Table 1. Major Geologic Units in the Pandrosos Dorsa Quadrangle

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belt a</td>
<td>Radar-dark regional plains material</td>
<td>north-central portion of the quadrangle</td>
</tr>
<tr>
<td>Belt b</td>
<td>Radar-bright regional plains material</td>
<td>south-central portion of the quadrangle</td>
</tr>
<tr>
<td>Tessera</td>
<td>Densely material</td>
<td>eastern part of the quadrangle</td>
</tr>
<tr>
<td>Flow a</td>
<td>Lava flows; probably basaltic</td>
<td>western part of the quadrangle</td>
</tr>
<tr>
<td>Flow b</td>
<td>Material</td>
<td>central part of the quadrangle</td>
</tr>
</tbody>
</table>

Figure 6. Photomosaic showing location of map area. An outline of the area is shown by the solid line. The quadrangle encompasses a region of geologic interest because it contains the most widespread and largest concentration of impact craters.

The Pandrosos Dorsa quadrangle contains three regionally widespread plains units and three local plains units. The regional plains units are belt material a, belt material b, and tessera material. The local plains units are flow a, flow b, and material. The regional plains units are characterized by radar-dark and radar-bright materials, while the local plains units are characterized by material.

The small shield volcanoes occur in three styles in the Pandrosos Dorsa quadrangle. These styles are small shield fields, shield fields with linear belts, and shield fields with linear belts and radar-bright material.

The remaining three mapped flows originate either from a single volcanic source or from multiple sources. The flows are characterized by wide and narrow material and are described in detail in the stratigraphy section. The small shield volcanoes occur in three styles in the Pandrosos Dorsa quadrangle. These styles are small shield fields, shield fields with linear belts, and shield fields with linear belts and radar-bright material.

The remaining impact craters are unconstrained. Also present are two "splotch" features centered at 51.5°E and 238.7°N. The splotch features are characterized by small impact craters and outflow material.