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ABSTRACT 20 

Adaptive management is widely advocated to improve environmental management. Derivations 21 

of optimal strategies for adaptive management, however, tend to be case specific and time 22 

consuming. In contrast, managers might seek relatively simple guidance, such as insight into 23 

when a new potential management action should be considered, and how much effort should be 24 

expended on trialing such an action.  25 

We constructed a two time-step scenario where a manager is choosing between two possible 26 

management actions. The manager has a total budget which can be split between a learning phase 27 

and an implementation phase. We use this scenario to investigate when and how much a manager 28 

should invest in learning about the management actions available. The optimal investment in 29 

learning can be understood intuitively by accounting for the expected value of sample 30 

information, the benefits that accrue during learning, the direct costs of learning, and the 31 

opportunity costs of learning. 32 

We find that the optimal proportion of the budget to spend on learning is characterized by several 33 

critical thresholds that mark a jump from spending a large proportion of the budget on learning to 34 

spending nothing. For example, as sampling variance increases it is optimal to spend a larger 35 

proportion of the budget on learning, up to a point - if the sampling variance passes a critical 36 

threshold, it is no longer beneficial to invest in learning. Similar thresholds are observed as a 37 

function of the total budget and the difference in the expected performance of the two actions.  38 

We illustrate how this model can be applied using a case study of choosing between alternative 39 

rearing diets for hihi, an endangered New Zealand passerine.  40 
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Although the model presented is a simplified scenario, we believe it is relevant to many 41 

management situations. Managers often have relatively short time horizons for management, and 42 

might be reluctant to consider further investment in learning and monitoring beyond collecting 43 

data from a single time period.  44 

KEYWORDS: adaptive management, decision analysis, monitoring costs, expected value of perfect 45 

and sample information, Bayesian experimental design.  46 
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INTRODUCTION 47 

Adaptive management is widely advocated to improve environmental management, and to help 48 

determine appropriate levels of monitoring effort to support better management decisions 49 

(Walters and Hilborn 1978, Walters and Holling 1990, Johnson and Williams 2015). Adaptive 50 

management aims to strike a balance between learning about the system being managed, and 51 

actually managing it (Holling 1978, Walters 1986), a balance referred to as the “dual-control 52 

problem” in the literature on operations research (Wittenmark 1995). Learning about a system 53 

entails both monitoring costs and lost opportunity costs, since experiments in which two or more 54 

actions are trialed concurrently inevitably means that a sub-optimal action will be at least partly 55 

implemented. Thus, learning about the system will draw on resources that might be used for 56 

management. However, the information gained from monitoring and experimentation might 57 

improve management in the future. Adaptive management aims to balance the longer-term 58 

benefits of learning with its shorter-term costs, helping to determine the appropriate investment in 59 

learning. 60 

The academic literature on adaptive management has proliferated, yet examples of successful 61 

implementation are rare (Johnson and Williams 2015). Various reasons restrict the use of 62 

adaptive management including lack of institutional support and commitment, and insufficient 63 

funding for adequate monitoring programs (Walters 2007, Johnson and Williams 2015). The 64 

computational burden required to optimize adaptive management is another potential concern 65 

(Martell and Walters 2008). Further, the academic literature tends to emphasize solutions to 66 

specific adaptive management problems (e.g. Gregory et al. 2006, Tyre et al. 2011, Shea et al. 67 

2014) ,and drawing general conclusions appears difficult. In contrast, managers might seek 68 

relatively simple guidance, such as insight into when a new potential management action should 69 
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be considered, and how much effort should be expended on trialing such actions (Walters and 70 

Green 1997, McDonald-Madden et al. 2010).  71 

To help generalize adaptive management beyond individual case studies, we constructed an 72 

adaptive management problem where a manager is choosing between two possible management 73 

actions in two decision phases – a learning phase and a final decision phase. The manager has a 74 

total budget to spend over these two phases. In the first time period, both actions can be 75 

implemented and the results monitored. At the end of this learning phase, the remaining budget 76 

will be spent on implementing the action with the highest expected efficiency. The management 77 

goal is to maximize the total expected benefit over the two phases.  We use this framework to 78 

investigate the following questions. First, when should we invest in learning more about the value 79 

of the management actions? Second, if investing in a learning phase is expected to be beneficial, 80 

how much of the total budget should we invest? Third, how should the amount spent on the 81 

learning phase be split between the two available actions given their current expected 82 

performance and our uncertainty about these values? Finally, when do we expect the largest 83 

benefits from investing in learning? 84 

While this is a simplified scenario, we believe it is relevant to many management situations (e.g. 85 

see the frameworks proposed by Walters and Green 1997, MacGregor et al. 2002). The two 86 

phases will at best approximate sequential decisions over many time-steps, however, managers 87 

often have relatively short time horizons for management, and might be reluctant to consider 88 

further investment in experimentation and monitoring beyond collecting data from a single time 89 

period. As we show in this paper, one advantage of this simplified scenario is that analytical 90 

expressions for the optimal level of experimentation (i.e. optimal number of samples of each 91 
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management action during the first phase) can be obtained for particular special cases, and 92 

numerical solutions can be obtained efficiently in other cases.  93 

There exists a substantial literature addressing the optimal sample size when choosing between 94 

two, or more, treatments in clinical trials, when the objective is to maximize the total number of 95 

successful treatments (Hardwick and Stout 2002, Ghosh et al. 2011). However, we found that 96 

these studies consider scenarios that differ from that considered here in one or more of the 97 

following four respects: (i) the cost of performing experiments is ignored (e.g. Colton 1963), (ii) 98 

the number of trials is assumed to be the same for the two treatments (e.g. Canner 1970, Willan 99 

and Kowgier 2008), (iii) they consider dichotomous responses (success or failure) from the trials 100 

(e.g.Cheng 1996, Hardwick and Stout 2002, Cheng et al. 2003), or (iv) they consider testing a 101 

new action against a known one  (e.g. Grundy et al. 1954). As far as we are aware, the scenario 102 

considered in this study (including sample costs, unequal allocation of trials during the 103 

experimental phase, a measure of benefit size obtained from each trial, and two uncertain actions) 104 

has not been addressed in this literature nor in the literature on natural resource management. 105 

Another approach to evaluating the expected value of experimentation is value of information 106 

