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Land Before Water: The Relative Temporal Sequence of Human Alteration of Freshwater 1 

Ecosystems in the Conterminous United States    2 

Abstract 3 

Human alteration of ecosystems prior to Euro-American contact in the area that became the 4 

conterminous United States disproportionately affected terrestrial systems compared to 5 

freshwater systems, primarily through the use of fire and agriculture in some regions of the 6 

United States. After circa 1600 AD, trapping of beaver, along with intensive modification of 7 

rivers and wetlands for navigation, mining, flood control, power generation, and agriculture, 8 

substantially altered river corridors throughout the country. River corridor here refers to 9 

channels of all sizes, from headwater streams to very large rivers, and includes floodplains and 10 

wetlands associated with channels. We contend that ecosystem alteration by humans prior to 11 

and during Euro-American settlement changed from predominantly terrestrial to both 12 

terrestrial and freshwater in a manner that was time-transgressive with Euro-American 13 

colonization and U.S. settlement between the 17th and 19th centuries. The extent and intensity 14 

of post-Euro-American alteration of freshwater environments in the United States have 15 

resulted in widespread river metamorphosis toward more geomorphically and ecologically 16 

homogenous systems. Recognition of the rapidity and ubiquity of this alteration, and the 17 

consequent instability of many contemporary river corridors, should underpin contemporary 18 

river management.  19 

Introduction 20 
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At the start of the 21st century, many scientists question whether the cumulative 21 

impacts of human use of resources and alteration of ecosystems are exceeding the limits of 22 

sustainability for human survival (Rockström et al., 2009; Steffen et al., 2015). Human 23 

manipulations clearly exceeded the limits of sustainability for the hundreds of species that have 24 

gone extinct within the past five centuries (IUCN, 2007). As rates of extinction have accelerated 25 

during the past century, a grim contest has developed among claims for the ecosystems and 26 

groups of organisms with the highest rates of extinction. Are the tropical rainforests, with their 27 

astonishing biodiversity, experiencing the greatest loss of diversity (Canale et al., 2012), or are 28 

amphibians in diverse environments disappearing the most rapidly (McCallum, 2007)? 29 

Unfortunately, freshwater fauna in North America are a contender in this contest, with 30 

projected future rates of extinction five times greater than the rate for terrestrial fauna 31 

(Ricciardi and Rasmussen, 1999). A diverse and complicated history of wetland drainage, river 32 

engineering, water pollution, and introduced species underlies high rates of freshwater species 33 

extinctions, but it is worth considering when some of the human alterations of freshwater 34 

ecosystems began relative to those of terrestrial ecosystems. Here, we review how humans 35 

began altering the terrestrial environments of North America prior to the modern imperial and 36 

national eras, but discuss how it was only during the intensive industrial development of North 37 

America by people of European descent that freshwater environments were substantially 38 

altered. 39 

Early explorers and settlers from Europe perceived North America as a wilderness 40 

completely unaffected by human activities, a perception that Denevan (1992) referred to as the 41 

pristine myth. This perception was tenacious and long-lived, but extensive research has now 42 
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established that pre-Columbian societies altered at least some portions of terrestrial 43 

ecosystems in what is now the United States prior to Euro-American settlement via burning, 44 

settlements, and subsistence activities (e.g., Butzer, 1990; Denevan, 1992; Vale, 1998, 2002). 45 

Although Native American irrigation techniques physically modified river corridors in certain 46 

parts of North America such as the U.S. Southwest (e.g., Doolittle 1992, 2009), we contend that 47 

pre-Columbian societies had a much smaller impact on river corridors compared to the 48 

terrestrial landscape of North America. In contrast, Euro-American settlement resulted in rapid 49 

and significant alterations of both terrestrial landscapes and river corridors in a variety of ways.  50 

This paper reviews existing literature on human alterations of terrestrial and freshwater 51 

ecosystems prior to and following settlement of the conterminous United States by people of 52 

European descent, with an emphasis on freshwater alterations after Euro-American settlement. 53 

Native American here refers to people whose ancestors migrated eastward to North America 54 

from Asia and were present in North America prior to Euro-American settlement. Euro-55 

American here describes people who migrated directly from Europe or whose ancestors 56 

migrated westward to North America from Europe. We use 1600 AD as a time boundary for 57 

considering ecosystem alteration prior to and following Euro-American settlement, although 58 

the time of initial direct and indirect contacts between Euro-Americans and Native Americans 59 

varied among different regions of the United States and North America. Discussion of the 60 

effects of human alteration of freshwater ecosystems focuses on river corridors, which include 61 

channels regardless of size, floodplains, and floodplain wetlands, but also briefly reviews lakes. 62 

We suggest that understanding the broad patterns of timing in human modifications of 63 
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terrestrial and freshwater ecosystems provides important insight for managing and protecting 64 

these ecosystems. 65 

Human alterations of ecosystems prior to Euro-American settlement 66 

 The contention that Native Americans altered terrestrial ecosystems to a greater extent 67 

than freshwater ecosystems is based on extensive scholarship focused on diverse geographic 68 

regions within the United States, as reviewed briefly in the next two sections.  69 

Alteration of terrestrial ecosystems 70 

Studies of prehistoric societies from various regions of the United States clearly indicate 71 

that many Native American communities significantly altered terrestrial ecosystems. Fire was 72 

widely used in diverse ecosystems to improve access to animals; improve or eliminate forage 73 

for animals on which people depended for food; drive and encircle animals; increase the 74 

production of gathered foods; and clear forest vegetation for garden plots or enhance 75 

conditions for favored fruit and mast trees (Pyne, 1982; Krech, 1999; Abrams and Nowacki, 76 

