SHADDED RELIEF AND SEA FLOOR TOPOGRAPHY OF QUADRANGLE 2
IN WESTERN MASSACHUSETTS BAY OFFSHORE OF BOSTON, MASSACHUSETTS

Bradford Butman, Laura Hoyes, William W. Danforth, and Page C. Valentine

U.S. DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY

FALSE EASTING 0 M; FALSE NORTHING 0 M
LONGITUDE OF CENTRAL MERIDIAN 70°W
CONTOUR INTERVAL 5 METERS

The map was created as a digital product, with a pixel grid spacing of 1.0 m, using multibeam bathymetric and sidescan sonar data having a 97% probability of containing valid soundings. The data were collected by the University of New Brunswick for his assistance in data acquisition, processing, and interpretation. The shaded relief was created by vertically exaggerating the topography 30:1 and casting shadows onto the south-facing slopes. The resulting grid was then back-projected and draped over the shaded relief to create a composite product consist of multibeam bathymetry, sidescan sonar images, photographs, and sediment samples. The final product was then printed on recycled paper.

ACKNOWLEDGMENTS
The authors acknowledge those who contributed to the study of the study of the study area. The following are the names and affiliations of the contributors: University of New Brunswick, Saint John, New Brunswick, Canada; U.S. Geological Survey, Reston, Virginia; U.S. Department of the Interior, Washington, D.C.; U.S. Army Corps of Engineers, Boston, Massachusetts; and U.S. National Oceanic and Atmospheric Administration, Woods Hole, Massachusetts. The map was created as a digital product, with a pixel grid spacing of 1.0 m, using multibeam bathymetric and sidescan sonar data having a 97% probability of containing valid soundings. The data were collected by the University of New Brunswick for his assistance in data acquisition, processing, and interpretation. The shaded relief was created by vertically exaggerating the topography 30:1 and casting shadows onto the south-facing slopes. The resulting grid was then back-projected and draped over the shaded relief to create a composite product consist of multibeam bathymetry, sidescan sonar images, photographs, and sediment samples. The final product was then printed on recycled paper.