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Sagebrush Ecosystem Conservation and Management: 88–111, 2011 

Chapter 4: A Sampling and Analytical Approach to Develop 
Spatial Distribution Models for Sagebrush-Associated Species 
Matthias Leu, Steven E. Hanser, Cameron L. Aldridge, Scott. E. Nielsen, 
Brian S. Cade, and Steven T. Knick 

Abstract. Understanding multi-scale 
floral and faunal responses to human 
land use is crucial for informing natural 
resource management and conservation 
planning. However, our knowledge on 
how land use influences sagebrush (Arte-
misia spp.) ecosystems is limited primar-
ily to site-specific studies. To fill this void, 
studies across large regions are needed 
that address how species are distributed 
relative to type, extent, and intensity of 
land use. We present a study design for the 
Wyoming Basin Ecoregional Assessment 
(WBEA) to sample sagebrush-associated 
flora and fauna along a land cover-human 
land use gradient. To minimize field costs, 
we sampled various taxonomic groups si-
multaneously on transects (ungulates and 
lagomorphs), point counts (song birds), 
and area-searches of 7.29-ha survey blocks 
(pellet counts, burrow counts, reptile sur-
veys, medium-sized mammals, ant mounds, 
rodent trapping, and vegetation sampling 
of native and exotic plants). We then pres-
ent an exploratory approach to develop 
species occurrence and abundance mod-
els when a priori model building is not an 
option. Our study design has broad appli-
cations for large-scale evaluations of arid 
ecosystems. 

Key words: anthropogenic disturbance, 
data collection, ecoregional assessment, 
habitat, hierarchical multi-stage modeling, 
land use, model evaluation, species distri-
bution model. 

Ecoregional assessments have become 
common tools for researchers to evalu-
ate ecosystem health across large extents 
(Freilich et al. 2001, Groves et al. 2000,The 

Nature Conservancy 2000, McMahon et 
al. 2001, Neely et al. 2001, Noss et al. 2001, 
Weller et al. 2002, Wisdom et al. 2005). The 
recognized value of such assessments in 
addressing the functioning of entire eco-
systems has resulted in multiple agency 
initiatives to conduct landscape-scale as-
sessments, such as the recently developed 
U.S. Bureau of Land Management Rapid 
Ecoregional Assessments and U.S. Fish 
and Wildlife Service Landscape Conserva-
tion Cooperatives. Crucial management 
actions will rest on the guidance provided 
by ecoregional assessments. However, 
most input parameters and understanding 
of habitat or species responses used to de-
velop previous assessments stem from data 
collected from different spatial and tempo-
ral locations or scales and frequently from 
ecosystems not represented within the as-
sessment region. Responses of species to 
anthropogenic disturbances and the un-
derlying mechanisms or processes may be 
applicable across different ecosystems, but 
the generality of these responses should be 
evaluated (Lobo et al. 2008). In addition, 
evaluations are rarely conducted to assess 
model fit (Freilich et al. 2001) resulting in 
large uncertainty in the confidence of as-
sessment results and subsequent manage-
ment recommendations. 

We present methods for developing 
spatial models driven by empirical data 
allowing for inferences to be made based 
on relationships directly assessed between 
species of interest, land cover composition 
and configuration, abiotic factors, and po-
tential anthropogenic drivers. Complete 
faunal and floral inventories are logisti-
cally difficult and prohibitively costly (for 
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 TABLE 4.1. Distances used to delineate effect zones surrounding anthropogenic features to define the ecologi-
cal human footprint gradient for the Wyoming Basins Ecoregional Assessment. 

Anthropogenic feature Range of reported empirical distancesa Effect zone distance (m) 

Agricultural land �260 m surrounding pivot fields 135 

Communication towers, including as- �113 m (10 acres, assuming circular shape) 90 
sociated infrastructureb 

Human impact zone �610 m 405 

Interstate highways 365-1,200 m 855 

Irrigation channels No empirical support 0 

Oil/gas wells abandoned/inactiveb 0.5-1 ha for well pad 90c 

0.7 ha/km for roads 

Oil/gas wells active, including associ- 0.5-2 ha for well pad 225d 

ated infrastructureb 

0.7-2.2 ha/km for roads 

3.2 km: Distance avoided by greater sage-
grouse 

Power lines 300-4,000 m 135 

Railroads 0-500 m 135 

Secondary roads 100–600 m 135 

State/federal highways 100–600 m 405 

89 Sampling and Analysis – Leu et al. 

a See Appendix 4.1 for detailed information on effect zone delineation. 
b Because we only had point locations for these anthropogenic features, we included surface disturbance associated with infrastructure such 
as roads, condensation tanks (oil and gas wells only), and power lines. 
c 90 m: 4 cells surrounding center cell (5-cell pattern), area = 4.05 ha. 
d 225 m: 20 cells surrounding center cell (21-cell pattern), area = 17.01 ha. 

discussion see Mac Nally and Fleishman 
2004). We therefore developed a sampling 
design that incorporated data collection 
across various taxonomic groups, including 
birds, mammals, reptiles and plants, while 
minimizing overall sampling costs and en-
suring that modeled relationships would 
be applicable to the entire ecoregion. 

We describe the design and analytical 
approaches developed for the Wyoming 
Basin Ecoregional Assessment (WBEA) 
that combined traditional field methods 
integrated within a Geographical Infor-
mation System (GIS). We also present an 
exploratory approach to develop species 
occurrence and abundance models when a 
priori model building is not an option, and 
illustrate how these models can be predict-
ed spatially for management purposes and 

evaluated for their strengths and weak-
nesses. Finally, we discuss implications and 
limitations of our sampling design, provid-
ing insights for future ecoregional assess-
ments. 

FIELD SAMPLING METHODS 

Defining the Sampling Space 

A challenge in land management is to 
identify thresholds at which land-use pat-
terns influence the distribution of flora 
and fauna. This challenge exists because 
species occurrence and abundance mod-
els are often based either on land cover 
or human land-use gradients but rarely in-
corporate both (but see e.g., Sawyer et al. 
2005, Aldridge and Boyce 2007, Walker et 
al. 2007, Doherty et al. 2008, Avila-Flores 



 

 
 

 

 
 

 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 
 

 

 
 

  
 
 
 
 
 
 
 
 
 

90 PART II: Assessment Methods 

et al. 2010). To account for potential syner-
gistic species responses to anthropogenic 
as well as land cover-based drivers, we de-
veloped a stratified sampling design across 
the WBEA according to two gradients: (1) 
land use, based on a human footprint anal-
ysis and (2) land cover, based on Normal-
ized Difference Vegetation Index (NDVI). 

Land use: ecological human footprint 

We used 11 anthropogenic features to 
delineate land use across the WBEA (Table 
4.1). We selected these anthropogenic fea-
tures because they influence species dis-
tribution, demography, or both, for one or 
more species of interest (Appendix 4.1, Leu 
et al. 2008, Leu and Hanser 2011).We delin-
eated land use based on the ecological hu-
man footprint (Leu et al. 2008) represented 
by a cumulative map of land-use intensity 
and influence on ecological processes. 

We derived the ecological human foot-
print based on three point features (com-
munication towers, oil/gas wells aban-
doned/inactive, and oil/gas wells active), 
six linear features (interstate highways, 
irrigation channels, power lines, railroads, 
secondary roads, and state/federal high-
way), and two polygonal features (agricul-
tural land and human impact zone [indus-
trial areas, urban, exurban, and rural]). For 
each anthropogenic feature, we delineated 
its effect zone (the extent at which an an-
thropogenic feature influences ecological 
processes) based on a comprehensive lit-
erature review to understand the extent 
of anthropogenic impacts on wildlife and 
their habitats (Appendix 4.1). We took a 
conservative approach in delineating ef-
fect zones by employing the reported ef-
fect distances or areas (Table 4.1) adjusted 
to fit multiples of the 90-m resolution of 
our spatial data. 

We delineated effect zones for each of 
11 anthropogenic features in ArcMap 9.2 
(ESRI 2006) by first creating proximity 
grids for each feature (Euclidian distance). 
We then used these proximity grids to de-
rive effect zones surrounding anthropo-

genic features based on distances summa-
rized from existing literature (Table 4.1). 
The resulting map consisted of a binary 
surface where cells within the effect zone 
received a value of one, and all other cells 
were coded as zero. For oil and gas wells, 
we used two approaches to model effect 
zones: (1) for abandoned/inactive wells, we 
used a distance of 90 m from the pixel con-
taining the point location, which resulted 
in the selection of the four adjacent pixels 
in the cardinal directions (area = 4.05 ha); 
and (2) for active wells, we used a distance 
of 135 m from center point of pixel, which 
resulted in the selection of eight pixels 
surrounding the center pixel (area = 7.29 
ha). This captured the larger disturbance 
associated with active wells. Once the ef-
fect zones were delineated, we merged the 
11 individual anthropogenic layers (maxi-
mum cell value = 11) and reclassified this 
layer to a binary layer with cell values zero 
or one. We did not incorporate cumulative 
anthropogenic effects because empirical 
data to weight individual anthropogenic 
features were not available. Rather, we fo-
cused on whether an area overlapped with 
the effect zone of at least one anthropo-
genic feature. 