2008). Historical sources document these practices from at least some environments in New 77 

England (Cronon, 1983; Parshall and Foster, 2002), other portions of the eastern United States 78 

(Abrams and Nowacki, 2008), the Cumberland Plateau (Delcourt and Delcourt, 2004), across the 79 

prairies (Wohl, 2013b) and some environments within the Intermountain West (e.g., Baker, 80 

2002), to parts of California (Solnit, 1994; Parker, 2002). As Krech (1999) notes in his book on 81 

Native American environmental practices, deliberate burning “… may indeed have been the 82 

most prevalent tool employed by Indians to manipulate their environment …” (p. 110). The 83 

environmental effects of deliberately set fires varied between ecosystems and depended on 84 
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how frequently and over what extent people used fire, and environmental scientists continue 85 

to debate the relative importance of human versus climate controls on fire regimes in diverse 86 

areas, as well as local versus regional effects of fire (e.g., Vale, 2002; Marlon et al., 2013; Munoz 87 

et al., 2014). Nonetheless, terrestrial ecosystems in much of the United States were at least 88 

partly influenced by this form of human-induced disturbance.  89 

Changes to terrestrial ecosystems associated with deliberately set fires included altered 90 

type of vegetation cover (e.g., dense forest versus open woodlands or grasslands); altered 91 

species composition of plant communities (increased fires favored more fire-tolerant species) 92 

and of animal communities associated with those plants; altered carbon and nutrient stocks 93 

(Turner, 2010; Buma et al., 2014; McLauchlan et al., 2014); and alterations of water and 94 

sediment yield to freshwater ecosystems (Shakesby and Doerr, 2006). The magnitude and 95 

spatial extent of all these potential changes in response to deliberately set fires varied as a 96 

function of the severity, frequency, and spatial extent of the fires, and much of the ongoing 97 

debate about Native American use of fires centers on the details of fire severity, frequency, and 98 

spatial extent. 99 

Husbandry of selected herbaceous and woody plants, and deliberate planting and 100 

tending of crops, also affected some terrestrial ecosystems. Native Americans grew a variety of 101 

crops, but maize formed the central focus of most prehistoric agriculture. Maize was introduced 102 

to the southwestern U.S. from Mexico by 2100 BC (Merrill et al., 2009) and spread from there 103 

to the eastern United States. Prehistoric people in arid and semiarid regions of the Southwest 104 

developed several techniques for growing crops, including seepage fields downslope from 105 

springs; water-table fields in wetlands; irrigation ditches such as at Montezuma Wells in 106 
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Arizona, USA; mulching to retain moisture; rock-bordered grids to alter the movement of wind 107 

and/or water; and low stone terraces known as trincheras on hillslopes (Doolittle, 2000).  108 

Native American agriculture, like Euro-American agriculture, involved replacing native 109 

land cover with cultivated plants. Native Americans in the area that became New England used 110 

fire to clear patches within the forest, then planted the patches for approximately a decade 111 

until soil fertility began to decline. Annual reoccupation of fixed village and planting sites also 112 

depleted the supply of firewood in the vicinity and early Euro-American colonists wrote of 113 

thousands of acres of treeless land around Native American settlements (Cronon, 1983). 114 

Estimated Native American population densities were seven times greater in grain-growing 115 

communities in southern New England than in communities in northern New England that 116 

relied solely on hunting and gathering (Cronon, 1983). 117 

Pre-contact Native American cultures across large portions of the United States outside 118 

of New England and other agricultural areas such as the upper and central Mississippi River 119 

valley (Delcourt and Delcourt, 2004) and the Southwest relied primarily on hunting and 120 

gathering rather than intensive agriculture, which limited alteration of terrestrial ecosystems. 121 

Population density and the intensity of cropping also varied through time within agricultural 122 

regions, creating associated fluctuations in the intensity of ecosystem alteration. However, 123 

agricultural communities significantly altered at least portions of surrounding terrestrial 124 

ecosystems.  125 

The ongoing debate about the spatial extent and intensity of ecosystem alteration by 126 

Native Americans prior to Euro-American settlement indicates the difficulty of quantifying 127 

prehistoric human effects on terrestrial ecosystems. Generalizing across the conterminous 128 
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United States, Native American alterations were less extensive and intensive than subsequent 129 

Euro-American alterations because Native Americans had lower population densities, simpler 130 

technologies, and lack of integration into global commercial markets and hence lower demands 131 

for resources. Consequently, Native American alterations of water and sediment yields from 132 

uplands, as well as of plant and animal communities, were for the most part less intense and 133 

less persistent than subsequent Euro-American alterations. Native Americans did alter some 134 

terrestrial environments, however, in ways that can be detected in geological and archeological 135 

records (e.g., Delcourt et al., 1998). 136 

Alteration of freshwater ecosystems 137 

In contrast to the alteration of terrestrial ecosystems through the localized use of fire 138 

and planting of crops in diverse regions of the United States, there are few examples of Native 139 

American communities significantly altering freshwater ecosystems. People in specific regions 140 

depended on fish, mussels, wild rice, and other freshwater organisms for a substantial portion 141 

of their nutrition, and at least wild rice appears to have been cultivated to some degree 142 

(Doolittle, 2000).  There is no evidence, however, that the methods used to obtain these foods 143 

substantially altered the morphology of rivers, lakes, or wetlands, or the flow regime of rivers. 144 

The Hohokam of central Arizona, one of the most impressive and well-studied prehistoric 145 

Southwestern agricultural societies, provide an example of the lack of substantial alteration of 146 

freshwater ecosystems.  147 

The Hohokam built the largest canal system in pre-Columbian North America during the 148 