(VOI) analysis (Raiffa and Schlaiffer 1961).  VOI is a broad term for an analysis that estimates 107 

the expected potential value of gaining new information about a system. VOI has been used in 108 

various disciplines to determine the maximum amount that should be invested in gaining 109 

information before making a decision (Maxwell et al. 2015).  In particular, VOI has been applied 110 

to environmental management dilemmas to determine the potential management benefit of 111 

resolving uncertainty both for one off (Runge et al. 2011, Maxwell et al. 2015) and dynamic 112 

decision processes (Williams et al. 2011, Williams and Johnson 2015), and to determine whether 113 

or not monitoring should be performed (Hauser et al. 2006, McDonald-Madden et al. 2010).  114 



7 
 

VOI analyses may consider the value of resolving all uncertainty about a system (Expected Value 115 

of Perfect Information, EVPI), the value of resolving some sources of uncertainty (expected value 116 

of partial information), or the value of resolving some of the uncertainty via additional sampling 117 

(expected value of sample information, EVSI) (Runge et al. 2011). Such analyses provide an 118 

upper bound on how much should be invested in gathering information before taking a 119 

management decision, and can identify when the benefits of learning are expected to be the 120 

greatest. However, such analysis does not tell us the optimal amount to invest in learning when 121 

accounting for monitoring and lost opportunity costs.  122 

At least two decision phases must be considered to capture the trade-off between the expected 123 

benefits and costs of experimentation. We relate the solution of our two time-step process to the 124 

EVSI, and highlight the trade-off between the value of sample information and lost opportunity 125 

costs. By nesting the experimental design question within a decision question, we take the same 126 

approach as in Bayesian experimental design (Chaloner and Verdinelli 1995); indeed, EVSI is 127 

very closely related to a Bayesian preposterior analysis, and provides similarly relevant 128 

information to a decision maker. 129 

 130 

METHODS  131 

We consider the case when a manager has two actions to choose from, i = {1, 2}. The manager 132 

has a total budget B to spend on implementing the actions. For each action, one unit of 133 

management costs ci and results in a benefit xi . We assume that the benefit of each action is 134 

uncertain such that xi is an unknown random variable, with the uncertainty represented by a 135 

normal distribution with mean mi and standard deviation si.  136 
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Before presenting the two-step adaptive management model, we first consider the expected value 137 

of sample information. This gives us the expected benefit of information acquired from a 138 

particular experimental design. EVSI essentially ignores costs associated with obtaining the 139 

experimental results; whether or not experimentation occurs, the same amount will be invested in 140 

implementing the expected best action.  We then consider a two-step adaptive management (AM) 141 

scenario, made up of an experimental phase and an implementation phase. We use this 142 

framework to investigate the trade-off between investing in experimentation and saving resources 143 

to implement the best action. We highlight the relationship between the AM solution and EVSI.    144 

Expected Value of Sample Information 145 

In the case that the manager must choose between the two actions in the absence of any further 146 

information, or reduction in uncertainty, the optimal decision is to invest the entire budget in the 147 

action i that maximizes the expected net benefit, with the expectation taken over the prior 148 

distribution. The expected net benefit in the face of uncertainty is 149 

 𝐸𝐸𝑢𝑢 = max
𝑖𝑖
𝐸𝐸 �𝐵𝐵 𝑥𝑥𝑖𝑖

𝑐𝑐𝑖𝑖
� = 𝐵𝐵max �𝑚𝑚1

𝑐𝑐1
,𝑚𝑚2
𝑐𝑐2
� = 𝐵𝐵 �𝑚𝑚1

2𝑐𝑐1
+ 𝑚𝑚2

2𝑐𝑐2
+ 1

2 �
𝑚𝑚1
𝑐𝑐1
− 𝑚𝑚2

𝑐𝑐2
��. (1) 150 

The expected value of sample information (EVSI) is the difference between the expected value 151 

after a given sampling regime is implemented (reduction but not elimination of uncertainty) and 152 

the expected value in the face of uncertainty. Hence, to calculate EVSI, we need to calculate the 153 

pre-posterior distribution, that is, the expected net benefit from having additional information, 154 

taken with respect to the prior distribution. 155 
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Suppose that our sampling design is to observe n1 units of action 1 and n2 units of action 2. We 156 

then observe a mean response pi for the units under action i, and these have an individual 157 

variation of σi
2.  We assume the pi are independently distributed according to 158 

 𝑝𝑝𝑖𝑖|𝑥𝑥𝑖𝑖~𝑁𝑁�𝑥𝑥𝑖𝑖 ,�
𝜎𝜎𝑖𝑖2 𝑛𝑛𝑖𝑖� �       (2) 159 

and the unconditional distribution, given the prior for xi, is 160 

 𝑝𝑝𝑖𝑖~𝑁𝑁 �𝑚𝑚𝑖𝑖,�
𝜎𝜎𝑖𝑖2 𝑛𝑛𝑖𝑖� + 𝑠𝑠𝑖𝑖2�.       (3) 161 

Combining the prior and the observed data, using Bayes’ Theorem, the posterior distribution for 162 

the per-unit benefit, yi, is normal with mean 163 

 𝑚𝑚𝑖𝑖
′ =  𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖

2+𝑚𝑚𝑖𝑖𝜎𝜎𝑖𝑖
2

𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖
2+𝜎𝜎𝑖𝑖

2         (4) 164 

and variance 165 

 𝜎𝜎𝑖𝑖′2 =  𝜎𝜎𝑖𝑖
2𝑠𝑠𝑖𝑖

2

𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖
2+𝜎𝜎𝑖𝑖

2.         (5) 166 

After observing the new information, we would choose the action with the highest expected 167 

efficiency, with the expectation taken over the posterior distribution, 168 

 max �𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �
𝑦𝑦1
𝑐𝑐1

, 𝑦𝑦2
𝑐𝑐2
�� = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑝𝑝1𝑛𝑛1𝑠𝑠1

2+𝑚𝑚1𝜎𝜎12

𝑐𝑐1�𝑛𝑛1𝑠𝑠12+𝜎𝜎12�
, 𝑝𝑝2𝑛𝑛2𝑠𝑠2

2+𝑚𝑚2𝜎𝜎22

𝑐𝑐2�𝑛𝑛2𝑠𝑠22+𝜎𝜎22�
� 169 

 = 1
2�

𝑝𝑝1𝑛𝑛1𝑠𝑠1
2+𝑚𝑚1𝜎𝜎1

2

𝑐𝑐1�𝑛𝑛1𝑠𝑠1
2+𝜎𝜎1

2�
+𝑝𝑝2𝑛𝑛2𝑠𝑠2

2+𝑚𝑚2𝜎𝜎2
2

𝑐𝑐2�𝑛𝑛2𝑠𝑠2
2+𝜎𝜎2

2�
+�𝑝𝑝1𝑛𝑛1𝑠𝑠1

2+𝑚𝑚1𝜎𝜎1
2

𝑐𝑐1�𝑛𝑛1𝑠𝑠1
2+𝜎𝜎1

2�
−𝑝𝑝2𝑛𝑛2𝑠𝑠2

2+𝑚𝑚2𝜎𝜎2
2

𝑐𝑐2�𝑛𝑛2𝑠𝑠2
2+𝜎𝜎2

2�
��.   (6) 170 
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Because we wish to estimate this value prior to making the observation of {p1, p2}, we now need 171 

to take the expectation of this quantity with respect to the prior distribution.  The only random 172 

variables are p1 and p2.  Thus, the pre-posterior expectation for the maximum efficiency is 173 

