAT of the map cover. 

All maps were prepared (reprojected where necessary) in thE 
same projection (Universe Transverse Mercator). Initially, inver· 
sion 5.1 of ARC/INFO, a cover consisting of an empty mesh oJ 
100-m cells was generated for the area and successively inter­
sected with the slope, geologic, landslide, and soils maps. Slope, 
shear resistance, and thickness of colluvium were then calculated 
from the intersected covers into the related .PAT of the empty 
mesh of cells. Where intersected cells contained two or more sub­
divisions, each containing different values, an area-weighted aver­
age was calculated and transferred to the appropriate mesh cell. 
Calculations of probability for each selected hour of the 1982 
storm were carried out in INFO and placed into the .PAT of the 
mesh cover. (Campbell and others, 1994, appendix F, p. 58-61, 
lists the macro command files used to compute the probabilities 
in INFO.) For subsequent revisions, more recent versions of 
ARC/INFO including the GRID subroutine were available; the 
map data were converted to grids of 100-m cells and the calcula­
tion of probabilities was done by using grid functions. The spatial 
distributions of the predicted conditional probabilities for 10 
selected hours are shown in the panel of maps reconstructing the 
effects of the 1982 storm (fig. 7 A-J, on plate). 

DISCUSSION 

The resulting maps show the distribution and abundance of 
cells having conditional probabilities that fall within specified 
probability categories. The categories represent a range of prob­
abilities, and a mean and a variance can be established for each 
category. The probability that a debris flow will be initiated in a 
specific cell, as calculated from equation 4, is not a quantity that 
can be directly measured by field observation in the cell itself. 
Although the probability model incorporates relations that are 
analogous to the way some geotechnical models of natural forces 
can become unbalanced and trigger landslides, the cell-by-cell 
probabilities are obviously not equivalent to geotechnical analyses 

11 



of site stability. They do, however, provide a way to composite 
map information into a quantitative expression of the spatial dis­
tribution of the likelihood of a debris flow being initiated in sets of 
equal-area cells. Knowing the probability for a single cell at a 
specific time has little significance without reference to other cells 
in the spatial population and to other times. Knowing that a cell 
has a failure probability of 0.010 (1.0 percent), indicates that of 
100 cells having the same probability, one will be expected to 
fail; but not which one of the 100 it will be. Similarly, a group of 
1,000 cells having a probability of 0.001 (0.1 percent) can be 
expected to have the same number of failures (one). Therefore, 
the expectation of failure is a function of area as well as of proba­
bility. Of course, it is unlikely that equation 4 will yield identical 
probabilities for any sizeable number of cells. 11 However, uncer­
tainties arising from incomplete knowledge of the spatial and 
time-varying variables, in part quantified by the variances 
assigned to the coefficients for the variables, suggest that cells 
can be grouped into a restricted number of probability ranges, 
each of which can be represented by a mean probability. Camp­
bell and Bernknopf (1997) have addressed several aspects of the 
selection of ranges that yield map units of possible interest for dif­
ferent objectives. 

In reading and interpreting gridded probability maps, it may be 
useful to bear in mind that the definition of the probability of an 
event can be stated r.Neaver, 1963, p. 74) as follows: "The prob­
ability of an event E is defined by the equation: 

n 
P(E) = N (5) 

where N is the total number of equally probable outcomes, and n 
is the number of outcomes which constitute the event E." There­
fore, in a population of hillside cells, there is a subset, NTi• hav­
ing probabilities at time T within a probability interval for' which 
the number of expected failures is nTi. Note that all categories 
having means that are neither 1. 0 nor' 0. 000000 are expected to 
have a number of failed cells at time T that is the number of cells 
in the category (NTiJ multiplied by the mean probability of cells 
in the interval, that is: 

(6) 

This provides a basis for comparing the probabilities estimated by 
equation 4 to observed events, permitting statistical measures of 
the predictive capabilities. By counting the number of invento­
ried failures (cells with one or more failure) in each probability 
group, and comparing the cumulative distribution of inventoried 
failures with the cumulative distribution of expected failures, sta­
tistical tests for goodness-of-fit can be applied. Campbell and 
Bernknopf (1997) used these procedures to compare results 
using different threshold rainfall intensities to define a time of ori­
gin for the period of observation and using different probability 
distributions for regression. Their results led to two important 
modifications to the model initially explored by Campbell and 
others (1994): (1) The time of origin for the period of observation 
has been redefined to begin when rainfall exceeds the threshold 