10th to 15th centuries (Doolittle, 1992; Krech, 1999). Scattered villages used a variety of 149 



Land Before Water, v. 3, 4/2017 
 

8 
 

agricultural techniques and at least some of the settlements relied on irrigated agriculture, with 150 

crops grown in floodplains using water diverted from rivers. Archeologists disagree on 151 

Hohokam population numbers through time. Canal networks built and used during different 152 

time intervals make it difficult to infer how much water might have been diverted from the Salt, 153 

Gila, Verde, Santa Cruz, and other rivers in the region.  However, there is no evidence that the 154 

Hohokam diverted enough water to change river processes downstream from their diversion 155 

points, and they did not build dams or large water retention structures (Krech, 1999). 156 

Exceptions to the lack of Native American alterations of freshwater ecosystems come 157 

from relatively densely populated agricultural societies in the eastern half of the United States. 158 

Archeological sites scattered across the eastern United States and the Mississippi Valley 159 

indicate that maize-based agriculture helped to support relatively high population densities and 160 

more intensive alteration of upland and riparian ecosystems for agriculture. Removal of natural 161 

land cover changed water and sediment yields from uplands in a manner recorded in alluvial 162 

sediments. Lake and floodplain stratigraphy from some sites along the Illinois and Mississippi 163 

Rivers indicates increased sedimentation associated with upland farming during the Archaic 164 

Period (8,000-600 BC) and with farming in the valley bottoms of the Mississippi drainage during 165 

the Woodland Period (600 BC to AD 1050) (Green and Nolan, 2000). Population density and the 166 

style and importance of agriculture relative to hunting and gathering varied through time. Large 167 

settlements and intensive agriculture reached an apogee during the Mississippian Period (AD 168 

850-1450), which gave rise to sites such as Cahokia on the Mississippi River near St. Louis. 169 

Sedimentation at an archeological site at the confluence of Raymondskill Creek and the 170 

Delaware River and at other sites in eastern North America suggests an episode of increased 171 



Land Before Water, v. 3, 4/2017 
 

9 
 

sedimentation in freshwater environments (floodplain, tidal-marsh, lacustrine) during A.D. 172 

1100—1600 in association with maize crops (Stinchcomb et al., 2011). With the exception of 173 

river corridors within a few regions of the Mississippi River drainage basin, however, Native 174 

American agriculture did not significantly increase sedimentation along river networks across 175 

the conterminous United States (James, 2011).  176 

The combined picture that emerges from scattered archeological sites is one of 177 

temporal and spatial fluctuations in sedimentation in freshwater ecosystems as population and 178 

land use locally increased and decreased over time intervals of centuries to millennia. After 179 

circa A.D. 1600, the combined effects of climate change, Euro-American diseases, and Euro-180 

American invasion substantially reduced Native American population levels in the eastern 181 

United States and displaced people westward. Relatively densely settled prehistoric 182 

communities locally influenced wetlands and riparian areas through farming in riparian areas 183 

and increased sedimentation, but, with the exception of the Hohokam, these communities did 184 

not develop irrigation networks and there is no evidence that they altered channel morphology 185 

or flow regime on the rivers they lived along. Based on the use of fire and upland agriculture by 186 

Native American communities in at least some types of terrestrial ecosystems across the United 187 

States, and the spatially and temporally limited effects of Native American agriculture on 188 

sedimentation in freshwater ecosystems, we generalize Native American alteration of 189 

ecosystems as affecting predominantly upland, terrestrial environments. 190 

U.S. rivers circa 1600 AD 191 
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Before reviewing Euro-American alteration of freshwater ecosystems in the United 192 

States, it is useful to describe the condition of these ecosystems prior to intensive Euro-193 

American settlement of the country and after many centuries of occupation by Native 194 

Americans. Most rivers, floodplains, and wetlands throughout the conterminous United States 195 

had a substantially different appearance than they do today. First, much more of the landscape 196 

was seasonally or perennially inundated (Vileisis, 1997). Diverse wetlands along river corridors 197 

and elsewhere – marshes, swamps, lakes, ponds, fens, mires, prairie potholes, playas – were 198 

more abundant and larger. Writing of New England as it appeared in 1633, for example, William 199 

Wood described swamps 30 to 50 km wide (Cronon, 1983). Spatially extensive black soil layers 200 

characteristic of organic matter accumulating in the reducing environment of riverine wetlands 201 

inundated by beaver ponds indicate the past location of marshes and swamps, as described for 202 

extensive portions of valley bottoms across the eastern and Midwestern United States (e.g., 203 

Morgan, 1868; Mills, 1913; Dugmore, 1914). Other historically extensive swamps such as the 204 

Black Swamp (~4200 km2 in extent) along Ohio’s Maumee River were likely facilitated by large 205 

accumulations of downed wood from trees blown over during tornadoes (Kaatz, 1955).  206 

Naturally occurring wood rafts – concentrations of wood extending along many kilometers of 207 

river channel and persisting for decades to centuries – blocked the passage of flood waters and 208 

created flooded bottomlands along rivers as varied as Louisiana’s Red River, the Manistique 209 

River of Michigan, Otter Creek in Vermont, Ohio’s Maumee River of Ohio, the Guadalupe River 210 

of Texas, and the Willamette River of Oregon (Wohl, 2014).  211 

Some of the nation’s major aquifers, such as the Ogallala (Basso et al., 2013), had much 212 

higher water tables. Many riparian water tables, especially in arid and semiarid regions, were 213 
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higher (e.g., Stromberg et al., 1996; Falke et al., 2011). Springs and seeps were more common 214 

and discharged more water. Floods were unregulated, spilling across extensive bottomlands for 215 

weeks to months at a time in environments as diverse as Florida (Douglas, 1947), Illinois 216 