 𝐸𝐸𝑒𝑒 = 1
2�

𝐸𝐸[𝑝𝑝1]𝑛𝑛1𝑠𝑠1
2+𝑚𝑚1𝜎𝜎1

2

𝑐𝑐1�𝑛𝑛1𝑠𝑠1
2+𝜎𝜎1

2�
+𝐸𝐸

[𝑝𝑝2]𝑛𝑛2𝑠𝑠2
2+𝑚𝑚2𝜎𝜎2

2

𝑐𝑐2�𝑛𝑛2𝑠𝑠2
2+𝜎𝜎2

2�
+𝐸𝐸[|∆|]� = 1

2�
𝑚𝑚1
𝑐𝑐1
+𝑚𝑚2
𝑐𝑐2
+𝐸𝐸[|∆|]�   (7) 174 

where 175 

 ∆= 𝑝𝑝1𝑛𝑛1𝑠𝑠12+𝑚𝑚1𝜎𝜎12

𝑐𝑐1�𝑛𝑛1𝑠𝑠12+𝜎𝜎12�
− 𝑝𝑝2𝑛𝑛2𝑠𝑠22+𝑚𝑚2𝜎𝜎22

𝑐𝑐2�𝑛𝑛2𝑠𝑠22+𝜎𝜎22�
      (8) 176 

is normally distributed with mean 177 

 𝜇𝜇 = 𝑚𝑚1
𝑐𝑐1
− 𝑚𝑚2

𝑐𝑐2
         (9) 178 

and variance 179 

 Θ2 = �𝑠𝑠1
𝑐𝑐1
�
2 𝑛𝑛1𝑠𝑠12

𝑛𝑛1𝑠𝑠12+𝜎𝜎12
+ �𝑠𝑠2

𝑐𝑐2
�
2 𝑛𝑛2𝑠𝑠22

𝑛𝑛2𝑠𝑠22+𝜎𝜎22
.      (10) 180 

Because ∆ is normally distributed, the modulus (absolute value) of ∆ has a folded-normal 181 

distribution. Thus,  182 

 𝐸𝐸𝑒𝑒 = 1
2
�𝑚𝑚1
𝑐𝑐1

+ 𝑚𝑚2
𝑐𝑐2

+ Θ�2
𝜋𝜋
𝑒𝑒
−𝜇𝜇2

2Θ2� + 𝜇𝜇erf � 𝜇𝜇
Θ√2

��.    (11) 183 

In the case that sampling is obtained for free and the entire budget B is spent on implementing the 184 

action with the highest expected posterior efficiency, the total expected benefit with sampling is 185 

𝐸𝐸𝑠𝑠 = 𝐵𝐵 ∗ 𝐸𝐸𝑒𝑒, 186 
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      =  𝐵𝐵
2
�𝑚𝑚1
𝑐𝑐1

+ 𝑚𝑚2
𝑐𝑐2

+ Θ�2
𝜋𝜋
𝑒𝑒
−𝜇𝜇2

2Θ2� + 𝜇𝜇erf � 𝜇𝜇
Θ√2

��.    (12) 187 

The expected value of sample information (EVSI) is the difference between the expected benefit 188 

with sampling and the expected benefit in the face of uncertainty: 189 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑠𝑠 − 𝐸𝐸𝑢𝑢, 190 

                        = 𝐵𝐵
2
�𝑚𝑚1
𝑐𝑐1

+ 𝑚𝑚2
𝑐𝑐2

+ Θ�2
𝜋𝜋
𝑒𝑒
−𝜇𝜇2

2Θ2� + 𝜇𝜇erf � 𝜇𝜇
Θ√2

�� − 𝐵𝐵
2
�𝑚𝑚1
𝑐𝑐1

+ 𝑚𝑚2
𝑐𝑐2

+ �𝑚𝑚1
𝑐𝑐1
− 𝑚𝑚2

𝑐𝑐2
��, 191 

 = 𝐵𝐵
2
�Θ�2

𝜋𝜋
𝑒𝑒
−𝜇𝜇2

2Θ2� + 𝜇𝜇erf � 𝜇𝜇
Θ√2

� − |𝜇𝜇|�,  (13) 192 

where 𝜇𝜇 = 𝑚𝑚1
𝑐𝑐1
− 𝑚𝑚2

𝑐𝑐2
, and Θ2 = �𝑠𝑠1

𝑐𝑐1
�
2 𝑛𝑛1𝑠𝑠12

𝑛𝑛1𝑠𝑠12+𝜎𝜎12
+ �𝑠𝑠2

𝑐𝑐2
�
2 𝑛𝑛2𝑠𝑠22

𝑛𝑛2𝑠𝑠22+𝜎𝜎22
 (Eqs. 9 and 10). The derivation of 193 

the expected value of perfect information (EVPI) and a comparison with EVSI can be found in 194 