11The range of model probabilities, 0.0000-0.1077, can be divided 
into as many as 200 equal-interval groups, each of which includes at least 
one cell. The largest of these groups contains 91 cells, is in the probabil­
ity range 0.0000-0.0006, and has a mean probability of 0.0003 and a 
standard deviation of 0.0002. 
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rates selected for equation 3 and (2) a logistic distribution has 
replaced the weibull distribution. The redefined time of origin for 
the observation period combined with the change to a logistic dis­
tribution yields a better fit to the observed data on time-of-failure 
than the weibull distribution (fig. 12), without causing a significant 
reduction in the fit to the spatial distribution of inventoried fail­
ures in the study area (fig. 13). 

A Kolmogorov-Smirnov test12 can be applied to the graphs 
(figs. 12 and 13) to quantify comparisons of the distribution of 
expected failures for the storm hour in which probabilities are 
highest with the distribution of failures as inventoried after the 
end of the 1982 storm. Figure 12 compares hourly changes in 
frequency of expected failures (calculated for various models, 
using the means of the variables in the regression data) with the 
hourly changes in frequency of debris-flow events reported by 
Cannon and Ellen (1988). 13 The maximum difference in fre­
quency (probability) between the expected failures (according to 
the model being tested) and the inventoried failures is the Kol­
mogorov-Smirnov test statistic for 25 degrees of freedom. Figure 
13 compares, for the Oakland hills study area, the cumulative rel­
ative spatial frequency distribution of cells expected to have one 
or more failures in hour 32 of the storm (hour 21 of the duration 
of survival), which is the hour in which hazard function probability 
is highest, with the cumulative relative frequency distribution of 
failures identified in a post-storm inventory. Again, the maxi­
mum difference in frequency (expressed as probability) is the Kol­
mogorov-Smirnov test statistic. Figure 13 shows that the 
frequency distribution of predicted probabilities in cells having 
one or more inventoried soil-slip scars is similar to the frequency 
distribution of predicted probabilities in the entire cell population 
for hour 32 of the storm. 

The six probability intervals used for simple colored map units, 
<0.5 percent, 0.5-1.7 percent, 1.7-4.8 percent, 4.8-7.0 per­
cent, 7 .Q-8.8 percent, and >8.8 percent, (fig. 7 A-J, on plate) 
approximate the <0.5, 0.5-5.0, 5.0-25, 25-50, 50-75, and 
> 7 5 percent intervals for expected failed cells, which might be 
considered equivalent to very low, low, moderate, high, and very 
high susceptibility. Map units of this kind permit some visual 
comparison with the post-storm inventory (see Campbell and 
Bernknopf, 1997). This scale of probability intervals is used for 
map display to permit some visual comparison with susceptibility 
maps made by other procedures. It also illustrates how probabi­
listic procedures can quantify and subdivide broad categories of 
landslide susceptibility. 

12'fhe Kolmogorov-Smirnov test for goodness-of-fit, shown in figure 
12, measures the deviation of an observed cumulative distribution of a 
sample (the post-storm inventory) from the hypothesized cumulative dis­
tribution of a population (the predicted probabilities for hour 32). It tests 
for type 1 error; in other words, if the null hypothesis, H0, states that the 
population distribution is the same as the sample distribution, the type 1 
error is the probability that H0 will be rejected when H0 is correct. For a 
sample size of 36 cells having one or more inventoried scars, a maximum 
deviation of 0.23 indicates that the probability of being correct in reject­
ing H 0 is less than 0.01. 

For general discussions of applications of the Kolmogorov-Smirnov 
test, see standard texts such as Undgren and McElrath (1967, p. 151-
153), Davis (1986, p. 99-101), or Soong (1981, p. 322-325). 