(Steele, 1841), the lower Mississippi (Schramm et al., 2009), rivers of the Great Plains fed by 217 

snowmelt from the Rockies (Wohl, 2013b), California’s Central Valley (Ingram and Malamud-218 

Roam, 2013) and western Oregon and Washington (Sedell and Luchessa, 1981).  219 

Smaller rivers in forested environments in many cases resembled a staircase of ponds 220 

created by sequential beaver dams along the channels. From the smallest creeks to the great 221 

rivers such as the Ohio, Illinois, Atchafalaya, and lower Mississippi, rivers in forested 222 

environments contained abundant wood in the channel and across the floodplain (Wohl, 2014). 223 

The earliest written descriptions from channels in New England and the Southeast across the 224 

Great Lakes region to the Pacific Northwest emphasize the enormous quantities of individual 225 

logs, jams, and enormous wood rafts in rivers. Along with beaver dams on small rivers and 226 

floodplains, all of this instream wood slowed the passage of high discharges, forcing water 227 

across the floodplain and into secondary channels, as well as into the subsurface to recharge 228 

riparian aquifers and help to maintain wetlands. Beaver dams and logjams also facilitated 229 

lateral channel migration and formation of secondary channels, which further enhanced the 230 

formation of riparian wetlands.  231 

Channels of all sizes were much more physically complex than we are used to seeing 232 

today. From prairie creeks and small rivers of the Mid-Atlantic Piedmont that flowed along 233 

marshy swales with multiple, subparallel, poorly defined channels (Walter and Merritts, 2008), 234 

to large rivers of the Great Plains with braided sections (Williams, 1978; Nadler and Schumm, 235 
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1981) and large rivers of the Pacific Northwest with anastomosing planform (Collins et al., 236 

2002), river channels were commonly diffuse and poorly defined. Early explorers, from Louis 237 

Hennepin on the Illinois River in 1679 to Mark Twain navigating the Mississippi River during the 238 

1850s (Twain, 1883), and Army engineers on the Willamette River in 1870, complained of the 239 

difficulty in following the main course of a river. In arid regions such as central Arizona, 240 

channels that are now dry and deeply incised were perennial rivers that supported riparian 241 

forests and beaver colonies (Rea, 1983; Webb et al., 2014). Across the United States, river 242 

corridors were wetter and more spatially heterogeneous at scales from individual river 243 

segments to entire watersheds. This physical diversity equated to abundant and diverse 244 

habitat, as well as retention of nutrients and organic matter, and supported an enormous 245 

biodiversity (Perry et al., 2002). 246 

Human alterations of ecosystems following Euro-American settlement 247 

Native American cultures followed widely different patterns of settlement that affected 248 

their impacts on terrestrial and freshwater ecosystems. Pueblo peoples of the southwestern 249 

United States lived in the same dwellings and community locations for centuries, for example, 250 

whereas other cultures moved seasonally or at other relatively short time intervals. Individual 251 

families of European descent followed the westward-moving frontier of settlement across the 252 

conterminous United States over a period of decades. Consequently, exceptions exist to any 253 

generalization about settlement patterns of either Native Americans or Euro-Americans. With 254 

that caveat, we generalize that settlement of the United States by Euro-Americans commonly 255 

involved rapid and more intense alteration of terrestrial environments than terrestrial 256 
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alterations associated with much of the Native American occupation of the land. Euro-257 

Americans were more likely to settle in communities intended to remain in place for decades to 258 

centuries, and Euro-Americans were more likely to rapidly undertake intensive and extensive 259 

alteration of land cover for profit (e.g., commercial timber harvest or mining). Land cover 260 

change also occurred as a side effect of technological developments, such as substantial 261 

increases in fire severity and extent in association with sparks from coal-burning railroad trains 262 

(Pyne, 1982).  263 

Contact with Euro-American communities and associated commercial markets also 264 

influenced Native American alteration of terrestrial environments by creating competition for 265 

existing land and resource uses; altering the geographic extent and population levels of specific 266 

Native American groups; and in some cases integrating Native American communities into the 267 

enormous commercial markets of Europe and Asia via exports such as furs (e.g., Du Val, 2006; 268 

Fenn, 2014; Davidann and Gilbert, 2016). Initial Euro-American contact led Algonquians and 269 

Iroquois in the Potomac River basin, for example, to intensify maize production (Rice, 2009). 270 

Access to horses greatly increased the mobility of Native Americans of the Great Plains, creating 271 

more extensive and locally intensive alteration of grassland ecosystems, especially where 272 

Native American access to adjacent mountains was restricted by Euro-American hunting and 273 

settlement (West, 1998). Although Euro-American diseases and warfare greatly reduced Native 274 

American population numbers across the United States, Native American peoples did not cease 275 

to exist with the start of Euro-American settlement. Instead, Native American impacts on 276 

terrestrial ecosystems changed, although the details vary between individual Native American 277 

groups and through time. 278 
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Settlement of the United States by Euro-Americans was also accompanied by many 279 

resource uses that affected freshwater environments, most of which occurred nearly 280 

simultaneously and were commonly interrelated. These include: beaver trapping; wetland 281 

drainage; timber harvest and log floating; placer and lode mining; navigation, river clearing, and 282 

channelization; construction of canals; overharvest of freshwater species and fish stocking; 283 

construction of dams and water diversions; construction of levees; changes in water and 284 

sediment yields from uplands as a result of clearing native vegetation and changing the fire 285 

regime; and contamination of surface and ground water via diverse materials ranging from 286 

sewage and organic waste to increasingly toxic and persistent synthetic chemicals. The details 287 

of which resource use affected freshwater environments in a particular region first and/or most 288 

intensively depend on when Euro-Americans first reached the region and the specific 289 

characteristics of the region. Commercial timber harvest initiated Euro-American settlement of 290 

the northern Great Lakes region, for example, and the modification of channel form and flow 291 

regime to facilitate downstream transport of logs constituted the first significant alteration of 292 

river corridors in the region. In contrast, agriculture and establishment of towns initiated Euro-293 