Appendix S1.  195 

Two-step Adaptive Management 196 

To calculate the EVSI we assumed that we knew the sampling design; the number of units ni of 197 

each action to be trialed. The EVSI tells us the maximum additional amount we could spend on a 198 

particular sampling design to achieve the same expected net benefit. However, in the case that we 199 

have a total budget B to spend on both experimentation and implementation, EVSI does not tell 200 

us how much of that budget to invest in monitored trials. The more we invest in experimentation, 201 

the more likely we are to finally choose the best management action, but experimentation incurs 202 

additional monitoring costs (resulting in less money to spend on implementation) and lost 203 

opportunity costs of trialing the worst action.   204 
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To analyze this trade-off we consider a two-step adaptive management process, made up of an 205 

experimental phase, consisting of monitored trials, and an implementation phase, in which the 206 

remaining funds are used to implement the action with the largest posterior efficiency. During the 207 

experimental phase, the additional cost of monitoring the outcome of each trial is ki for each unit 208 

of management. We assume that the data will have a standard deviation of σi, representing the 209 

observed variation in benefit among different units of management.  210 

The total expected net benefit over the two time-steps is the expected benefit from the 211 

experimental phase plus the expected benefit of spending the remaining funds on the action that 212 

is found to have the highest expected efficiency (equation 11),  213 

L = n1 m1 + n2 m2 + (B −𝑛𝑛1(𝑐𝑐1 + 𝑘𝑘1)− 𝑛𝑛2(𝑐𝑐2 + 𝑘𝑘2))Ee, 214 

= 𝑛𝑛1𝑚𝑚1 + 𝑛𝑛2𝑚𝑚2 + �𝐵𝐵 − 𝑛𝑛1(𝑐𝑐1 + 𝑘𝑘1) − 𝑛𝑛2(𝑐𝑐2 + 𝑘𝑘2)� 1
2
�𝑚𝑚1
𝑐𝑐1

+ 𝑚𝑚2
𝑐𝑐2

+ Θ�2
𝜋𝜋
𝑒𝑒
−𝜇𝜇2

2Θ2� + 𝜇𝜇erf � 𝜇𝜇
Θ√2

��,  215 

(14) 216 

Let the total cost of the experimental phase be given by Cexperiment = (c1+k1)n1 + (c2+k2)n2. 217 

Equation (14) can be re-written as 218 

𝐿𝐿 = 𝑛𝑛1𝑚𝑚1 + 𝑛𝑛2𝑚𝑚2 + �1 −
𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐵𝐵
�𝐸𝐸𝑠𝑠 219 

= 𝑛𝑛1𝑚𝑚1 + 𝑛𝑛2𝑚𝑚2 + 𝐸𝐸𝑠𝑠 −
𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐵𝐵
𝐸𝐸𝑠𝑠 220 

         = 𝑛𝑛1𝑚𝑚1 + 𝑛𝑛2𝑚𝑚2 + 𝐸𝐸𝑢𝑢 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐵𝐵
𝐸𝐸𝑠𝑠 221 

                        = 𝐸𝐸𝑢𝑢 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑛𝑛1𝑚𝑚1 + 𝑛𝑛2𝑚𝑚2 −
𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐵𝐵
𝐸𝐸𝑠𝑠.    (15) 222 
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Written in this way we can more easily see the trade-off between investing in experimentation 223 

and saving resources for implementing the best action; the more we spend on the experimental 224 

phase, the larger the expected value of sample information (EVSI) and the larger the incidental 225 

benefits of experimentation (n1m1+n2m2). However, the lost opportunity costs incurred by using 226 

up resources during sampling, (Cexperiment/B)Es, are also greater.   227 

The number of trials of each action that maximizes the total net benefit can be found efficiently 228 

using numerical methods. We generated the numerical results using Wolfram Mathematica 229 

V8.0.4 (Inc. 2014)). We used a built in optimization function, FindMaximum, to find the optimal 230 

non-zero allocation to the learning phase and compared this to the expected reward under no 231 

experimentation (Data S1). We also derived explicit analytic solutions for several special cases 232 

(Appendix S2).  233 

Example: Choosing between supplementary feeding options for hihi nestlings 234 

We illustrate the model by determining the optimal proportion of the total budget to use on 235 

trialing two supplemental feeding treatments for hihi (Notiomystis cinta) nestlings, an endangered 236 

New Zealand bird whose recovery program is based on supplementary feeding (Walker et al. 237 

2013). There is evidence that sugar water improves adult survival (Armstrong and Ewan 2001; 238 

Chauvenet et al 2012); sugar water is currently provided to five out of six extant populations 239 

(L.Walker, personal observations). An alternative full dietary supplement (WombarooTM 240 

Lorikeet & Honeyeater Food, Wombaroo Food Products, Glen Osmond, SA, Australia) has also 241 

been trialed in both adult and, more recently, juvenile populations (Armstrong et al. 2007, Walker 242 

et al. 2013). Walker et al. (2013) investigated experimentally the effects of neonatal 243 

supplementary feeding using four alternative treatments on nestling growth, nestling survival and 244 



14 
 

juvenile survival to breeding age (recruitment). The following illustrative example is based on 245 

data and cost estimates from Walker et al.’s study. 246 

Consider the case when management has a total budget B to spend on supplementary feeding 247 

over T years. The manager has two possible supplementary feeding treatments: sugar water (N-) 248 

and WombarooTM Lorikeet & Honeyeater Food (N+). The goal is to determine the proportion of 249 

the budget to spend on trialing the two treatments in the first year. The management benefit of 250 

each treatment is measured as the mean additional weight at age 20 days; where additional is in 251 

reference to the expected average weight with no supplementary feeding. We consider the 252 

management units to be birds and consider costs in units of hours per bird per year.  253 

We assume that sugar water is provided using general feeding stations in all situations (i.e. during 254 

the experiment and during the management only phase). During the experimental phase, the 255 

managers additionally feed the dietary supplement to the nestlings directly. If sugar water (N-) is 256 

found to be the preferable treatment, then it would be administered only via the general feeding 257 

stations, as it is known to be provisioned to nestlings by parents (Walker et al. 2013; Thorogood 258 

et al. 2008). However, for Wombaroo (N+), it is unclear whether it would be possible to 259 

administer the supplement via the feeders or if it would be necessary to continue directly feeding 260 

juveniles in the nests (L. Walker, personal observations). Therefore, we considered two scenarios. 261 

In scenario (i) we assumed that the full dietary supplement (N+) will continue to be administered 262 

to juveniles directly. In scenario (ii) we assumed that after the experimental phase N+ could be 263 

administered via the general feeding stations. In this case a larger quantity of the dietary 264 

supplement would be required, but the cost associated with administering the supplement would 265 

be much less.  266 
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Estimates for the cost of implementing both management options (general feeders and direct 267 

feeding of nestlings), together with estimates of the cost of monitoring the results were obtained 268 

from data provided by L. Walker and A. Baxter (unpublished data; personal communication). A 269 

summary of the parameters used for the results presented are given in Table 1, while an overview 270 

of the cost data can be found in Appendix S3.  271 

RESULTS 272 

When and how much should we invest in learning?  273 

Recall that Eu is the expected benefit in the face of uncertainty, that is, if no experimentation 274 

occurs. Consequently, from Equation (15) we see that it is beneficial to invest in experimentation 275 

if there exists a sampling design {n1, n2} (not = {0,0}) such that the expected benefit from the 276 

experimentation phase outweighs the lost opportunity costs incurred by using resources for 277 

experimentation, i.e. when  278 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑛𝑛1𝑚𝑚1 + 𝑛𝑛2𝑚𝑚2 > 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐵𝐵
𝐸𝐸𝑠𝑠.       (16) 279 

