U.S. Geological Survey
Geologic Investigations Series Map I-2600-F
Second Edition
Version 1.0
Published 2003
By Charles Swithinbank, Richard S. Williams, Jr., Jane G. Ferrigno, Kevin M. Foley, and Christine E. Rosanova
Introduction Changes in the area and volume of polar ice sheets are intricately linked to changes in global climate, and the resulting changes in sea level may severely impact the densely populated coastal regions on Earth. Melting of the West Antarctic part alone of the Antarctic ice sheet could cause a sea-level rise of approximately 6 meters (m). The potential sea-level rise after melting of the entire Antarctic ice sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). In spite of its importance, the mass balance (the net volumetric gain or loss) of the Antarctic ice sheet is poorly known; it is not known for certain whether the ice sheet is growing or shrinking. In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic part of the Antarctic ice sheet is probably becoming thinner overall; although the western part is thickening, the northern part is thinning. Joughin and Tulaczyk (2002), based on analysis of ice-flow velocities derived from synthetic aperture radar, concluded that most of the Ross ice streams (ice streams on the east side of the Ross Ice Shelf) have a positive mass balance. The mass balance of the East Antarctic is unknown, but thought to be in near equilibrium. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation’s (1990) Division of Polar Programs. On the basis of these recommendations, the U.S. Geological Survey (USGS) decided that the archive of early 1970s Landsat 1, 2, and 3 Multispectral Scanner (MSS) images of Antarctica and the subsequent repeat coverage made possible with Landsat and other satellite images provided an excellent means of documenting changes in the coastline of Antarctica (Ferrigno and Gould, 1987). The availability of this information provided the impetus for carrying out a comprehensive analysis of the glaciological features of the coastal regions and changes in ice fronts of Antarctica (Swithinbank, 1988; Williams and Ferrigno, 1988). The project was later modified to include Landsat 4 and 5 MSS and Thematic Mapper (TM) (and in some areas Landsat 7 Enhanced Thematic Mapper Plus (ETM+)), RADARSAT images, and other data where available, to compare changes over a 20- to 25- or 30-year time interval (or longer where data were available, as in the Antarctic Peninsula). The results of the analysis are being used to produce a digital database and a series of USGS Geologic Investigations Series Maps consisting of 24 maps at 1:1,000,000 scale and 1 map at 1:5,000,000 scale, in both paper and digital format (Williams and others, 1995; Williams and Ferrigno, 1998; and Ferrigno and others, 2002). |
Geologic Investigations Series Map I-2600-F is presented in Adobe Acrobat PDF format:
Download free Acrobat Reader software.
Visit the Adobe accessibility website.
Arc/Info files in interchange format
Ordering U.S. Geological Survey products
For questions about the scientific content of this report, contact Richard S. Williams, Jr.
[an error occurred while processing this directive]