American settlement of the eastern seaboard, so that river corridors were first altered through 294 

practices such as construction of milldams and drainage of riparian and other wetlands. Figure 295 

1 summarizes these patterns. 296 

The specific effects associated with a particular category of resource use also changed 297 

with time as a result of technological changes. Contamination of surface waters by excess 298 

sediment, distillery or slaughterhouse waste, or wood waste from sawmills (Kofoid, 1903), for 299 

example, later gave way to contamination by synthetic chemicals such as organochlorine 300 
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pesticides and PCBs (Kraus et al., 2017). Similarly, the size and operation of 18th-century mill 301 

dams differed significantly from the size and operation of 20th-century hydroelectric dams. 302 

In the sections that follow we briefly review the diverse human activities that altered 303 

freshwater ecosystems during and after Euro-American settlement. Our emphasis is on 304 

freshwater ecosystems in order to highlight the contrast between the limited effects on 305 

freshwaters by Native Americans and the significant effects on freshwaters by Euro-Americans. 306 

Beaver trapping 307 

One of the earliest Euro-American influences on natural (rather than human) 308 

communities in the United States was commercial exploitation of individual species. In many 309 

regions of the United States, beaver trapping was the first substantial alteration of river 310 

corridors, and beaver populations were decimated prior to permanent Euro-American 311 

settlement of an area. Trapping of beavers provides an especially striking example of how Euro-312 

American activities substantially altered freshwater ecosystems.  313 

Ecologists estimate that as many as 400 million beavers (Castor canadensis) occupied 314 

rivers and wetlands from northern Alaska down into northern Mexico when Euro-Americans 315 

first reached North America (Naiman et al., 1988). By building dams, beavers created riparian 316 

wetlands that attenuated downstream fluxes of water, fine sediment, organic matter, and 317 

nutrients (Naiman et al., 1994; Westbrook et al., 2013; Wegener et al., in press). These effects 318 

were recognized by early Euro-American settlers in New England, who prized the fertile soil of 319 

valley bottoms formerly occupied by beavers (Cronon, 1983). Beaver-created wetlands 320 

supported high diversity of microbes, plants, and animals from insects to mammals (Rosell et 321 

al., 2005). Individual beaver meadows – segments of valley bottom with numerous dams and 322 
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ponds – persisted for thousands of years (Kramer et al., 2012; Polvi and Wohl, 2012) and 323 

created resistance and resilience to disturbance within river ecosystems (Hood and Bayley, 324 

2008).  325 

Having driven Euro-American beavers (Castor fiber) nearly to extinction by the 12th 326 

century in some parts of Eurasia by the end of the 19th century, the Euro-American fur trade 327 

systematically and energetically exploited North American beaver populations starting with 328 

eastern North America during the early 17th century and progressing westward. North American 329 

beaver populations fell to 6-12 million by the mid-19th century (Naiman et al., 1988). Although 330 

beaver populations in Eurasia and North America are gradually recovering and beavers are now 331 

actively reintroduced as part of river restoration in both continents, scientists are still trying to 332 

understand the cumulative effects of severe beaver-population declines on freshwater 333 

environments (Hood and Bayley, 2008; Green and Westbrook, 2009; Johnston, 2012; Polvi and 334 

Wohl, 2012, 2013). Among the most significant cumulative effects of substantially reduced 335 

beaver activity are declines in habitat and biodiversity (e.g., Bartel et al., 2010; Peipoch et al., 336 

2014) and decreased retention of water, solutes, sediment, and particulate organic matter 337 

within river corridors (e.g., Wegener et al., in press) (Figure 2). 338 

Wetland drainage 339 

Euro-American immigrants to the United States brought with them a cultural history of 340 

wetland drainage. The Dutch were pre-eminent at developing techniques to drain wetlands and 341 

Dutch engineers taught the English: by 1649, more than 38,000 ha had been drained in England. 342 

George Washington’s library included a copy of the 1775 “Practical Treatise on Draining Bogs 343 
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and Swampy Ground” (Simco et al., 2009). Seventeenth-century Euro-American colonists along 344 

the eastern seaboard immediately began altering salt marshes through haying and grazing, as 345 

well as draining, diking, and building cities (Baltimore, Philadelphia, Boston, New York, 346 

Charleston, and others) on coastal wetlands. Freshwater marshes along rivers such as the 347 

Sudbury and Concord in Massachusetts were similarly used for haying as early as the 1630s. 348 

These uses of river corridors occurred simultaneously with beaver trapping: more than 10,000 349 

beavers were killed in Connecticut and Massachusetts during the 1620s and more than 80,000 350 

beavers per year were hunted from the Hudson River and western New York during 1630 to 351 