There is no simple rule for when learning is worthwhile due to the large number of parameters 280 

involved in determining the threshold. Nonetheless, general tendencies can be observed 281 

(summarized in Box 1 and Table 2).  282 

If monitoring costs are negligible it is nearly always optimal to spend some of the budget on 283 

learning (Figs. 1-3: Panels a and c, Appendix S4: Fig. S1a). Note that if both actions are 284 

uncertain, trialing the expected best action will never be worse than directly implementing it, but 285 

there may be no expected advantage when the means are very different. In the case that the 286 

benefit of one action is known, if the uncertain action is expected to be worse, then whether or 287 
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not it is worth trialing it will depend on how uncertain we are about its performance,  the budget 288 

and the monitoring precision (Figs. 1-3: Panel c, Fig. S2).  289 

If monitoring costs are significant, it is not beneficial to invest in learning if: one action is 290 

expected to be much better than the other, monitoring variance is large, monitoring costs are large 291 

or the budget is small (Figs. 1-3: Panels b and d). For example, if the expected benefit of the two 292 

actions differs, then investing in learning is worthwhile only when the budget is sufficiently large 293 

(Fig. 2b and 2d).  294 

Note that the graphs in Figure 1 are not perfectly symmetric around m2-m1=0. When the benefit 295 

of action 1 is known with certainty (Fig. 1c-d), it is optimal to spend less on the learning phase  if 296 

the expected benefit of action 2  is less than the expected benefit of action 1 than if it is greater 297 

(see also Figs. 2c-d and 3c-d). Intuitively, this is because there is a smaller probability that action 298 

2 is better than action 1. When both actions are uncertain, this argument no longer applies: there 299 

is the same probability that the expected worse action will be found to be better. In this case, we 300 

observe the opposite behavior: it is optimal to spend a larger proportion of the budget on the 301 

learning phase when the expected value of action 2 is 5 units smaller than action 1 than when it is 302 

5 units larger (Figs. 1-3: Panels a-b). This is primarily because the solution depends substantially 303 

on the ratio of the means to prior variances: the optimal proportion to spend on the learning phase 304 

is a decreasing function of the ratio of the prior expected benefit to prior standard deviation 305 

(Appendix S4: Fig. S11).  306 

The solution for the optimal proportion to spend on the learning phase displays a number of 307 

interesting critical thresholds (Figs. 1-3). For example, as the difference in the expected prior 308 

benefit of the two actions increases, a point is eventually reached beyond which it is not worth 309 
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investing in learning (Fig. 1). At this point, the optimal solution drops suddenly from spending a 310 

large amount on learning to nothing at all. Where this point occurs depends notably on the prior 311 

variance of each action. The more uncertain we are about the performance of each action, the 312 

greater the difference between the prior mean benefits before we stop investing in learning, since 313 

if the overlap between the two prior distributions is small the best action is known with high 314 

probability. Similar thresholds are observed for the budget (Fig. 2 and Appendix S4: Fig. S1), 315 

monitoring cost (Appendix S4: Fig. S1) and monitoring variance (Fig. 3). These thresholds are 316 

more prevalent when monitoring costs are significant.  317 

This threshold behavior can be better understood by observing that the optimal (non-zero) 318 

investment in experimentation is a local, but not necessarily global, optimum (Fig. 4).  The 319 

expected net benefit (ENB =  Expected benefit without experimentation - expected benefit with 320 

experimentation) is a concave function of the amount invested in the experiment. Note that no 321 

experimentation results in zero expected net benefit. When the expected net benefit of 322 

experimentation is positive, the optimal solution is found at the maximum of this curve (e.g., at 323 

an investment of ~50 in Fig. 4a). However, as, for example, the sampling variance increases, 324 

EVSI and also the expected net benefit decrease, but an optimal allocation can still be found, 325 

until the whole curve drops below 0 (Fig. 4b), in which case, no investment in learning is 326 

warranted. 327 

Analytical results for the optimal number of trials can be derived for several, potentially 328 

common, special cases (Appendix S2). These analytic solutions suggest a maximum of 1/3 of the 329 

budget should be spent on the learning phase. Numerical results showed that this limit is 330 

occasionally exceeded when: monitoring costs are negligible, means differ, and either sampling 331 

variance is (reasonably) high or the budget is small (Figs. 2 and 3). However, for the parameter 332 
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ranges we explored, it is usually optimal to spend less than 20% of the budget on learning. When 333 

monitoring costs are significant, the optimal allocation of effort to the learning phase is always 334 

less than a third. Moreover, in this case the analytic solution derived assuming identical 335 

parameters (Appendix S2: Eq. S3) is an upper bound. 336 

For both negligible and significant monitoring costs, the highest proportion of the budget is spent 337 

on learning when the budget is fairly small (Fig. 2, Appendix S2: Eq. S3). As the budget 338 

increases relative to implementation and monitoring costs, we spend more on monitoring in an 339 

absolute sense, but a smaller fraction of the total budget. For example, in the hihi supplementary 340 

feeding example below, as the budget increases the optimal number of trials of each treatment 341 

increases, but the total proportion spent on the learning phase decreases (Fig. 6 and Appendix S4: 342 

Fig. S10). 343 

For a fixed budget, the optimal proportion to spend on learning is an increasing function of 344 

monitoring costs when parameters are equal and the prior expected benefits are zero (Appendix 345 

S2). This is because although the optimal number of trials is a decreasing function of monitoring 346 

cost, it does not decrease as fast as monitoring and implementation costs increase. Interestingly, 347 

when the prior mean benefits are positive, the optimal number of trials decreases more quickly 348 

than when they can be assumed to be zero (Appendix S4: Fig. S3). Consequently, when the 349 

management actions are expected to have a large benefit (>~4 for the default parameters), the 350 

optimal proportion of the budget to spend on the learning phase is a decreasing, rather than 351 

increasing, function of monitoring costs (Appendix S4: Fig. S3).  352 

When monitoring costs are negligible, the amount spent on the learning phase is an increasing 353 

function of the difference in the prior mean benefit (until the threshold is reached) (Fig. 1a and 354 
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1c). Consequently, the largest percentage of the budget is invested in experimentation when the 355 

prior means are different, but not too different. In contrast, when monitoring costs are significant 356 

the largest percentage is spent on learning when the prior mean benefits are the same (Fig. 1b and 357 