We then put the ecological human foot-
print in the context of sagebrush (Artemisia 
spp.)-associated vertebrate responses. First, 
we calculated the relative extent of the eco-
logical human footprint, using moving win-
dow analyses (circular shape) on the binary 
ecological human footprint. Sizes of mov-
ing windows were based on seven “model” 
home ranges that captured published results 
for 38 of the 40 vertebrate species of con-
cern (Appendix 4.2). We could not find any 
empirical data on home range size for the 
Great Basin spadefoot toad (Scaphiopus 
intermontanus) and omitted home range 
estimates for the spotted bat (Euderma 
maculatum), given the enormous estimated 
foraging distances of this species (Rabe et 
al. 1998). Spatial extents used included: 0.8 
ha (raw data, no moving window analysis), 
2.5 ha (1-cell radius window extent), 41 ha 

https://2011).We


 
 

 

 

 

 

 

 

 
 

 

 
 
 

  

 
 

 
 

  

91 Sampling and Analysis – Leu et al. 

FIG. 4.1. Spatial representation of (A) human footprint intensity, (B) sagebrush ecosystem productivity (NDVI), 
and (C) sampling matrix (combined human footprint and NDVI gradients) across the Wyoming Basin Ecoregion-
al Assessment area. Human footprint intensity and NDVI were used to stratify sampling locations. 

(4-cell radius), 125 ha (7-cell radius), 430 ha 
(13-cell radius), 2,771 ha (33-cell radius), 
and 6,361 ha (50-cell radius). Last, we av-
eraged the seven layers to create an eco-
logical human footprint within the average 
home range of sagebrush-associated verte-
brates (Fig. 4.1A). 

Sagebrush ecosystem productivity 

The primary land-cover map available 
for this region in 2004, the “Sagestitch 
Map” (Comer et al. 2002), did not distin-
guish sagebrush taxa at the subspecies 
(variety) level; therefore productivity of 
sagebrush ecosystems (mesic versus xeric 
sagebrush ecosystems) could not be differ-
entiated. As a result, we defined sagebrush 
ecosystem productivity using the Normal-
ized Difference Vegetation Index (NDVI) 
derived from MODIS (Moderate Resolu-
tion Imaging Spectroradiometer, Carroll 
et al. 2006) classifications from May to Au-
gust of 2004. We clipped the NDVI layer 
to the extent of the combined shrub-grass-
land land cover identified in the “Sages-
titch Map” (Comer et al. 2002) (Fig. 4.1B). 

Sampling design spatial data set 

We allocated equal sampling effort 
across gradients of the ecological human 

footprint and NDVI by using a 3 x 3 ma-
trix. We reclassified the mean ecological 
human footprint value within a 33-cell ra-
dius according to three ordinal categories 
containing equal areas ranging from low 
(0–0.20), moderate (>0.20–0.38), to high 
(>0.38–1). The 33-cell radius dataset was 
used to facilitate placement of sample lo-
cations by generalizing the ecological hu-
man footprint over a broader area than 
the surface created from the average home 
range size. Similarly, we reclassified the 
NDVI layer into three ordinal categories 
of equal area ranging from low (-1–0.37), 
moderate (>0.37–0.53), to high (>0.53–1). 
We combined the reclassified gradients 
spatially to produce a spatial data set con-
sisting of nine sampling strata (Fig. 4.1C). 

Sampling Location Selection 

We used a hierarchical-spatial sampling 
design to survey flora and fauna across the 
WBEA area (Ch. 2) during spring/summer 
of 2005 and 2006. We restricted our surveys 
to WBEA areas consisting of shrub-grass-
land land cover within Wyoming and Colo-
rado, given the focus of the assessment on 
the sagebrush ecosystem. To increase sam-
pling efficiency, we first randomly placed 
49 non-overlapping circles of 30-km radius 

https://0.37�0.53
https://0.20�0.38


 

  
 
 

  

 

 
 

 

 

 
 

  

 
 

  

 
 
 
 

 

 

 

 

 

 

  
 
 
 

  

 
  

 
 

 
 
 
 

 
 

 
 

 

 
 

 

 

92 PART II: Assessment Methods 

throughout the WBEA within Wyoming in 
2005 (29 circles), and Wyoming and Colo-
rado in 2006 (20 circles).We selected center 
locations of circles using the RANDOM 
POINT GENERATOR in ARCVIEW 
(Version 1.1, Utah State University). We 
populated the area within each 30-km cir-
cle overlapping the combined gradients of 
the ecological human footprint and shrub-
grassland land cover productivity (i.e., area 
covered by nine sampling stratum of the 3 
x 3 matrix) with as many random points (1-
km apart) we could fit. We restricted poten-
tial random points within each circle to ar-
eas with <25% slope, based on 90-m Digital 
Elevation Models (DEM; National Eleva-
tion Dataset, USGS EROS, http://seamless. 
usgs.gov/), such that observers were able 
to walk to random points while collecting 
data. These random points represented 
the center of two types of points in rela-
tion to roads (Fig. 4.1): near-road = 0-750 
m from road, and far-road = >750-3,000 m 
from road. We then selected a third set of 
on-road points using COSTPATH in AR-
CINFO (ESRI 2006) (Fig. 4.1). These on-
road points were located at the road end of 
the least-cost path in terms of pixel-based 
elevation change (using DEM) between the 
far-road points and the road network. 

We then selected a preliminary set of 
points from this pool to ensure equal rep-
lication within each of nine sampling stra-
tum; consequently, not all 30-km circles 
contained the same number of points be-
cause the area covered by each of nine 
sampling stratum varied among 30-km 
circles. In the field, we first attempted to 
sample the original set of points. However, 
this was not always possible due to access 
issues (mainly private land). In such cases, 
we selected the next nearest point within 
the same disturbance-productivity class. 
We were unable to get access to replace-
ment points in some 30-km circles, result-
ing in slightly unbalanced sampling across 
strata and in relation to roads (n = 330; 162 
in 2005 and 168 in 2006; on-road n = 104, 
near-road n = 125, far-road = 101). Nearest 

neighbor distance among all points aver-
aged 2.36 km (SD ± 2.27 km, range = 0.69– 
19.6 km), among far-road points averaged 
4.98 km (SD ± 3.15 km, range = 1.20–19.6 
km), and among on-road and near-road 
points averaged 4.82 km (SD ± 3.07 km, 
range = 1.20–20.79 km) apart. Selected 
points were converted to 270 m x 270 m 
survey blocks (7.29 ha) centered on points 
and oriented on cardinal axes, with corners 
facing northeast, southeast, southwest, and 
northwest (Fig. 4.2). 

We surveyed larger-sized vertebrates on 
145 transects that extended between the 
center points of survey blocks (Figs. 4.1 and 
4.2). The combined transect/survey block 
sampling design allowed us to sample mul-
tiple vertebrate species, thereby decreasing 
travel time and sampling cost. We used two 
types of transects: (1) short transects, start-
ing at roads (mainly gravel roads), and end-
ing at centers of near-road survey blocks; 
and (2) long transects, starting at centers of 
on-road survey blocks and ending at cen-
ters of paired far-road survey blocks. Tran-
sects between on-road and far-road survey 
blocks were identified by the least-cost path 
used to select the on-road survey blocks. 
Least-cost paths were also developed be-
tween near-road survey blocks and the clos-
est point on the road using the same analysis 
procedure. For field application, transects 
were converted from the COSTPATH ras-
ter output into line shapefiles and uploaded 
into GPS units (Garmin E-trex Venture) 
using the Minnesota Department of Natu-
ral Resources Garmin software (Version 
4.41, http://www.dnr.state.mn.us/mis/gis/ 
tools/arcview/extensions/DNRGarmin/ 
DNRGarmin.html) to aid field navigation. 
We recorded track logs of altered transects 
for subsequent sampling if observers devi-
ated from predetermined transects due to 
obstacles encountered during the first sam-
pling bout of the season. 

Floral and Faunal Sampling Protocol 

Our surveys incorporated multiple tech-
niques designed to detect the full suite of 

http://www.dnr.state.mn.us/mis/gis
https://1.20�20.79
https://usgs.gov
http://seamless
https://circles).We


  
 

 

 

 

 

 

 

 

 

93 Sampling and Analysis – Leu et al. 

FIG. 4.2. Distribution of survey blocks and transect across the Wyoming Basin Ecoregional Assessment area. 
Shown are locations for survey block for on-road = directly adjacent to road (n = 104), near-road = 0-750 m (n = 125), 
and far-road = >750-3,000 m (n = 101).Transects (n = 145), not shown, occur between near-road and far-road survey 
blocks (n = 101) and between roads and near-road survey blocks (n = 44; transects > 100-m long) (see Fig. 4.3). 

sagebrush steppe-associated fauna as well 
as information on plant community com-
position. Our survey protocols were ap-
plied as follows: (1) surveys conducted on 
transects while navigating between the on-
road and far-road survey blocks or roads 
and near-road survey blocks and (2) sur-
veys conducted within each survey block 
(Fig. 4.3). 

On short and long transects, we ap-
plied distance sampling (Buckland et al. 
2001, 2004) to enable density estimation 
for medium to large-sized mammals. For 
each detected individual or group, we re-
corded location of observer (latitude and 
longitude), azimuth using a compass, and 

distance between observer and object us-
ing a rangefinder (Bushnell Yardage Pro 
Legend). 