1640 (Vileisis, 1997). The beaver trade ended in New England by 1660 (Cronon, 1983) as the 352 

animals largely disappeared from the region as a result of trapping. 353 

Farther south, most colonial governments required landowners to improve their land 354 

either through cultivation or by clearing and draining in order to gain land title. By the final 355 

decade of the 1700s, almost all rice planters from North Carolina south to Florida had moved 356 

their plantations down to tidally influenced freshwater rivers, which they altered with elaborate 357 

networks of dikes, check banks, flood gates, ditches, canals, drains, and rice-milling dams. These 358 

activities altered the hydrology of river corridors sufficiently to create problems with saltwater 359 

intrusions (Silver, 1990; Stewart, 2002). Much of this agriculture was simultaneous with floating 360 

of cut timber downstream to sawmills. Loggers altered access to interior timber stands by 361 

digging canals and draining portions of extensive wetlands such as the Great Dismal Swamp 362 

(late 1760s). In the lower Mississippi River valley, swamp forests along river corridors were 363 

logged during initial settlement (1717) for valuable timber from bald cypress, then drained and 364 

cropped (Vileisis, 1997). 365 
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As Euro-American settlement proceeded westward, riparian wetlands were not 366 

necessarily the first target for croplands, but they were commonly modified within two to three 367 

decades of settlement. In the Illinois prairie, for example, John Deere’s 1837 invention of the 368 

self-scouring, steel-bladed plow allowed farmers to cut through the dense network of 369 

grassroots and cultivate the uplands following the initial rush of Euro-American settlers at 370 

statehood in 1819. The 1850 Swamp Land Act ceded federal swamplands to Illinois and other 371 

states with the intention of facilitating wetland drainage using levees, drains, and ditches 372 

(Vileisis, 1997) (Figure 3). Alteration of river corridors proceeded rapidly (Wohl, 2013b). In 373 

Illinois, state legislation in 1879 facilitated the organization of levee districts that used state 374 

funds to build levees, drain wetlands, and channelize rivers (Landwehr and Rhoads, 2003). To 375 

cite another example, Euro-American settlement in western Mississippi began about 1830 and 376 

by 1840 settlers were channelizing streams and draining wetlands (Shields et al., 1995). 377 

An estimated 89.4 million ha of wetlands existed in the conterminous United States 378 

circa 1780 (Dahl, 1990), even though Euro-Americans had been altering river corridors along 379 

the eastern seaboard for more than a century. By 1980, wetlands had shrunk to approximately 380 

42.2 million ha. Ten states had lost more than 70 percent of their wetlands by 1980 and 22 381 

states had lost more than 50 percent (Dahl, 1990). In the words of a 1973 Congressional report: 382 

 For the last three-and-a-half centuries Americans have busily settled,  383 

developed and cultivated the continent’s flood plains. …. In this, they  384 

were more bold than prudent…. They stubbornly refused to recognize  385 

a flood plain for what it is…. In Delaware, Maryland, and other  386 

middle-Atlantic States, extensive drainage networks were dug by  387 
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slaves. Later, in the last decades of the 19th century, drainage districts  388 

were established and thousands of miles of trenches gouged to dry up  389 

wetlands. (CGO, 1973, p. 2) 390 

The implications of the diverse forms of wetland drainage were twofold. First, wetlands 391 

very effectively attenuate downstream fluxes of water, fine sediment, and dissolved and 392 

particulate organic matter. By limiting attenuation and storage of these materials, wetland 393 

drainage altered riverine flow regimes, sediment transport, and nutrient availability in ways 394 

that stressed aquatic, riparian, and coastal biotic communities. Second, wetlands, including 395 

those in river valleys, are disproportionately important sources of habitat and food relative to 396 

the area that they occupy in the total landscape (Amoros and Bornette, 2002; Dudgeon et al., 397 

2006).  Wetland drainage largely eliminated vital wetland habitat for many species of plants 398 

and animals. 399 

Timber harvest and log floating 400 

From the eastern seaboard to the Great Lakes and across the Intermountain West and 401 

the Pacific Northwest, commercial timber harvest commonly began by using existing waterways 402 

to float cut logs to collection booms for transport to sawmills (Wroten, 1956; Sedell et al., 1991; 403 

Cowan, 2003; McMahon and Karamanski, 2009). This practice began during the first half of the 404 

17th century in Maine and New Hampshire (Cronon, 1983) and then moved progressively 405 

westward with the Euro-Americans. Although railroads subsequently took over the 406 

transportation of cut logs during the 19th century, the use of rivers to transport logs typically 407 

lasted for at least a decade in regions initially settled by Euro-Americans during the 19th 408 
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century. In some regions, log transport on rivers persisted much longer as each new area of 409 

forest was opened to timber harvest.  410 

Log floating had at least three effects on rivers (Sedell et al., 1991; Cowan, 2003; Wohl, 411 

2014). First, the logs themselves altered channel boundaries, dislodging existing instream wood 412 

and battering the channel bed and banks and riparian vegetation, particularly when thousands 413 

of logs were floated downstream during a single season (Figure 4). Second, channels were 414 

commonly modified to facilitate the movement of logs. Overbank areas such as floodplains and 415 

secondary channels were blocked, obstructions within the channel such as wood and large 416 

boulders or bedrock were blasted out, and small channels were enlarged. Third, splash dams 417 

were built on small to medium channels throughout river networks to facilitate log movement. 418 

These small, temporary dams were allowed to fill with water and logs and then dynamited to 419 

send the logs rapidly downstream in an outburst flood.  420 

Log floating and associated channel modifications extended from headwater channels 421 

just barely wider than the diameter of a log to the largest rivers in the country. Although log 422 

floating typically lasted at most a decade in a given region (until all of the marketable timber 423 

had been cut or railroads took over transportation of cut logs), the enlargement and 424 

simplification of affected channels has persisted for more than a century (Young et al., 1994; 425 