1d).   358 

When all other parameters are equal, we spend the maximum proportion of the budget on 359 

learning when the prior standard deviations of the two actions are the same (Fig. S4). That is, if 360 

we are more confident about one action than the other, we will tend to spend less on 361 

experimenting. In Appendix S2, we derive an analytic solution for the case when the benefit of 362 

one action is well known (s1 = 0), the prior mean benefits are the same and either m2 or k2 is zero 363 

(Appendix S2: Eq. S6). We also show that this solution is a good approximation for non-zero m2 364 

and k2 if the prior variance is large relative to the expected benefit m2. Our numerical results 365 

support this finding: in general, if we fix the uncertainty about one action and increase the 366 

uncertainty about the other, the amount spent on learning converges to the analytical solution 367 

derived (Appendix S4: Fig. S4). Presumably we are only entertaining the second action because 368 

we think that its performance is roughly the same as action 1, but we are not sure whether it will 369 

do much better or much worse. In this case, s2 will be large (relative to m2). Hence, the analytical 370 

result gives us a rough rule of thumb of investment in assessing a very uncertain action against a 371 

known outcome. 372 

As highlighted by the analytic results (Appendix S2), the ratio of sampling variance to prior 373 

variance also plays an important role in determining when to invest in learning. As the sampling 374 

variance increases, more sampling is required to be similarly confident about the benefit of each 375 

action, initially increasing the amount spent on the learning phase. However, the percentage gain 376 

from investing in learning is a decreasing function of sample variance (Appendix S4: Fig. S5). 377 
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Consequently, when the expected performance differs between actions or monitoring costs are 378 

significant, investing in learning is eventually no longer beneficial. At this critical threshold, the 379 

optimal strategy switches from investing a significant amount in learning to investing nothing 380 

(Figs. 1 and 3).  381 

If we invest in learning, what is the split between the two actions? 382 

When only the prior mean efficiency differs between actions, it is optimal to spend a larger 383 

proportion of the learning-phase budget on the action with the highest expected performance 384 

(Fig. 5a-b, s2 = 10). When the two actions are expected to perform equally well but the 385 

uncertainty about their performance differs, it is optimal to spend more on the most uncertain 386 

action (Fig. 5a-b, m2-m1=0). When the prior mean efficiencies and prior variances both differ, the 387 

split is weighted toward the action with the highest expected return (Fig. 5a-b). That is, even if 388 

we are more uncertain about action 2, we may still spend more on trialing action 1 if we believe it 389 

is expected to be the better action.  390 

When the prior distributions differ, it is sometimes optimal to only trial one of the actions if the 391 

budget is small or sampling variance is large, relative to the prior variance, (Fig. 5, Appendix S4: 392 

Figs. S6 and S7). In these situations, investing in learning may still be optimal, but lost 393 

opportunity costs are minimized by only trialing the expected best action. 394 

When do we get the largest benefits from investing in learning? 395 

The largest percentage gains in the objective function are observed when the budget is large 396 

(Appendix S4: Figs. S8b and S9), the means are similar (Appendix S4: Figs. S5, S6a and S9), the 397 

efficiency of each action is uncertain (Appendix S4: Fig. S8c), and sampling provides precise 398 

results (Appendix S4: Figs. S5 and S8d).   399 
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Choosing between supplementary feeding options for hihi nestlings 400 

For the parameters used, the total proportion of the budget to spend on the learning phase 401 

depended very little on whether the prior expected benefit of the Wombaroo treatment (N+) was 402 

smaller, larger or the same as the sugar water treatment (N-) (Fig. 6a and Appendix S4: Fig. 403 

S10a). However, the optimal number of trials of each treatment did depend on the expected 404 

benefit of the Wombaroo treatment (Fig. 6b and Appendix S4: Fig. S10b).   405 

Interestingly, there was only a small difference between the results for the two different scenarios 406 

(Fig. 6 versus Appendix S4: Fig. S10). That is, for our cost estimates, whether or not Wombaroo 407 

would be fed directly to nestlings or could be administered via feeders, the optimal proportion to 408 

spend on the learning phase was more or less the same.   409 

It is worth highlighting that these results depend on the reference weight. The optimal proportion 410 

to spend on experimentation depends on the ratio of the expected benefit to standard deviation of 411 

the prior (Appendix S4: Fig. S11). Consequently, if the reference weight is expected to be large 412 

(so that benefit above reference weight is small), then it will be optimal to spend more on 413 

experimentation than if the reference weight is small.  414 

DISCUSSION 415 

The formal derivation of the net benefit of two-phase adaptive management for a simple setting 416 

provides some powerful intuitive guidance for thinking about the value of learning in a dynamic 417 

setting. The value of experimentation arises out of two benefits and two costs (Eq. 15): the 418 

benefits associated with applying learning to subsequent management (EVSI); the transient 419 

benefits accrued during the learning phase; the direct costs of learning; and the opportunity costs 420 

of learning (the resources not available for subsequent management). Experimentation will be 421 
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warranted when the benefits outweigh the costs (Eq. 16); otherwise, management should proceed 422 

in the face of uncertainty. These qualitative insights, derived from quantitative results, provide a 423 

useful framework for evaluating experimentation.  424 

More specific guidance for investment in learning becomes complicated quickly (Box 1 and 425 

Table 2). The management scenario we have presented was as simple as we could make it while 426 

including all the relevant factors. Nevertheless, there were still 11 parameters to consider, making 427 

it difficult to extract general insights and tendencies from numerical sensitivity analyses alone.  428 