Within survey blocks, we used variable-
width point counts (Bibby et al. 1992) 
centered on survey blocks (Fig. 4.3) to 
survey sagebrush-associated songbirds. 
We estimated distance between observer 
and birds using a rangefinder. We used 
area-searches based on within survey 
block transects of 2.16-km length (Fig 4.3) 
to survey medium-sized mammals (lago-
morphs and larger rodents), pygmy rabbit 
(Brachylagus idahoensis) burrows, reptiles, 
ant mounds, and greater sage-grouse (Cen-
trocercus urophasianus) pellets. We sur-



 

 

 

 

 

  
 

 

 
  

 

 

 
 

 

  

  
  

 

94 PART II: Assessment Methods 

FIG. 4.3. Sampling layout within a survey block. Survey blocks were quadratic in shape with sides measuring 
0.27 km. Points were used to survey vegetation (n = 5), with the center point used as songbird point count loca-
tion. We used walking transects (2.16 km) to survey medium-sized mammals (grounds squirrels, prairie dogs, and 
chipmunks, lagomorphs), reptiles, and greater sage-grouse pellets.We surveyed small mammal diversity along two 
0.25-km long transects (50 traps total); direction of transects was chosen randomly and transects were spaced 15 
m apart. 

veyed plant communities (shrub cover and 
composition, selected exotic forb and grass 
cover and composition, native annual and 
perennial forb and grass cover, and shrub 
height) in five 20-m radius (1,257 m2) plots 
systematically located in the survey block 
at the center and 127.3 m from the center 
at 45º, 135º, 225º, and 315º azimuths (Fig. 
4.3). For exotic plants, we sampled a subset 
of plant species deemed noxious and inva-
sive by land management agencies (Ap-
pendix 4.3). We trapped small mammals at 
a subset of survey blocks using two paral-
lel 0.25-km long transects centered on the 
survey block, but oriented randomly (Fig. 
4.3). Detailed descriptions of specific sam-
pling protocols are provided in chapters 
that follow. 

We combined surveys throughout the 
field season to maximize sampling ef-
ficiency and minimize cost. Three field 
crews (two observers per team) worked 
independently throughout the field sea-
son. During the first round of surveys from 
28 April – 31 May, all crews sampled me-
dium to large-sized mammals on transects 
en route to survey blocks. Within survey 
blocks, crews sampled songbirds, pygmy 
rabbit signs, ant mounds, and medium-
sized mammals (grounds squirrels [Sper-
mophilus spp.], prairie dogs [Cynomys 
spp.], and chipmunks [Tamius spp.]). Dur-
ing the second round of sampling from 
1 June – 2 July, all crews again sampled 
medium to large-sized mammals on tran-
sects en route to survey blocks; on survey 

https://pellets.We


 
 
 
 
 
 

 

 

 
 
 
 

  
 

 
 

95 Sampling and Analysis – Leu et al. 

FIG. 4.4. Flow chart outlining hierarchical multi-stage modeling approach for floral and faunal presence/ab-
sence and abundance data. 

blocks, song birds, and vegetation (species acteristics (shrub cover, total, sagebrush 
specific shrub and tree cover and height, [live, woody, and total], exotic and na-
exotic and native herbaceous cover, and tive herbaceous cover, dominant species 
ground cover) were sampled. During the by cover type, rock out-crop cover, and 
last round of sampling between 6 July and ground cover); and crew three trapped 
2 September, we only sampled on survey small mammals on a subset of survey 
blocks. Crew one counted reptiles, mam- blocks. We assigned field crews to sample 
mals, and sage-grouse pellets; crew two the various taxonomic groups based on 
measured vegetation and habitat char- individual expertise. 



 
 
 
 

 
 
 

  
 
 

  

 
 

 
 
 
 
 
 
 
 
 
 

  
 
 
 
 

 

 

 
 
 

 

 

 

 

 
 

 
 

 

 

96 PART II: Assessment Methods 

ANALYSES 

We developed species occurrence and 
abundance models based on habitat, abiotic 
and land use predictor variables (Franklin 
2009). Our modeling procedure followed 
an Akaike Information Criterion (AIC) ap-
proach (Burnham and Anderson 2002); how-
ever, for most species we could not develop 
a priori candidate models because we lacked 
knowledge about species-specific responses 
to land use as well as appropriate spatial ex-
tents for assessing land cover conditions. As 
a result, our modeling effort was exploratory 
and followed a hierarchical analysis based 
on multiple steps to select the most plau-
sible final models (Fig 4.4). We first selected 
the best extent and form of variables of in-
terest and then chose top variables among 
competing variables within categories, of 
influence (Fig. 4.4). We used empirical infor-
mation and/or our own knowledge to guide 
selection of predictor variables whenever 
possible but ultimately used AIC corrected 
for small sample sizes (AICc; Burnham and 
Anderson 2002) to select among competing 
predictor variables. Once predictor variables 
were selected within categories, we used 
all possible variable combinations within 
and across categories to develop candidate 
models. We used AICc to rank these models, 
produced a final model-averaged composite 
model based on a 90% confidence model set, 
and used independent data when possible to 
evaluate predictive capacity of final models. 
For all species, we modeled species presence/ 
absence, abundance, or density, as summa-
rized on survey blocks or transects, using a 
set of predictor variables consisting of a va-
riety of environmental, habitat, and land-use 
covariates. Below, we outline detailed analyt-
ical approaches that apply to Chapters 5-9; 
methods used in Chapter 10 (exotic plants) 
deviate from this approach and are detailed 
in that chapter. 

Predictor Variables 

We used a suite of common GIS predic-
tor variables consisting of land cover mea-

sured at different radii, land cover patch 
metrics, vegetation productivity, soil char-
acteristics, terrain-derived variables, dis-
tance from water, climate, and density of 
and distance from anthropogenic features. 
Little is known about how sagebrush-asso-
ciated species perceive ecological patterns. 
Therefore, we explored landscape percep-
tion of these species by selecting a range 
of circular moving window sizes based 
on the radius of seven model home range 
sizes that best represented 38 sagebrush 
steppe-associated species (Appendix 4.2). 
We evaluated land cover, vegetation pro-
ductivity, and terrain-derived variables at 
six radii (0.27, 0.54, 1, 3, 5, and 18 km) and 
landscape metrics (contagion, edge den-
sity, mean patch size) at three radii (1, 3, 
5 km). The 18-km radius reflected the rec-
ommended scale for habitat management 
around lek locations of migratory greater 
sage-grouse populations (Connelly et al. 
2000). All predictor variable data sets 
are available on the SAGEMAP website 
(http://sagemap.wr.usgs.gov/wbea.aspx). 

We modeled distance variables using 
exponential distance decay functions (val-
ue = e(Euclidean distance to feature (km)/-distance parameter)) 
with the distance parameter set at 0.25, 0.5, 
and 1 km (Nielsen et al. 2009, Carpenter et 
al. 2010), allowing for nonlinear responses 
of species to distance from water sources 
or anthropogenic features. For anthro-
pogenic features such as power lines that 
attract synanthropic predators (predators 
that benefit from human features [John-
ston 2001]), the asymptote of the 1-km 
distance decay function (~4.5 km) ap-
proximates the maximum home range size 
(� 54 km2) for golden eagles (Aquila chrys-
aetos) breeding in the Intermountain West 
(Kochert et al. 2002); the asymptote of 
the 0.5-km distance decay function (~2.4 
km) approximates the mean home range 
size (22.8 km2) for golden eagles in south-
west Idaho (Marzluff et al. 1997); and the 
asymptote of the 0.25-km distance decay 
function (~1.2 km) approximates the mean 
common raven (Corvus corax) feeding dis-

http://sagemap.wr.usgs.gov/wbea.aspx


 
 

 
 

 
 
 
 
 
 
 

 
 
 
 

  
 

 

 
 
 

 
 

 
 

 
  

 
 

 

 

 

 

 

 

 

 

 

97 Sampling and Analysis – Leu et al. 

tance around nests in arid regions of Cali-
fornia (0.57 km ± 0.71 SD [Boarman and 
Heinrich 1999]). 

We initially identified a total of 154 
candidate predictor variables likely to 
influence species occurrence and abun-
dance; inclusion or exclusion of specific 
predictor variables are discussed in each 
chapter separately. We screened candi-
date predictor variables for sufficient 
representation of non-zero data values 
(i.e., values >0) across survey blocks and 
extents to avoid model fitting based on 
predictor variables dominated by zeros or 
having non-zero data values only at large 
extents. As a cut-off point, we only includ-
ed predictor variables with non-zero data 
values on at least 20 survey blocks (6%, n 
= 326) or transects (14%, n = 141) at the 
smallest radius of 0.27-km. We omitted 
three land-cover variables (agriculture, 
n = 4 survey blocks with values > 0 [re-
tained as a distance predictor variable]; 
juniper [Juniperus spp.], n = 2; and moun-
tain shrub, n = 19) and one anthropogenic 
variable (oil and gas wells, n = 5 [retained 
as a distance predictor variable]). For 
distance to anthropogenic feature, we se-
lected predictor variables with at least 20 
survey blocks or transects located �1 km 
from a feature. We omitted three predic-
tor variables as a result, including human 
populated area (n = 4 survey blocks with-
in 1 km of feature), railroad (n = 2), and 
tower (n = 2). We were left with a total 
of 122 candidate predictor variables after 
this screening (Table 4.2). 

Fifty-four of 122 candidate predic-
tor variables consisted of nine land cover 
types (Table 4.2) evaluated at the six radii 
(0.27, 0.54, 1, 3, 5, and 18 km); these includ-
ed four sagebrush land cover classes as 
well as coniferous forest (CFRST), grass-
land (GRASS), mixed shrubland (MIX), 
riparian (RIP), and salt-desert shrubland 
(SALT) land cover (Table 4.2). We used 
the LANDFIRE existing vegetation type 
(EVT) data layer (LANDFIRE 2007), re-
classified per the cross-walk listed in Ap-

pendix 1.1, as our base land cover map 
and moving window analyses in ArcMap 
9.2 (ESRI 2006) to calculate proportion of 
land cover class for each of six radii. For 
the all sagebrush species (ALLSAGE) 
land cover (all sagebrush species and sub-
species combined), we calculated land-
scape metrics in FragStats (McGarigal et 
al. 2002) including patch size (PATCH), 
edge density (EDGE), and contagion 
(CONTAG), at three radii (1, 3, and 5 km). 