Miller, 2010; Ruffing et al., 2015). Removal of upland and riparian forests during timber harvest, 426 

where spatially extensive and intensive (i.e., clearcutting rather than selective cutting), also 427 

increased water and sediment yields to adjacent river corridors and lakes (Cronon, 1983). As 428 

with other land uses affecting river corridors after Euro-American settlement, the timing of 429 

timber harvest and log floating varied among regions. New York State led the nation for volume 430 
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of timber production in 1859, for example, but peak production shifted to states such as 431 

Wisconsin and Minnesota during the 1870s to 1900, before shifting to the Pacific Northwest 432 

during the early 20th century (Wohl, 2014).  433 

The ecosystem implications of timber harvest and log floating primarily involved loss of 434 

habitat abundance and diversity as channels and floodplain wetlands were simplified and 435 

laterally disconnected from one another; loss of attenuation of peak flows and storage of 436 

nutrients and organic matter as simplified river corridors more rapidly passed material 437 

downstream; loss of naturally occurring instream wood and obstructions such as beaver dams 438 

that limited longitudinal connectivity and increased lateral and vertical connectivity; and lower 439 

biomass and biodiversity of aquatic and riparian organisms as a result of loss of habitat and 440 

nutrient retention (Young et al., 1994; Nilsson et al., 2005; Helfield et al., 2007; Ruffing et al., 441 

2015). 442 

Placer and lode mining 443 

 Placer deposits are precious metals such as gold that are mixed with alluvial sediments 444 

in river valleys and terraces. Lode deposits are in place within bedrock and can occur as veins of 445 

precious metals such as gold and silver within igneous or metamorphic rocks, or in the form of 446 

ores such as iron or uranium within sedimentary rocks. Placer deposits are inherently 447 

associated with freshwater ecosystems and many types of lode deposits are most accessible 448 

within river corridors.  449 

By displacing vegetation, soils, and overlying sediments or rock units, both placer and 450 

lode mining involved extensive disruption of surface cover and topography, which commonly 451 
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resulted in substantially increased volumes of sediment entering freshwater ecosystems 452 

(Wagener and LaPerriere, 1985; James, 1991, 1994, 1999; Hilmes and Wohl, 1995). Removal of 453 

upland forest cover for timber used directly in mining (e.g., timbered ore shafts, fuel for steam-454 

powered stamp mills, charcoal production) and for communities and transportation systems 455 

associated with the mining further exacerbated changes in water and sediment yield to 456 

freshwater ecosystems (Syvitski et al., 2005), as did construction of water-powered mills. 457 

Deforestation commonly occurred extremely rapidly and over large areas in association with 458 

mining. A typical furnace associated with iron mining in the eastern and southeastern United 459 

States, for example, consumed 0.4 ha of forested land per day while in use (Hart et al., 2008). 460 

Increased sediment yields affected river corridors by overwhelming sediment transport capacity 461 

and accumulating sediment in channels and on floodplains. Small increases in sediment supply 462 

can smother bottom-dwelling organisms or limit the survival of fish (Van Nieuwenhuyse and 463 

LaPerriere, 1986; McLeay et al., 1987). Progressively greater amounts of sediment can bury 464 

spawning habitat, fill channels and transform them from meandering to braided, fill floodplain 465 

wetlands and lakes, and substantially reduce the abundance, diversity, and stability of habitats 466 

within the river corridor (Gilvear et al., 1995).  467 

Introduction of contaminants such as mercury used to amalgamate placer gold 468 

commonly accompanied mining (Singer et al., 2013), further disrupting freshwater ecosystems 469 

with an extremely persistent and highly toxic substance. Mercury, in particular, bioaccumulates 470 

within individual organisms and biomagnifies within food webs, limiting the health and survival 471 

of a wide variety of organisms (May et al., 2000). Other toxic metals and acids associated with 472 

the ores containing precious metals were released into streams and rivers, rendering them 473 
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virtually barren for kilometers downstream. Acid mine drainage is lethal to fish, invertebrates, 474 

and algae. In the Rocky Mountain region alone, more than 15,500 km of streams below mines 475 

are impaired and unable to support native freshwater communities (Baron et al., 2002). 476 

Examples of placer and lode mining that directly affected freshwater ecosystems come 477 

from iron mining in many portions of the eastern United States during the 18th and 19th 478 

centuries (Swank, 1892; Hart et al., 2008); 19th-century placer and lode mining of gold in the 479 

Southern Appalachians (Pardee and Park, 1948); and 19th-century placer gold mining in 480 

California’s Sierra Nevada (James, 1991) (Figure 5) and the Colorado Rockies (Wohl, 2001). 481 

Navigation, river clearing, and channelization 482 

Navigation, river clearing, and channelization here refer to a suite of channel 483 

modifications undertaken to facilitate the downstream passage of cut logs to sawmills, reduce 484 

overbank flooding, and improve navigation for boats from small flatboats and keelboats to 485 

commercial steamboats and barges. Prior to the development of extensive railroads after the 486 

Civil War (1861-1865), natural waterways and canals formed the most efficient and economical 487 

transport network in the United States for moving large volumes of material. After Robert 488 