By considering a simple scenario we were able to derive analytical solutions for several special 429 

cases. These solutions provided greater insight into how parameter combinations drive solution 430 

behavior, and a base against which to compare results when the assumptions leading to an 431 

analytical solution are violated.  For example, the analytic solution is a good rule of thumb when 432 

trialing an unknown management action against a known one, even when the prior expected 433 

benefits differ and monitoring costs are significant (contrary to assumptions used to derive the 434 

result)(Appendix S4: Fig. S4). However, when considering two uncertain management actions, 435 

the optimal allocation of resources depends strongly on the parameters that were excluded from 436 

the analytical result.  437 

The scenario analyzed gave rise to several unintuitive results. For example, there is a tendency to 438 

think that monitoring large projects is more important than monitoring small projects – sure, 439 

large projects should have more money spent on monitoring, but our results suggest that smaller 440 

projects should have a higher proportion of the budget spent on learning and monitoring. This 441 

also suggests benefits of cooperation and coordination of smaller projects. 442 
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An interesting feature of the solution is the existence of several critical thresholds that mark a 443 

jump from investing a lot in learning to not learning at all, or vice versa. For example, when the 444 

expected performance of the two actions differ, as sampling variance increases we observe a 445 

critical threshold at which the optimal solution changes from spending a lot on the learning phase 446 

to spending nothing.  While it is important for people developing and interpreting adaptive 447 

management models to be aware of such thresholds, managers implementing the policies need 448 

not be too concerned, since, at these thresholds investing a lot or not investing at all yield quite 449 

similar management outcomes. Consequently, it is not crucial to know precisely on which side of 450 

the critical threshold the system lies.   451 

The priors for the two management options influence the results quite substantially. That is, the 452 

perceived performance of the two options (the prior means), and the uncertainty about their 453 

performance (the prior standard deviations) will influence the optimal extent of experimentation. 454 

This makes intuitive sense because managers would be expected to entertain the possibility of 455 

experimenting on a new management action only if they thought that it might perform better than 456 

an alternative but were uncertain about its relative performance. However, prior distributions are 457 

rarely used in ecology (Morris et al. 2015), and they can be difficult to specify coherently 458 

(McCarthy 2007) . If one were unwilling to specify a prior distribution, then one could set the 459 

prior standard deviation to be large, which would mean the posterior distribution would have the 460 

same shape as the likelihood function. In this case, the Bayesian estimates of the experimental 461 

results would be numerically equivalent to those of a frequentist analysis, which do not 462 

incorporate priors. However, such a wide prior distribution implies that extremely good (large 463 

positive values for the efficiency of management) or extremely poor outcomes (large negative 464 

values) are conceivable. Inflating the uncertainty in the priors will tend to drive more 465 
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experimentation than might be warranted, emphasizing the need to specify priors thoughtfully 466 

with available data (McCarthy and Masters 2005) or rigorous methods for expert elicitation 467 

(Speirs-Bridge et al. 2010). Although priors might be difficult to specify, decision-makers are 468 

inherently considering them when they begin to compare different management actions. 469 

Explicitly specifying the anticipated benefits and the degree of uncertainty about action outcomes 470 

can lead to better decisions about experimentation. Hence, specifying priors should not be seen as 471 

an obstacle to the decision making process, but rather a useful tool to improve decisions. 472 

Monitoring is the cornerstone of successful adaptive management (Moir and Block 2001). 473 

However, monitoring management outcomes is rarely a trivial task and can account for a large 474 

fraction of the total budget required to implement an adaptive approach to management (Walters 475 

2007). For the two time-step process considered here, including monitoring costs substantially 476 

changed the solution, both in terms of quantitative value and qualitative behavior. For example, 477 

when monitoring costs were negligible, the amount spent on learning increased as the expected 478 

benefit of the two actions differed. In this case, little is to be lost by spending more on the 479 

learning phase and increasing the proportion of the learning-phase budget spent on the expected 480 

best action. However, when monitoring costs were significant the amount spent on 481 

experimentation was largest when the difference in the prior mean benefits was small. This is 482 

because the resulting probability of choosing the best management action without monitoring is 483 

lowest at this point (in contrast, when the expected difference in benefit is large, the probability 484 

the better looking action is actually better is large, hence there is less to gain from monitoring, see 485 

also MacGregor et al. 2002, Maxwell et al. 2015).  Further, the critical thresholds play a more 486 

important role when monitoring costs are significant; the minimum budget, maximum difference 487 
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between prior means and maximum monitoring variance are more likely to be encountered within 488 

feasible parameter ranges.  489 

Interestingly, in many ways the optimal solution was simpler when monitoring costs were 490 

substantial. For example, the proportion of the budget spent on learning tended to be fairly 491 

constant across the region in which it was optimal to invest in learning.  Further, the analytic 492 

solution derived assuming identical parameters for the two actions (Appendix S2) is an upper-493 

bound on the optimal proportion to spend on learning. These results highlight the importance of 494 

accounting for monitoring costs when designing adaptive management plans. 495 

We found that the largest expected proportional gains in the objective function rarely 496 

corresponded to when the largest proportion of the budget should be spent on learning. For 497 

example, larger proportional gains are expected when sampling variance is low, whereas, in 498 

general, a larger percentage of the budget should be spent on learning when sampling variance is 499 

high because more samples are needed. Similarly, although a larger percentage gain is expected 500 

for large budgets, a larger proportion of the budget should be spent on learning when budgets are 501 

small.  502 

We considered a two-step adaptive management approach in which the management horizon is 503 

divided into a learning phase and an implementation phase. Walters and Green (1997) propose a 504 

similar framework for evaluating experimental management actions for ecological systems. 505 

These two approaches make a one-off decision about how much to invest in learning. This differs 506 

from many formulations of AM that assume a fixed budget per time-step and look at how to 507 

divide funds between alternative management actions, and monitoring, at each phase (e.g. Moore 508 

and McCarthy 2010, Baxter and Possingham 2011); effectively deciding how much to invest in 509 
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learning at each time-step. At best, the two time-steps will approximate sequential decisions over 510 

many time-steps. An interesting avenue of future research would be to compare the management 511 

policies derived under the two different modelling approaches.  512 

EVSI tells us the expected value of a given sampling design, but it does not take into account lost 513 

opportunity costs associated with experimentation and monitoring. Consequently, while methods 514 

such as EVSI are useful for determining when learning is likely to be beneficial, and can provide 515 

upper bounds on additional funds that should be spent on experimentation, further analysis is 516 

needed to determine the fraction of the total budget to invest in learning. In contrast, Adaptive 517 