We determined land cover productivity 
values for the plot center and computed 
mean values at six spatial extents (Table 
4.2). Land cover productivity values were 
calculated for each pixel on the landscape 
using the maximum value of NDVI from 
all available data during the growing sea-
son (May through August in 2005 and 
2006). NDVI values were derived from 
the 250-m resolution Moderate Resolu-
tion Imaging Spectroradiometer (MO-
DIS) satellite imagery (Carroll et al. 2006) 
re-sampled to 90-m resolution using cubic 
convolution for interpolation in ArcMap 
9.2 (ESRI 2006). 

We derived 18 abiotic variables (Table 
4.2) based on terrain, soil, climate, and hy-
drography. Terrain variables were derived 
from 90-m DEM and consisted of com-
pound topographic index (CTI) (Gessler 
et al. 1995), elevation (ELEV), slope 
(SLOPE), solar radiation index (SOLAR, 
developed using HILLSHADE analysis 
with parameters set to solar angle and di-
rection at noon on the summer solstice, 
ESRI 2006), and topographic ruggedness 
index (TRI) (Riley et al. 1999).We derived 
TRI across the six radii in addition to the 
plot center. For soil variables, we used the 
conterminous United States multilayer 
soil characteristics dataset (Miller and 
White 1998) to develop spatial datasets 
for acidity (pH), available water capac-
ity (AWC), bulk density (BULKd), clay 
content (CLAY), depth (SOILcm), salin-
ity (SALIN), sand content (SAND), and 
silt content (SILT). For climate variables, 
we used climate normals from Parame-

https://1999).We
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ter-Elevation Regressions on Independent 
Slopes Model (PRISM) to estimate mean 
annual precipitation (PRECIP; PRISM 
Group 2006a), maximum temperature 
(Tmax; PRISM Group 2006b), and mini-
mum temperature (Tmin; PRISM Group 
2006c). Last, we developed hydrographic 
variables based on distance to perennial 
(pH2Od) and intermittent (iH2Od) water 
sources; as with other distance-based vari-
ables, we used exponential distance decay 
functions fit to 0.25-km, 0.50-km, and 1-km 
distance parameters. 

We included seven anthropogenic fea-
ture types in our analyses. Spatial data sets 
for anthropogenic features were clipped 
from input data used to create the human 
footprint of the western U.S. (Leu et al. 
2008) and updated with recent spatial data 
sets (see metadata for detailed informa-
tion on data acquisition). We derived 18 
anthropogenic proximity variables (Table 
4.2) based on six anthropogenic features 
(agriculture [AG], interstate and state/fed-
eral highways [MjRD], pipelines [PIPE], 
power lines [POWER], secondary roads 
[2RD], and oil-gas wells as of August 2005 
[WELL]) and exponential distance decay 
functions fit with three distance param-
eters (0.25 km, 0.50 km, 1 km). We also de-
veloped a road density (RDdens) (inter-
state highways, federal and state highways, 
and secondary roads combined) spatial 
data set evaluated at the six radii. 

Modeling Approach 

Step 1 – Candidate species selection 

Our goal at the onset of this study was 
to develop occurrence or abundance mod-
els for all species surveyed during the 
breeding seasons of 2005 and 2006. How-
ever, many species were rare or difficult to 
detect (Ch. 5–10). We restricted develop-
ment of models to species with occurrenc-
es on at least 50 survey blocks or transects 
(Fig. 4.4) because sample sizes below this 
threshold result in regression models with 
poor predictive capabilities (Coudun and 

https://high-0.27


 

 

 

 

 

 

 

 

 
 

 

 

 
  

  

 

 
 

  
 
 

 
 
 
 
 

 

 
 

  
 

 

  
 

  
 
 
 
 

  

 
  

 
 

104 PART II: Assessment Methods 

Gégout 2006). Only 43.2% (n = 37 species) 
of all species sampled in our study were 
detected on >50 survey blocks and only 
10.0% (n = 10) on >50 transects. We pres-
ent a complete list of species sampled on 
the 330 survey blocks or the 145 transects 
in following chapters. 

Step 2 – Survey data 

Our survey data consisted of four types: 
(1) counts on survey blocks for sage-grouse 
pellets, ant mounds, lagomorphs, medium-
sized rodents, and reptiles; (2) counts with 
distance estimates for birds and large-bod-
ied mammals (lagomorphs and ungulates); 
(3) relative capture rates for small mam-
mals; and (4) plant composition and cover 
estimates (discussed separately in Ch. 10). 
We derived detection probabilities for spe-
cies sampled when possible (Buckland et 
al. 2001) (Ch. 6-8). 

Step 3 – Model structure 

We used three modeling approaches to 
develop species occurrence or abundance 
models: count-based regressions, general-
ized ordered-logistic regressions, and lo-
gistic regressions (Fig. 4.4). The decision 
on which analysis to employ was based 
on (1) the sample size of survey blocks or 
transects with presences, and (2) whether 
data collected were counts or presence/ 
absence. For species with counts, we used 
count-based models, investigating appro-
priate distributional form of the data (e.g, 
Poisson versus negative binomial), and 
also whether data were inherently zero-
inflated. The expected output from count-
based models is based on count estimates. 
We used ordered-logistic regression where 
the distribution of the counts prevented 
us from implementing count-based mod-
els (e.g., few counts over a broad range) 
or counts were an indicator rather than a 
direct measure of species abundance (e.g., 
sage-grouse pellets). For ordered-logistic 
regression models, we required a mini-
mum of 50 observations within each count/ 
abundance class. Classes were determined 

based on apparent break points in counts/ 
density frequency distributions. For spe-
cies with less than 50 observations in each 
count/abundance class, we simply reverted 
to a presence/absence model using logistic 
regression. The expected outcome from 
ordered-logistic regression and logistic-re-
gression analyses is based on a probability 
of occurrence estimate. All analyses were 
conducted in STATA 10.1 (STATA Corpo-
ration, College Station, TX). 

We followed a recently developed two-
staged approach for count-based models 
that incorporates detectability into count-
based regression models when distance 
was recorded for individual detections (see 
Buckland et al. 2009). We first modeled 
detectability using the Multiple Covariate 
Sampling Engine in Program DISTANCE 
(Thomas et al. 2006). We develop the de-
tection-function model for all observations 
for a given species by identifying the best 
detection function and form using AIC. 
We did so only for species with a minimum 
of 60 detections, allowing for proper esti-
mation of the species detection function 
(Buckland et al. 2001). Note that 60 dis-
tance estimates could be obtained even if 
occurrence was less than 50 survey blocks 
or transects.We used observer team, time of 
year, time of day, and a shrub volume index 
(based on field measured data) when pos-
sible to assess the influence of covariates 
on detectability and to adjust density esti-
mates. We used the top detection function 
to predict density on each survey block or 
transect. We then developed a generalized 
linear model (GLM) for each species using 
observed counts as the response variable 
and an offset term that included detection 
probability (that varied among sites) and 
survey effort (constant across sites) (Buck-
land et al. 2009). We restricted raw counts 
based on the truncation distance as iden-
tified in Program DISTANCE (Buckland 
et al. 2001). We used the offset term in the 
GLM to model observed counts while in-
corporating detectability differences across 
sites (Buckland et al. 2009). 

https://transects.We


 

 

 

 

 

 

 

 
 

 

 
 
 

 
 

  
 
 

 

 
 
 

 
 

  
 

  
 

 
 

 

 

 

 
 

  
 

  
 

 
 
 
 

 
 

 
 

 

105 Sampling and Analysis – Leu et al. 

Count data are typically Poisson-dis-
tributed, but when data are over-dispersed, 
a negative binomial distribution (mixture 
distribution of Poisson and gamma) may be 
more appropriate. Although a negative bi-
nomial regression model may account for 
excess zeros, a zero-inflated model (type 
of mixture model) is typically required to 
properly account for excess zeros in the 
dataset (Hilbe 2007). We evaluated differ-
ent model structures and assessed the fit 
of each structure using a Vuong test (Vu-
ong 1989). We first conducted a Vuong test 
using an intercept only model to identify 
the most appropriate of four exponential 
model forms: Poisson, negative binomial, 
zero-inflated Poisson (ZIP), or zero-inflat-
ed negative binomial (ZINB). We used the 
identified model form to evaluate the sage-
brush land cover/NDVI sub-model (Step 
5 below). After the top sagebrush land 
cover/NDVI sub-model was identified, we 
re-ran the Vuong test to confirm the top 
model form with base covariates. When 
zero-inflated processes were warranted, 
we maintained candidate model variables 
in both count and inflated portions of the 
model. Otherwise, potential model combi-
nations became too cumbersome to evalu-
ate. When incorporating offsets, expected 
outcome from count-based models result 
in density estimates. 