13Eight of the 11 sites used to provide data for the regression ;=m:~ 

included in the set of 26 observed debris flows reported by Cannon < 

Ellen (1988, p. 29). 
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Figure 12.-Hourly changes in expected failures in the northwestern quarter of the Oakland East quadrangle 
compared with the time-to-failure observations reported by Cannon and Ellen (1988) for 26 sites scattered 
over all the counties of the San Francisco Bay region. "Weibull" and "logistic" show changes in cumulative fre­
quency of expected failures from the two probability models; "observed" shows cumulative frequency of 26 
observed times of failure from Cannon and Ellen (1988); and "regression" shows the cumulative frequency of 
times of failure at the eleven sites used in the regressions, most of which are included in "observed." 

The procedure we have developed yields the conditional prob­
ability that a soil slip will occur in a map cell at a time T during a 
storm if (1) no failure has occurred in that cell before T and (2) 
rainfall continues at a rate in excess of a selected threshold until 
T. The Kolmogorov-Smirnov test indicates that the null hypothe­
sis of equation 1 should be rejected. Although the predicted 
probabilities are clearly not equivalent to deterministic predictions 
that specific sites will fail or will not fail, and the accuracy of this 
preliminary model leaves room for much improvement, the Kol­
mogorov-Smirnov test indicates that the probabilities estimated 
by a simple time-dependent model produce a curve for frequency 
of expected failures that is a reasonable match for the frequency 
distribution curve for observed failures. The procedure also pro­
vides a rigorously defined framework for comparing the results 
achieved by adding new variables or combinations of explanatory 
variables (as, for example, in table 2) or for comparing the results 
yielded by applying the same equation in different regions. 

Because the equation for estimating time-dependent probabili­
ties as displayed on the maps (fig. 7 A-J, on plate) was built by 
regression on rainfall and landslide data for the 1982 storm in 
the San Francisco Bay region, it may be less valid as a forecast 
tool for soil-slip-debris-flow events where applied to other storms 
and other regions, which should be tested individually. However, 
because the rainfall at each case study site is characterized from a 
separate gage record (except for three instances where two sites 

are associated with one gage), the function is theoretically inde­
pendent of a particular storm or region, and statistical bias could 
be reduced by adding to the regression data base information 
from case studies from other regions and other storms. The 
accuracy of the results could probably be improved by adding 
some specific observations to those commonly recorded in case 
studies (for example, direct observation of the proportion of 
unfailed slope areas in the vicinity of a studied failure site). 

The results reported here are preliminary, and could be 
improved by further study. From figure 11, it is clear that both 
the weibull and logistic models reproduce the frequency distribu­
tion of inventoried failures much better in the higher probability 
intervals (representing high susceptibility) than in the lower half of 
the probability range (moderate and low susceptibility). Perhaps 
some other probability distribution (for example, a gamma func­
tion) would perform incrementally better than the logistic distribu­
tion. Additional spatial variables (for example, permeability, void 
ratio, and so on) might be acquired and included to develop a 
more complex model or set of models. More case studies (includ­
ing representatives of other regions and other storms) could be 
added to the regression data base, and more accurate ways to 
estimate regional variations in slope, shear resistance, and collu­
vium thickness may be devised. The shape and scale of the func­
tions are sensitive to (1) variations in the proportion of censored 
(unfailed) to exited (failed) cells having the same attributes, (2) the 
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Figure 13.-Graph comparing distributions of inventoried failures in logistic and weibull probability intervals 
with distribution of expected-failure cells (from equation 4 and interval area) for storm hour 32 (CRI hour 21) 
of the January 3-5, 1982, storm in the northwestern quarter of the Oakland East quadrangle. The x-axis is 
scaled to a nonlinear distribution of expected-failure cells (%EFC) and shows the maximum weibull and logistic 
model probabilities that mark the limits of equivalent expected-failure frequency intervals. 

specification of the observation period, (3) the geomorphic and 
geologic properties selected for regression, and (4) the 10 selected 
for calculation of the CRly. Clearly, better observational input 
should improve the model. However, the present results encour­
age further exploration of this and similar models, and their 
potential, if linked with spatial and temporal socioeconomic vari­
ables, to identify and delineate rainfall-induced short-term 
increases in debris-flow risk. 
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