Management formulations with long time horizons can be computationally challenging and 518 

difficult to implement in the real world. The approach presented here strikes a balance between 519 

complexity and utility. By considering a two-step AM process we are able to capture the trade-off 520 

between the benefit and costs of investing in additional information while remaining relatively 521 

simple.    522 
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Box 1. Summary of key results 613 
 614 
When and how much should we invest in learning? (Figs 1-3, S2 and S4) 615 
 616 
It is worthwhile investing in learning if: 617 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑛𝑛1𝑚𝑚1 + 𝑛𝑛2𝑚𝑚2 > 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐵𝐵
𝐸𝐸𝑠𝑠, 618 

for some {n1 , n2} not equal to 0. 619 
 620 
Analytic solutions suggest a maximum of 1/3 of the budget should be invested in learning. This is 621 
an upper bound when monitoring costs are significant. When monitoring costs are negligible, it 622 
may be optimal to spend more than 1/3 on learning if: the prior mean benefit differs between 623 
actions and either the sampling variance is (reasonably) large or the budget is small.  624 
 625 
The optimal solution is characterized by several interesting critical thresholds.  626 
 627 
Significant monitoring costs result in a higher proportion of the budget being spent on learning 628 
when the expected performance of the two actions is the same. In contrast, when monitoring costs 629 
are negligible a higher proportion of the budget is spent on learning when the expected 630 
performance of the two actions differ (Table 2).  631 
 632 
How should we split the resources spent on learning between the two actions? (Fig 5,6 and S6) 633 
 634 
It is optimal to spend more on the most uncertain or the expected best action. 635 
 636 
If the prior distributions differ, it is sometimes optimal to only trial one of the actions (expected 637 
best or most uncertain) if: the budget is small or sampling variance is large. 638 
 639 

  640 
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Table 1: Parameter estimates for the hihi example.  641 

Parameter units Treatment N- 
 

Treatment N+  
 

Management cost, c hrs/bird/year (i)  1.13 
  
(ii) 1.13 

(i)  2.14   
 
(ii) 2.651  
 

Monitoring cost, k   hrs/bird/year (i)  1.55  
 
(ii) 1.55 
 

(i)  1.55 
 
(ii) 0.033  
 

Management effect 
(weight above 
reference weight) 

• Mean 
• SD 
 

g/bird   
 
 
m1  = 3  
SD = 6 

 
 
 
m2  = {0, 3, 6}g 
SD = 6 

Budget hours  
  

[50, 2000] 

Monitoring 
SD/accuracy 

g/bird SD = 6 g SD = 6 g 

 642 

  643 
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Table 2: The largest percentage of the budget is spent on learning when: 644 

 645 

variable k = 0 k > 0 

mi m1 and m2 differ , 
but difference is < threshold 

m1 and m2 are the same 

σi large, but  < threshold 

B small, but > threshold 

si s1 and s2 are the same 

ki N/A large if misi are small  
small if misi are large 

mi/si   constant uncertainty about the 
expected benefit of action i 
is large relative to the 
expected benefit, i.e when 
mi/si  is small. (Fig S9) 

 646 

 647 

 648 

649 
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FIGURE LEGENDS 650 

Figure 1. Proportion spent on learning as a function of the difference in the prior expected 651 

benefits and sampling standard deviation. Contours indicate the proportion of the budget spent on 652 

the learning phase for various shades of gray (dark gray = 0, white = 1). m1 = 10 (vary m2), B = 653 

500, c1 = c2 = 5, σ1=σ2. Panels (a) and (c) assume zero monitoring cost, k1 = k2 = 0, panels (b) and 654 

(d) assume a monitoring cost of 3 units (k1 = k2 = 3). Panels (a) and (b) assume both actions are 655 

uncertain with s1= s2 = 10, panels (c) and (d) assume the benefit of one is known, s1 = 0 and s2 = 656 

10. See Fig S1 for a cross section of (a) and (b) at σ1 = σ2 = 40. 657 

Figure 2. Proportion spent on learning vs budget. Default parameters: m1=10, m2 = {5, 10, 15}, s1 658 

= s2 = 10, c1=c2=5, σ1 = σ2 = 20. Black dashed: m2-m1=-5, thin black: m2-m1=0, thick black: m2-659 

m1=5. The gray line is the corresponding analytic solution assuming parameters are equal and 660 

either monitoring is free or mean benefits are zero. 661 

 Figure 3. Proportion spent on experimentation as a function of the ratio of sample to prior 662 

variance for action 2. B=500, m1=10, c1=c2=5. (a)  & (b) s1 = s2 = 10, σ1=σ2. (c) & (d) benefit of 663 

action 1 assumed to be known. Black dashed: m2=5, thin black: m2=10, thick black: m2=15. The 664 

gray line is the corresponding analytic solution assuming parameters are equal and either 665 

monitoring is free or mean benefits are zero. 666 

Figure 4. Expected net benefit versus the amount invested in experimentation for: two-step AM = 667 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑛𝑛1𝑚𝑚1 + 𝑛𝑛2𝑚𝑚2 −
𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐵𝐵
𝐸𝐸𝑠𝑠 (thick solid line), EVSI (dashed line) and EVPI (thin solid 668 

line). c1 = c2 = 5; k1 = k2 = 3; s1 = s2 = 10; m1 = 10, m2 = 15; B = 500. (a) σ1 = σ2 = 20 (σ2/s2 = 4), 669 

(b) σ1 = σ2 = 37 (σ2/s2 = 13.7). 670 
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Figure 5. Panels (a) and (b): Optimal proportion to spend on action 2 when the prior means and 671 

standard deviations differ. s1 = 10, c1 = c2 = 5, σ1 = σ2 = 20, B = 500. Black dashed: s2=5, thin 672 

black: s2=10, thick black: s2=20. A sudden drop to zero corresponds to crossing a threshold above 673 

which none of the budget is spent on the learning phase (see panels (c) and (d): optimal 674 

proportion to spend on the learning phase). In panel (b), when s2 = 5, none of the budget is spent 675 

on trialing action 2 as the benefit is reasonably well known, however, some of the budget is spent 676 

on trialing action 1 for some of the parameter space.     677 

Figure 6. Hihi supplementary feeding example, scenario (i). Panel (a): Optimal proportion to 678 

spend on the learning phase as a function of the budget (for males).  Black dashed:  mN+ = 0, 679 

Black thin: mN+ = 3 = mN-, Black thick:  mN+=6.  In this panel, the gray line corresponds to the 680 

approximate solution, calculate assuming parameters are the same and either negligible 681 

monitoring costs or zero expected effect. Panel (b): Corresponding optimal number of trials of 682 

each action. Black (top group of lines) = action N- , gray (bottom group) = action N+. Target 683 

weight = 29. s = 6, σ = 6. mN- = 3.  684 
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