We used generalized ordered-logistic 
regression analyses (Willams 2006) when 
distribution of the counts made it diffi-
cult to estimate count-based models or 
if counts were an indicator of species 
abundance rather than density of indi-
viduals (Ch. 5 and 7). We binned data 
into high and low abundance classes (0 
= absence, 1 = low-medium abundance, 
2 = high abundance) according to natu-
ral breaks in frequency distributions. Or-
dered-logistic regression uses an ordered 
(from low to high) categorical depen-
dent variable to simultaneously estimate 
multiple equations, resulting in separate 
intercepts for each level (number of 
abundance classes in the dependent vari-

able minus one) and a single set of coef-
ficients for each predictor variable. Un-
like ordered-logistic regression, which 
assumes parallel regression lines of each 
abundance class, generalized ordered-
logistic regression analyses relax this as-
sumption (Willams 2006). We used the 
“GOLOGIT2” command in STATA 10 
(STATA Corporation, College Station, 
TX), with the “autofit” option, which 
automatically relaxes the parallel con-
straint for those predictor variables that 
do not meet the parallel-line assumption 
and fits a separate slope for each abun-
dance class. 

We used logistic regression analyses 
(Hosmer and Lemeshow 2000) for those 
species whose survey data was an indica-
tor of occurrence, no natural breaks in fre-
quency distributions could be identified, or 
when count/abundance classes contained 
<50 survey blocks or transects. Survey 
blocks and transects were coded as pres-
ence if one or more individuals were de-
tected. 

Step 4 – Predictor variable reduction 

We avoided perfect fit of predictor 
variables, variables containing almost ex-
clusively zero-values, by screening each 
variable for presence of non-zero data 
values (Fig. 4.4). We set the threshold 
where at least 20 presence survey blocks 
or transects contained non-zero data val-
ues. We removed predictor variables from 
the standard candidate set if this criterion 
was not met. After we selected all candi-
date predictor variables, we checked for 
collinearity (Spearman rank correlation rs 

�|0.7|) among the predictor variables. In 
cases where predictor variables were cor-
related, we retained variables at uncorre-
lated spatial scales or used a priori knowl-
edge and ease of biological interpretation 
to select a single variable from the pair. 
We document the predictor variables, in-
cluding descriptive statistics, used in each 
species distribution model in chapters to 
follow. 



 

 
 

 
 
 

 
 
 
 

 
 
 

  

 
 
 

 
 

 
 

  
 
 
 
 

 

 

 

 

 

 
 

 
 

 

 
 

106 PART II: Assessment Methods 

Step 5– Sagebrush land cover/NDVI sub-model 

Our sampling design was based on pres-
ence of sagebrush-grassland land cover and 
NDVI. Thus, we first evaluated which com-
bination of sagebrush land-cover class (0.27, 
0.54, 1, 3, 5, and 18 km) and/or NDVI (0.27, 
0.54, 1, 3, 5, and 18 km) had the best model 
fit when predicting species occurrence/abun-
dance. We used a priori biological knowl-
edge to select sagebrush land-cover classes 
to be included in this analysis. For example, if 
a species did not primarily inhabit mountain 
big sagebrush (A. tridentata ssp. vaseyana) 
land cover, we excluded mountain sagebrush 
only land cover class (MTNSAGE) from the 
regression analyses. We included all radii of 
selected sagebrush types in the analyses be-
cause little is known about the scale of sage-
brush land cover important to species. We 
used AICc for model selection and carried 
forward the AICc-selected top sagebrush, 
NDVI, or sagebrush-NDVI model (param-
eters (k) = 2–4 [intercept, sagebrush variable, 
NDVI variable, two variables for quadratic 
term or interaction]). We did not test inter-
actions or quadratic terms if the sample size 
was � 60 due to sample size limitations. We 
visually inspected presence/absence bi-plots 
and abundance scatter plots to evaluate 
whether interactions of sagebrush-NDVI or 
quadric terms for both sagebrush and NDVI 
were justified. 

Step 6 – Selection of predictor variable scales 

We used univariate regression models 
to determine the best scale for each predic-
tor variable that explained species occur-
rence/abundance (Fig. 4.4). Each univari-
ate model included the sagebrush-NDVI 
sub-model selected from Step 5, along 
with a predictor variable at the given radii. 
We carried forward the AICc-best scale for 
each predictor variable. 

Step 7 – Number of predictor variables 
included in sub-models and final models 

We limited the number of predictor 
variables to 10% (Hosmer and Lemshow 

2000) of the smallest sample size in each 
abundance or presence/absence class to 
avoid model over-fitting in logistic, or-
dered logistic, negative binomial, zero-in-
flated negative binomial, Poisson and zero-
inflated Poisson regression analyses (Fig. 
4.4). For example, candidate models could 
only include a maximum of ten predictor 
variables if the presence sample size was 
104 survey blocks, including the variables 
from the sagebrush-NDVI base model in 
submodels and final models. 

Step 8 – Sub-model development for 
vegetation, abiotic, and anthropogenic 
disturbance variables 

We developed three sub-models based 
on vegetation, abiotic, and anthropogenic 
disturbance variables (Fig 4.4). Our goal 
was to select the best combination of each 
predictor variable and extent within each 
sub-model group. Candidate models for 
each sub-model group consisted of the 
sagebrush-NDVI sub-model selected in 
Step 5 and all possible combinations of 
predictor variables in each category se-
lected in Step 6, limited to the number of 
variables identified in Step 7. We carried 
forward the AICc-selected top sub-model 
to the next step. 

Step 9 – Final model 

We allowed all predictor variables with-
in each of the AICc-best submodels for 
vegetation, abiotic, and anthropogenic dis-
turbance categories (Step 8) to compete, 
both within and across submodels (Fig. 
4.4). The sagebrush/NDVI submodel (Step 
5) was again held constant in all models. 
All possible candidate models were com-
peted; final models were ranked based on 
AICc, and model weights (wi) were calcu-
lated. We incorporated model uncertainty 
into the final composite predictive model 
by using model-averaged coefficients 
based on weights from all candidate mod-
els within a cumulative AICc weight just � 
0.9 (Burnham and Anderson 2001). We set 
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coefficients to zero when a model did not 
contain a particular variable. 

Step 10 – Spatial application, dose response 
curves, and model evaluation 

We develop maps of species occur-
rence or abundance at a 90-m cell size 
by spatially applying the final composite 
model using raster calculator in ArcMap 
9.3.1 (ESRI 2006) (Fig. 4.4). We binned 
final model predictions for summary and 
display. Non-sagebrush habitats (areas 
with <3% sagebrush habitat in a 5-km 
radius) where we did not sample were 
masked, and no predictions were made to 
these areas. 

We evaluated accuracy of generalized or-
dered logistic and logistic regression mod-
els using receiver operating characteristic 
(ROC) estimating the area under the curve 
(AUC, Metz 1978).AUC is a discrimination 
index based on likelihood for a presence to 
have a higher species occurrence probabil-
ity when compared to a randomly selected 
absence point. We used this metric as one 
indicator of model performance, fully cog-
nizant of potential problems if ROC is the 
only metric used to evaluate model perfor-
mance (Lobo et al. 2008). We used the sen-
sitivity-specificity equality approach (Liu 
et al. 2005) to determine the optimal cutoff 
threshold for predicting presence-absence 
of each species (habitat or non-habitat) and 
used this threshold to assess the predictive 
capacity for each model (Nielsen et al. 2004, 
Lobo et al. 2008). 

We created dose response curves for 
each species by plotting predicted prob-
ability of occurrence or density relative to 
changes in sagebrush quantity.This permit-
ted us to assess critical levels of sagebrush 
required for a species across the WBEA 
landscape, as well as characterize response 
to losses or fragmentation of sagebrush 
habitat. We used the Dose Response Cal-
culator for ArcGIS (Hanser et al. 2011) to 
calculate the mean probability of occur-
rence or density from the spatial model 
output across one percent intervals of the 

sagebrush predictor variable, 0.01 intervals 
of NDVI, or distance intervals from an-
thropogenic features, where appropriate. 
We used the optimal cutoff or minimum 
densities to identify the sagebrush or pro-
ductivity threshold values above which a 
species was likely to occur. 

We used independent survey data 
when available to evaluate predictive out-
puts of species models (Pearce and Ferri-
er 2000, Strauss and Biederman 2007). We 
used three data sets to validate models: 
(1) Wyoming Fish and Game (pronghorn, 
Bob Oaklef pers. comm.; sage-grouse, 
Tom Christiansen pers. comm.), (2) Wyo-
ming Natural Diversity Database (reptile 
models; Wyoming Natural Diversity Da-
tabase 2009), and (3) Breeding Bird Sur-
vey (USGS Breeding Bird Survey Data, 
http://www.mbr-pwrc.usgs.gov/bbs/) data 
sets (songbird models). To examine per-
formance of models based on logistic 
regression analyses, we first binned each 
model into 10 equal probability classes, 
and then counted presence locations and 
calculated area in each bin. We used this 
information to determine expected obser-
vations per bin and regressed proportion 
of expected against observed observa-
tions (Johnson et al. 2006). A model well 
supported by validation data will have (1) 
a slope not differing from one, (2) an in-
tercept near zero, and (3) a high R2 value 
(Nielsen et al. 2004). As a more general 
evaluation of songbird models (Ch. 6) we 
used BBS data from 2005–06 and com-
pared mean counts across entire BBS 
routes with averaged model predictions 
(density or probability of occurrence) 
along each BBS survey route. Predictive 
models should have a significant and posi-
tive correlation with independent count 
data, even though BBS data do not ac-
count for differences in detectability. 

