individual pitted cones (see fig. 7) with albedos higher than underly-
ing materials, the origin and age of the giant polygons, the validity of putative shorelines of Arabia Terra highlands. These six quadrangles are combined into a single map at include northern Cydonia Mensae, part of southern Acidalia Planitia, and a small area

These younger processes have changed the surface appearance of the plains material

Interpretation: Probably water-deposited sediment, but may be vol-

Interpretation: Lava

The albedo of most debris-apron material

cover a significant portion

Note, however,

The albedo of most debris-apron material

emplacement of a cap of volcanic materials, forming a plateau. Large areas of this pla-

Mariner 9 and Viking Orbiter images (Pierce and Crown, 2003). As shown in fig. 8, the plains of Acidalia Planitia are divided into three types (from youngest to oldest):

- MESA AND KNOB MATERIALS
- SMOOTH PLAINS MATERIAL
- Pitted cones and domes

Most of the plains are on the floors of isolated mounds, which are the remnants of the early eroded segments of adjacent knobby plains. These remnants are up to about 2 km high and are superposed on knobby plains material (unit 2), that may have been the floor of a once more widespread, thin deposit covering much of Acidalia Planitia. The pitted cones and domes are superposed on homogeneous plains material in places.

Fresh craters in this size range should have rims

The three oldest plains units, which have a low albedo, are mapped as separate bodies separated by the plains unit (3). Unit (3) is characterized by a swirly texture of ribs and grooves; it

The following units are found on the plains of Acidalia Planitia:

- Pitted cones and domes (unit 3)
- Smooth plains material (unit 4)
- MESA AND KNOB MATERIALS (unit 5)

The albedo of most debris-apron material

These younger processes have changed the surface appearance of the plains material

Most of these plains are probably Hesperian age, but some may be younger. The age of these plains is determined by relationships with the other surficial materials.

These younger processes have changed the surface appearance of the plains material

The albedo of most debris-apron material

These younger processes have changed the surface appearance of the plains material

Most of these plains are probably Hesperian age, but some may be younger. The age of these plains is determined by relationships with the other surficial materials.

The albedo of most debris-apron material

These younger processes have changed the surface appearance of the plains material

Most of these plains are probably Hesperian age, but some may be younger. The age of these plains is determined by relationships with the other surficial materials.

The albedo of most debris-apron material

These younger processes have changed the surface appearance of the plains material

Most of these plains are probably Hesperian age, but some may be younger. The age of these plains is determined by relationships with the other surficial materials.

The albedo of most debris-apron material

These younger processes have changed the surface appearance of the plains material

Most of these plains are probably Hesperian age, but some may be younger. The age of these plains is determined by relationships with the other surficial materials.

The albedo of most debris-apron material

These younger processes have changed the surface appearance of the plains material

Most of these plains are probably Hesperian age, but some may be younger. The age of these plains is determined by relationships with the other surficial materials.

The albedo of most debris-apron material

These younger processes have changed the surface appearance of the plains material

Most of these plains are probably Hesperian age, but some may be younger. The age of these plains is determined by relationships with the other surficial materials.