DISCUSSION 

Conducting floral and faunal sampling 
across large scales is a costly endeavor and 

http://www.mbr-pwrc.usgs.gov/bbs
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logistically challenging (Franklin 2009). 
Given these hurdles, few studies to date 
have investigated how wildlife and plant 
communities respond to habitat-anthro-
pogenic disturbance gradients across large 
scales (Franklin 2009). Moreover, most 
studies do not sample all possible habitat-
anthropogenic disturbance combinations 
or gradients (e.g., low habitat suitabil-
ity – high anthropogenic disturbance). Yet 
such field data are crucial when evaluat-
ing ecoregional assessment outcomes and 
predictions. To our knowledge, our study 
is one of a few that has sampled habitat-
anthropogenic disturbance interactions 
across large spatial extents and covered 
the possible range of habitat-anthropogen-
ic disturbance combinations. 

An inherent problem of faunal surveys 
is to find trained field biologists capable of 
sampling a suite of species in different taxo-
nomic groups (Noss et al. 1997). Although 
some taxonomic groups are easier to sam-
ple than others, we had difficulty training 
field technicians in identifying all possible 
bird species by sound. We recommend that 
a subset of bird species be sampled rather 
than a complete inventory of the avian 
community to minimize errors associated 
with identifying all breeding species that 
may possibly occur. This approach can be 
applied to any taxonomic group. Subsets of 
species should be selected according to hab-
itat associations, life history traits, or sensi-
tivity to perceived anthropogenic threats. 
Ultimately these species should be poten-
tial indicators of biodiversity (Mac Nally 
and Fleishman 2004). The cost of sampling 
and logistics associated with training field 
technicians can be reduced by having at 
least one well-trained technician per survey 
protocol in each team to assist in training 
inexperienced biological technicians. 

Our hierarchical multi-stage modeling 
approach, although exploratory in nature, 
worked well in developing species occur-
rence and abundance models for sagebrush-
associated species. Very little was known 
about how most species in our assessment 

responded to land cover composition and 
configuration and human disturbance and 
at which spatial extents these responses 
might be strongest. Therefore, field data 
collection and an exploratory analytical ap-
proach, as we have outlined here, was the 
first step in conducting statistically rigorous 
studies that investigate thresholds at which 
species occurrence and abundance are in-
fluenced by human disturbance. 
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APPENDIX 4.1 

Summary of literature review on effect 
area of various anthropogenic disturbances 
(if not reported in the metric system, units 
were converted from originally reported 
values).This appendix is archived electroni-
cally and can be downloaded at the follow-
ing URL: http://sagemap.wr.usgs.gov/wbea. 
aspx. 

APPENDIX 4.2 

Home range estimates for 40 species 
of concern in the Wyoming Basins Ecore-
gional Assessment area. Scientific names 
for species are provided in Chapter 2. The 
minimum and maximum home range or 
territory size are provided along with the 
corresponding citations, where available. 
Values other than the minimum and maxi-
mum are also provided. Where applicable 
we provide the citation if different from 
those used to obtain the minimum and 
maximum values. Values are in hectares 
unless specified otherwise.This appendix is 
archived electronically and can be down-
loaded at the following URL: http://sage-
map.wr.usgs.gov/wbea.aspx. 

APPENDIX 4.3 

Exotic plants species sampled during 
2005 and 2006 for the Wyoming Basins 
Ecoregional Assessment. This appendix is 
archived electronically and can be down-
loaded at the following URL: http://sage-
map.wr.usgs.gov/wbea.aspx. 
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	Floral and Faunal Sampling Protocol 
	Our surveys incorporated multiple techniques designed to detect the full suite of 
	FIG. 4.2. Distribution of survey blocks and transect across the Wyoming Basin Ecoregional Assessment area. Shown are locations for survey block for on-road = directly adjacent to road (n = 104), near-road = 0-750 m (n = 125), and far-road = >750-3,000 m (n = 101).Transects (n = 145), not shown, occur between near-road and far-road survey blocks (n = 101) and between roads and near-road survey blocks (n = 44; transects > 100-m long) (see Fig. 4.3). 
	On short and long transects, we applied distance sampling (Buckland et al. 2001, 2004) to enable density estimation for medium to large-sized mammals. For each detected individual or group, we recorded location of observer (latitude and longitude), azimuth using a compass, and 
	Within survey blocks, we used variable-width point counts (Bibby et al. 1992) centered on survey blocks (Fig. 4.3) to survey sagebrush-associated songbirds. We estimated distance between observer and birds using a rangeﬁnder. We used area-searches based on within survey block transects of 2.16-km length (Fig 4.3) to survey medium-sized mammals (lagomorphs and larger rodents), pygmy rabbit (Brachylagus idahoensis) burrows, reptiles, ant mounds, and greater sage-grouse (Centrocercus urophasianus) pellets. We 
	FIG. 4.3. Sampling layout within a survey block. Survey blocks were quadratic in shape with sides measuring 
	0.27 km. Points were used to survey vegetation (n = 5), with the center point used as songbird point count location. We used walking transects (2.16 km) to survey medium-sized mammals (grounds squirrels, prairie dogs, and 0.25-km long transects (50 traps total); direction of transects was chosen randomly and transects were spaced 15 m apart. 
	veyed plant communities (shrub cover and composition, selected exotic forb and grass cover and composition, native annual and perennial forb and grass cover, and shrub height) in ﬁve 20-m radius (1,257 m) plots systematically located in the survey block at the center and 127.3 m from the center at 45º, 135º, 225º, and 315º azimuths (Fig. 4.3). For exotic plants, we sampled a subset of plant species deemed noxious and invasive by land management agencies (Appendix 4.3). We trapped small mammals at a subset o
	We combined surveys throughout the ﬁeld season to maximize sampling efﬁciency and minimize cost. Three ﬁeld crews (two observers per team) worked independently throughout the ﬁeld season. During the ﬁrst round of surveys from 28 April – 31 May, all crews sampled medium to large-sized mammals on transects en route to survey blocks. Within survey blocks, crews sampled songbirds, pygmy rabbit signs, ant mounds, and medium-sized mammals (grounds squirrels [Spermophilus spp.], prairie dogs [Cynomys spp.], and ch
	FIG. 4.4. Flow chart outlining hierarchical multi-stage modeling approach for ﬂoral and faunal presence/absence and abundance data. 
	We developed species occurrence and abundance models based on habitat, abiotic and land use predictor variables (Franklin 2009). Our modeling procedure followed an Akaike Information Criterion (AIC) approach (Burnham and Anderson 2002); however, for most species we could not develop a priori candidate models because we lacked knowledge about species-speciﬁc responses to land use as well as appropriate spatial extents for assessing land cover conditions. As a result, our modeling effort was exploratory and f
	We used a suite of common GIS predictor variables consisting of land cover mea
	We modeled distance variables using exponential distance decay functions (val
	(Euclidean distance to feature (km)/-distance parameter)
	with the distance parameter set at 0.25, 0.5, and 1 km (Nielsen et al. 2009, Carpenter et al. 2010), allowing for nonlinear responses of species to distance from water sources or anthropogenic features. For anthropogenic features such as power lines that attract synanthropic predators (predators that beneﬁt from human features [Johnston 2001]), the asymptote of the 1-km distance decay function (~4.5 km) approximates the maximum home range size (. 54 km) for golden eagles (Aquila chrysaetos) breeding in the 
	We initially identiﬁed a total of 154 candidate predictor variables likely to inﬂuence species occurrence and abundance; inclusion or exclusion of speciﬁc predictor variables are discussed in each chapter separately. We screened candidate predictor variables for sufﬁcient representation of non-zero data values (i.e., values >0) across survey blocks and extents to avoid model ﬁtting based on predictor variables dominated by zeros or having non-zero data values only at large extents. As a cut-off point, we on
	Fifty-four of 122 candidate predictor variables consisted of nine land cover types (Table 4.2) evaluated at the six radii (0.27, 0.54, 1, 3, 5, and 18 km); these included four sagebrush land cover classes as well as coniferous forest (CFRST), grassland (GRASS), mixed shrubland (MIX), riparian (RIP), and salt-desert shrubland (SALT) land cover (Table 4.2). We used the LANDFIRE existing vegetation type (EVT) data layer (LANDFIRE 2007), reclassiﬁed per the cross-walk listed in Ap
	9.2 (ESRI 2006) to calculate proportion of land cover class for each of six radii. For the all sagebrush species (ALLSAGE) land cover (all sagebrush species and subspecies combined), we calculated landscape metrics in FragStats (McGarigal et al. 2002) including patch size (PATCH), edge density (EDGE), and contagion (CONTAG), at three radii (1, 3, and 5 km). 
	We determined land cover productivity values for the plot center and computed mean values at six spatial extents (Table 4.2). Land cover productivity values were calculated for each pixel on the landscape using the maximum value of NDVI from all available data during the growing season (May through August in 2005 and 2006). NDVI values were derived from the 250-m resolution Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery (Carroll et al. 2006) re-sampled to 90-m resolution using cubic
	We derived 18 abiotic variables (Table 
	4.2) based on terrain, soil, climate, and hydrography. Terrain variables were derived from 90-m DEM and consisted of compound topographic index (CTI) (Gessler et al. 1995), elevation (ELEV), slope (SLOPE), solar radiation index (SOLAR, developed using HILLSHADE analysis with parameters set to solar angle and direction at noon on the summer solstice, ESRI 2006), and topographic ruggedness TRI across the six radii in addition to the plot center. For soil variables, we used the conterminous United States multi
	TABLE 4.2. Descriptive statistics (mean, standard error, and range) for 38 independent candidate variables and associated spatial extents (n = 122 variables) measured on 330 survey blocks in the Wyoming Basins Ecoregional Assessment area. We used a subset of candidate predictive variables in the species models introduced in Chapters 5–10. 
	Radius/distance 
	– 
	Category Description parameter (km) Variable Unit x SE Min Max 
	Vegetation All big sagebrush (Intermountain 0.27 ABIGSAGEProportion 0.75 0.02 0.00 1.00 basins big sagebrush shrubland,
	Land cover 0.54 ABIGSAGEProportion 0.73 0.01 0.00 1.00 
	Intermountain basins big sage1km Proportion 0.72 0.01 0.01 1.00 
	montane sagebrush steppe, and 
	3 ABIGSAGE3km Proportion 0.69 0.01 0.03 0.99 Artemisia tridentata ssp. vaseyana 
	5 ABIGSAGE5km Proportion 0.67 0.01 0.03 0.98 
	shrubland alliance)18 ABIGSAGE18km Proportion 0.62 0.01 0.10 0.90 
	All sagebrush species (All big 0.27 ALLSAGEProportion 0.77 0.02 0.00 1.00 sagebrush ecological systems, plus 
	0.54 ALLSAGEProportion 0.75 0.01 0.00 1.00 
	Colorado Plateau mixed low sage1km Proportion 0.74 0.01 0.01 1.00 
	low sagebrush steppe, Wyoming 
	3 ALLSAGE3km Proportion 0.71 0.01 0.03 0.99 basins dwarf sagebrush shrubland 
	5 ALLSAGE5km Proportion 0.69 0.01 0.03 0.99 
	and steppe)18 ALLSAGE18km Proportion 0.64 0.01 0.11 0.93 
	Big sagebrush (Intermountain basins 0.27 BIGSAGEProportion 0.59 0.02 0.00 1.00 big sagebrush shrubland, and 
	0.54 BIGSAGEProportion 0.58 0.02 0.00 1.00 
	Intermountain basins big sagebrushsteppe)a 1 BIGSAGE1km Proportion 0.58 0.02 0.00 1.00 3 BIGSAGE3km Proportion 0.56 0.02 0.00 0.97 5 BIGSAGE5km Proportion 0.55 0.02 0.00 0.94 18 BIGSAGE18km Proportion 0.51 0.01 0.00 0.87 Mountain sagebrush (Intermountain 0.27 MTNSAGEProportion 0.16 0.02 0.00 1.00 basins montane sagebrush steppe 
	0.54 MTNSAGEProportion 0.15 0.02 0.00 1.00 
	and A. t. spp. vaseyana shrubland alliance)a 1 MTNSAGE1km Proportion 0.15 0.01 0.00 0.95 3 MTNSAGE3km Proportion 0.13 0.01 0.00 0.91 5 MTNSAGE5km Proportion 0.13 0.01 0.00 
	0.87 18 MTNSAGE18km Proportion 0.11 0.01 0.00 
	0.48 
	TABLE 4.2. Continued 
	Radius/distance 
	– 
	Category Description parameter (km) Variable Unit x SE Min Max 
	Coniferous forest0.27 CFRSTProportion 0.02 0.01 0.00 0.79 0.54 CFRSTProportion 0.03 0.01 0.00 0.72 1 CFRST1km Proportion 0.04 0.01 0.00 0.74 3 CFRST3km Proportion 0.05 0.01 0.00 0.73 5 CFRST5km Proportion 0.05 0.01 0.00 0.71 18 CFRST18km Proportion 0.08 0.01 0.00 0.53 Grassland0.27 GRASSProportion 0.05 0.01 0.00 0.97 0.54 GRASSProportion 0.05 0.01 0.00 0.84 1 GRASS1km Proportion 0.05 0.01 0.00 0.74 3 GRASS3km Proportion 0.04 <0.01 0.00 0.61 5 GRASS5km Proportion 0.04 <0.01 0.00 0.43 18 GRASS18km Proportion 
	Riparian0.27 RIPProportion 0.03 <0.01 0.00 0.79 0.54 RIPProportion 0.03 <0.01 0.00 
	0.57 1 RIP1km Proportion 0.03 <0.01 0.00 
	0.34 3 RIP3km Proportion 0.04 <0.01 0.00 0.26 5 RIP5km Proportion 0.04 <0.01 0.00 0.19 
	18 RIP18km Proportion 0.04 <0.01 0.00 0.12 
	TABLE 4.2. Continued 
	Radius/distance 
	– 
	Category Description parameter (km) Variable Unit x SE Min Max 
	Salt-desert shrubland0.27 SALTProportion 0.05 0.01 0.00 0.83 0.54 SALTProportion 0.05 0.01 0.00 0.76 1 SALT1km Proportion 0.05 0.01 0.00 0.69 3 SALT3km Proportion 0.05 0.01 0.00 0.58 5 SALT5km Proportion 0.06 0.01 0.00 0.58 18 SALT18km Proportion 0.06 0.01 0.00 0.49 All sagebrush species contagion 1 CONTAG1km % 39.51 1.45 0.55 97.64 3 CONTAG3km % 36.15 1.31 2.01 97.90 5 CONTAG5km % 29.61 1.00 3.27 91.38 All sagebrush species edge density 1 EDGE1km m/ha 41.92 1.20 0.88 91.60 3 EDGE3km m/ha 42.85 1.20 0.00 84
	NDVI Normalized Difference Vegetation Plot center NDVI Cell value 0.32 0.01 0.13 0.76 Index 
	0.27 NDVIMean value 0.32 0.01 0.14 0.76 
	0.54 NDVIMean value 0.32 0.01 0.15 0.75 1 NDVI1km Mean value 0.32 0.01 0.17 0.76 3 NDVI3km Mean value 0.33 0.01 0.18 0.77 5 NDVI5km Mean value 0.34 0.01 0.19 0.76
	 18 NDVI18km Mean value 0.35 0.01 0.20 
	0.74 Abiotic Compound topographic index Plot center CTI Value 8.87 0.12 4.96 19.64 
	TABLE 4.2. Continued 
	Radius/distance 
	– 
	Category Description parameter (km) Variable Unit x SE Min Max 
	Terrain Elevation Plot center ELEV m 2,102 18.5 1,286 3,161 Slope Plot center SLOPE Deg 4.27 0.27 0.00 32.15 Solar radiation index Plot center SOLAR Value 148.52 0.90 76.00 226.00 Topographic ruggedness index Plot center TRI Cell value 20.78 1.21 0.00 149.47 
	0.27 TRI Mean value 21.40 1.08 0.00 114.50 
	0.54 TRI Mean value 22.17 1.02 0.59 94.64 1 TRI 1km Mean value 22.65 0.98 2.12 96.76 3 TRI 3km Mean value 23.87 0.94 2.18 82.26 5 TRI 5km Mean value 24.03 0.93 2.63 86.94 18 TRI 18km Mean value 25.91 0.92 5.98 95.79 Abiotic Acidity Plot center pH Value 6.73 0.04 2.87 8.74 Soil Available water capacity Plot center AWC inches/inch 5.18 0.09 1.46 9.16 Bulk density Plot center BULKd g/cc 1.53 0.01 1.21 2.19 Clay content Plot center CLAY % 16.51 0.39 0.00 47.00 Depth Plot center SOILcm cm 100.90 1.58 38.00 152.0
	Abiotic Mean annual maximum temperature Plot center Tmax Deg C 12.24 0.12 4.49 16.46 Climate Mean annual minimum temperature Plot center Tmin Deg C -2.95 0.11 -7.37 
	1.22 Precipitation Plot center PRECIP cm 33.72 0.70 17.07 80.74 
	TABLE 4.2. Continued 
	Radius/distance 
	– 
	Category Description parameter (km) Variable Unit x SE Min Max
	1.00 water 
	Abiotic Decay distance from intermittent 0.25 iH2OdProbability 0.22 0.016 0.00 
	Water Sources 0.5 iH2OdProbability 0.36 0.017 0.00 1.00 1 iH2Od1km Probability 0.53 0.016 0.02 1.00 Decay distance from permanent water 0.25 pH2OdProbability 0.05 0.009 0.00 1.00 0.5 pH2OdProbability 0.11 0.011 0.00 1.00 1 pH2Od1km Probability 0.20 0.014 0.00 1.00 Disturbance Decay distance from agricultural land 0.25 AGProbability 0.02 <0.01 0.00 0.45 Distance 0.5 AGProbability 0.06 0.01 0.00 0.67 
	1 AG1km Probability 0.13 0.01 0.00 0.82 Decay distance from interstate high-MjRDProbability 0.04 0.01 0.00 1.00 ways, federal and state highways 
	0.5 MjRDProbability 0.08 0.01 0.00 1.00 1 MjRD1km Probability 0.13 0.01 0.00 1.00 Decay distance from pipeline 0.25 PIPEProbability 0.06 0.01 0.00 1.00 0.5 PIPEProbability 0.10 0.01 0.00 1.00 1 PIPE1km Probability 0.15 0.02 0.00 1.00 Decay distance from power line 0.25 POWERProbability 0.04 0.01 0.00 1.00 0.5 POWERProbability 0.06 0.01 0.00 1.00 1 POWER1km Probability 0.12 0.01 0.00 1.00 Decay distance from secondary roads 0.25 2RDProbability 0.41 0.02 0.00 1.00 0.5 2RDProbability 0.54 0.02 0.01 1.00 1 2RD1
	0.5 WELLProbability 0.03 0.01 0.00 
	0.84 1 WELL1km Probability 0.07 0.01 0.00 
	0.91 
	TABLE 4.2. Continued 
	Radius/distance 
	– 
	Category Description parameter (km) Variable Unit x SE Min Max 
	Disturbance Density of all roads (interstate high-RDdenskm/km1.78 0.10 0.00 9.54 ways, federal and state highways, 
	Density 0.54 RDdenskm/km1.44 0.07 0.00 7.59 
	and secondary roads) 1 RDdens1km km/km1.28 0.06 0.00 6.24 3 RDdens3km km/km1.43 0.04 0.07 5.03 5 RDdens5km km/km1.43 0.03 0.35 4.19 18 RDdens18km km/km1.44 0.02 0.32 2.31 
	 Ecological systems reclassifed from the LANDFIRE existing vegetation type data set (LANDFIRE 2007); see Ch. 1 for details. 
	ter-Elevation Regressions on Independent Slopes Model (PRISM) to estimate mean annual precipitation (PRECIP; PRISM Group 2006a), maximum temperature (Tmax; PRISM Group 2006b), and minimum temperature (Tmin; PRISM Group 2006c). Last, we developed hydrographic variables based on distance to perennial (pH2Od) and intermittent (iH2Od) water sources; as with other distance-based variables, we used exponential distance decay functions ﬁt to 0.25-km, 0.50-km, and 1-km distance parameters. 
	We included seven anthropogenic feature types in our analyses. Spatial data sets for anthropogenic features were clipped from input data used to create the human footprint of the western U.S. (Leu et al. 2008) and updated with recent spatial data sets (see metadata for detailed information on data acquisition). We derived 18 anthropogenic proximity variables (Table 
	4.2) based on six anthropogenic features (agriculture [AG], interstate and state/federal highways [MjRD], pipelines [PIPE], power lines [POWER], secondary roads [2RD], and oil-gas wells as of August 2005 [WELL]) and exponential distance decay functions ﬁt with three distance parameters (0.25 km, 0.50 km, 1 km). We also developed a road density (RDdens) (interstate highways, federal and state highways, and secondary roads combined) spatial data set evaluated at the six radii. 
	Step 1 – Candidate species selection 
	Our goal at the onset of this study was to develop occurrence or abundance models for all species surveyed during the breeding seasons of 2005 and 2006. However, many species were rare or difﬁcult to detect (Ch. 5–10). We restricted development of models to species with occurrences on at least 50 survey blocks or transects (Fig. 4.4) because sample sizes below this threshold result in regression models with poor predictive capabilities (Coudun and 
	Step 2 – Survey data 
	Our survey data consisted of four types: 
	Step 3 – Model structure 
	We used three modeling approaches to develop species occurrence or abundance models: count-based regressions, generalized ordered-logistic regressions, and logistic regressions (Fig. 4.4). The decision on which analysis to employ was based on (1) the sample size of survey blocks or transects with presences, and (2) whether data collected were counts or presence/ absence. For species with counts, we used count-based models, investigating appropriate distributional form of the data (e.g, Poisson versus negati
	We followed a recently developed two-staged approach for count-based models that incorporates detectability into count-based regression models when distance was recorded for individual detections (see Buckland et al. 2009). We ﬁrst modeled detectability using the Multiple Covariate Sampling Engine in Program DISTANCE (Thomas et al. 2006). We develop the detection-function model for all observations for a given species by identifying the best detection function and form using AIC. We did so only for species 
	Count data are typically Poisson-distributed, but when data are over-dispersed, a negative binomial distribution (mixture distribution of Poisson and gamma) may be more appropriate. Although a negative binomial regression model may account for excess zeros, a zero-inﬂated model (type of mixture model) is typically required to properly account for excess zeros in the dataset (Hilbe 2007). We evaluated different model structures and assessed the ﬁt of each structure using a Vuong test (Vuong 1989). We ﬁrst co
	We used generalized ordered-logistic regression analyses (Willams 2006) when distribution of the counts made it difﬁcult to estimate count-based models or if counts were an indicator of species abundance rather than density of individuals (Ch. 5 and 7). We binned data into high and low abundance classes (0 = absence, 1 = low-medium abundance, 2 = high abundance) according to natural breaks in frequency distributions. Ordered-logistic regression uses an ordered (from low to high) categorical dependent variab
	We used logistic regression analyses (Hosmer and Lemeshow 2000) for those species whose survey data was an indicator of occurrence, no natural breaks in frequency distributions could be identiﬁed, or when count/abundance classes contained <50 survey blocks or transects. Survey blocks and transects were coded as presence if one or more individuals were detected. 
	Step 4 – Predictor variable reduction 
	We avoided perfect ﬁt of predictor variables, variables containing almost exclusively zero-values, by screening each variable for presence of non-zero data values (Fig. 4.4). We set the threshold where at least 20 presence survey blocks or transects contained non-zero data values. We removed predictor variables from the standard candidate set if this criterion was not met. After we selected all candidate predictor variables, we checked for collinearity (Spearman rank correlation rs .|0.7|) among the predict
	Step 5– Sagebrush land cover/NDVI sub-model 
	Our sampling design was based on presence of sagebrush-grassland land cover and NDVI. Thus, we ﬁrst evaluated which combination of sagebrush land-cover class (0.27, 0.54, 1, 3, 5, and 18 km) and/or NDVI (0.27, 0.54, 1, 3, 5, and 18 km) had the best model ﬁt when predicting species occurrence/abundance. We used a priori biological knowledge to select sagebrush land-cover classes to be included in this analysis. For example, if a species did not primarily inhabit mountain big sagebrush (A. tridentata ssp. vas
	Step 6 – Selection of predictor variable scales 
	We used univariate regression models to determine the best scale for each predictor variable that explained species occur-rence/abundance (Fig. 4.4). Each univariate model included the sagebrush-NDVI sub-model selected from Step 5, along with a predictor variable at the given radii. We carried forward the AICc-best scale for each predictor variable. 
	Step 7 – Number of predictor variables included in sub-models and ﬁnal models 
	We limited the number of predictor variables to 10% (Hosmer and Lemshow 
	Step 8 – Sub-model development for vegetation, abiotic, and anthropogenic disturbance variables 
	We developed three sub-models based on vegetation, abiotic, and anthropogenic disturbance variables (Fig 4.4). Our goal was to select the best combination of each predictor variable and extent within each sub-model group. Candidate models for each sub-model group consisted of the sagebrush-NDVI sub-model selected in Step 5 and all possible combinations of predictor variables in each category selected in Step 6, limited to the number of variables identiﬁed in Step 7. We carried forward the AICc-selected top 
	Step 9 – Final model 
	We allowed all predictor variables within each of the AICc-best submodels for vegetation, abiotic, and anthropogenic disturbance categories (Step 8) to compete, both within and across submodels (Fig. 4.4). The sagebrush/NDVI submodel (Step 
	5) was again held constant in all models. All possible candidate models were competed; ﬁnal models were ranked based on AICc, and model weights (wi) were calculated. We incorporated model uncertainty into the ﬁnal composite predictive model by using model-averaged coefﬁcients based on weights from all candidate models within a cumulative AICc weight just . 
	0.9 (Burnham and Anderson 2001). We set 
	Step 10 – Spatial application, dose response curves, and model evaluation 
	We develop maps of species occurrence or abundance at a 90-m cell size by spatially applying the ﬁnal composite model using raster calculator in ArcMap 
	9.3.1 (ESRI 2006) (Fig. 4.4). We binned ﬁnal model predictions for summary and display. Non-sagebrush habitats (areas with <3% sagebrush habitat in a 5-km radius) where we did not sample were masked, and no predictions were made to these areas. 
	We evaluated accuracy of generalized ordered logistic and logistic regression models using receiver operating characteristic (ROC) estimating the area under the curve (AUC, Metz 1978).AUC is a discrimination index based on likelihood for a presence to have a higher species occurrence probability when compared to a randomly selected absence point. We used this metric as one indicator of model performance, fully cognizant of potential problems if ROC is the only metric used to evaluate model performance (Lobo
	We created dose response curves for each species by plotting predicted probability of occurrence or density relative to changes in sagebrush quantity.This permitted us to assess critical levels of sagebrush required for a species across the WBEA landscape, as well as characterize response to losses or fragmentation of sagebrush habitat. We used the Dose Response Calculator for ArcGIS (Hanser et al. 2011) to calculate the mean probability of occurrence or density from the spatial model output across one perc
	We used independent survey data when available to evaluate predictive outputs of species models (Pearce and Ferrier 2000, Strauss and Biederman 2007). We used three data sets to validate models: 
	(1) Wyoming Fish and Game (pronghorn, Bob Oaklef pers. comm.; sage-grouse, Tom Christiansen pers. comm.), (2) Wyoming Natural Diversity Database (reptile models; Wyoming Natural Diversity Database 2009), and (3) Breeding Bird Survey (USGS Breeding Bird Survey Data, /) data sets (songbird models). To examine performance of models based on logistic regression analyses, we ﬁrst binned each model into 10 equal probability classes, and then counted presence locations and calculated area in each bin. We used this
	Conducting ﬂoral and faunal sampling across large scales is a costly endeavor and 
	An inherent problem of faunal surveys is to ﬁnd trained ﬁeld biologists capable of sampling a suite of species in different taxonomic groups (Noss et al. 1997). Although some taxonomic groups are easier to sample than others, we had difﬁculty training ﬁeld technicians in identifying all possible bird species by sound. We recommend that a subset of bird species be sampled rather than a complete inventory of the avian community to minimize errors associated with identifying all breeding species that may possi
	Our hierarchical multi-stage modeling approach, although exploratory in nature, worked well in developing species occurrence and abundance models for sagebrush-associated species. Very little was known about how most species in our assessment 
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