Fulton designed an efficient steamboat in 1807, rapidly accelerating use of these larger boats 489 

required extensive modification of rivers to remove the dangerous snags that could quickly sink 490 

a steamboat and to create uniform minimum flow depths through dredging.  491 

It is difficult to over-estimate the extent and intensity of river corridor modification 492 

associated with steamboat traffic, which occurred along most rivers of suitable size in the 493 

eastern half of the United States during the 19th and early 20th centuries and along a more 494 
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limited number of rivers in the western U.S. (Wohl, 2014). Desire to enhance steamboat 495 

navigation led to: direct modification of channels (removal of millions of logs, dredging, 496 

blasting, straightening, blocking off overbank areas); extensive riparian deforestation 497 

associated with the need for wood to power the steamboats; greater settlement of remote 498 

areas by transporting people and goods to these regions; and federal involvement in river 499 

engineering (Harmon et al., 1986; Wohl, 2014). Congressional appropriations for removing 500 

wood from rivers date to the very start of the nation, in 1776 (Harmon et al., 1986), but 501 

assigning the engineering of inland rivers to enhance steamboat traffic to the U.S. Army Corps 502 

of Engineers in 1824 institutionalized these practices (Reuss, 2004).  503 

Some of the most sustained efforts at wood removal included dismantling the 504 

enormous, naturally occurring wood rafts such as the famous Great Raft on Louisiana’s Red 505 

River. While present, this accumulation of wood enhanced overbank flows, channel-floodplain 506 

connectivity, and the formation of an anastomosing channel planform in which multiple 507 

secondary channels branch around vegetated islands before rejoining the main channel 508 

downstream (Triska, 1984; Wohl, 2014). This greatly increased the diversity of aquatic and 509 

riparian habitats, as well as retaining dissolved and particulate nutrients, and increasing the 510 

extent of biologically rich floodplain wetlands. 511 

Dredging and straightening channels, although undertaken on a small scale by 512 

individuals or local groups for more than a century, also accelerated when the U.S. Army Corps 513 

of Engineers began channelizing the Mississippi River in the 1870s (Gillette, 1972) (Figure 6). 514 

Channelized systems can reduce overbank flooding within the zone of channelization, but 515 

commonly exacerbate flooding and sedimentation downstream. Eroding channels can 516 



Land Before Water, v. 3, 4/2017 
 

25 
 

destabilize an entire watershed by dropping base level for tributaries that then incise, further 517 

exacerbating downstream sediment yields and typically reducing the abundance, diversity, and 518 

stability of instream and riparian habitats in the affected segments of the river corridor (Shields 519 

et al., 1995). Even if channelization is not continued, affected channels can require several 520 

decades to become stable again (Simon, 1994). 521 

Construction of canals 522 

Prior to development of the national railroad network, bulk materials were most 523 

efficiently transported via boats on natural rivers and lakes. Spanning the spatial gaps in this 524 

natural freshwater transportation network became a priority of early commercial development 525 

in the United States, with private companies and various levels of government contributing to 526 

the construction of canals (Cowan, 1997). 527 

The Erie Canal was the first major water project in the United States. Begun in 1817, the 528 

canal linked Lake Erie with the Hudson River (Langbein, 1976). A major problem with the 584-529 

km-long canal was seepage of canal water into adjacent soils and rivers crossing the canal, but 530 

expected problems of extensive erosion and flooding were not reported. The Erie Canal may 531 

have been responsible for the introduction of the nonnative sea lamprey (Petromyzon marinus) 532 

or alewife (Alosa pseudoharengus) to the Great Lakes, where their introduction disrupted lake 533 

food webs and caused severe damage to native lake trout and other native fish populations 534 

(Christie and Goddard, 2003).  535 

Canals had a relatively short duration as useful transportation networks because of the 536 

rapid development of railroads starting in the 1830s (Cowan, 1997). Many of the transportation 537 
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canals continued to exist for decades, however, creating sources of potential environmental 538 

alteration. Other canals were built for different purposes, such as diversion of waste or 539 

diversion of water for consumptive uses or for dilution of waste. Canals associated with water 540 

diversion for consumptive uses are discussed in a subsequent section of this paper in 541 

association with flow regulation. The effects of canals designed primarily for waste disposal are 542 

exemplified by the 47-km-long Sanitary and Ship Canal completed in 1900 to link the Illinois 543 

River to Lake Michigan. The intent of the canal was to divert wastewater from Chicago into the 544 

Illinois River. Prior to construction of the canal, Chicago dumped wastewater into Lake Michigan 545 

and extracted drinking water from the lake, leading to repeated outbreaks of cholera (Wohl, 546 

2013b). Diversion of sewage into the Illinois River created a downstream-progressing wave of 547 

extinction of freshwater organisms (Richardson, 1918; Colten, 1992). The canal is currently of 548 

concern as a corridor for the potential invasion of Asian carp species established in the 549 

Mississippi River drainage (Sandiford, 2009). Since the 1800s and end of the 20th century, 180 550 

non-indigenous aquatic species have become established in the Great Lakes (Van Der Zanden et 551 

al., 2009). Many of these species were transported via canals. Exotic species have had impacts 552 

on virtually every ecological process and niche, causing a cascade of devastation to native fishes 553 

and mussels (Mills et al., 1994). The sea lamprey was catastrophic for native lake trout, causing 554 

millions of dollars of losses to commercial fisheries. Alewife populations later decimated the 555 

lake whitefish commercial fishery. Alewife subsequently became important prey for introduced 556 

salmon. White perch migrating up the Erie Canal are now competing with native fishes for food 557 

supplies. Since their introduction in the 1980s, zebra mussels and quagga mussels rapidly 558 

displaced native unionid mussels (Mills et al., 1994). 559 
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The primary environmental alterations associated with canals constructed for diverse 560 

purposes are likely to be the stresses that they exert on native freshwater organisms by 561 

changing flow regime or providing a pathway for dispersal of pollutants or exotic species. In 562 

many cases, these effects persist more than a century after a canal has ceased to serve its 563 

intended purpose. 564 

Overharvest of freshwater species and fish stocking 565 

Most of the commercial exploitation of freshwater species that led to precipitous 566 

population declines and associated changes in freshwater ecosystems involved either bivalves 567 

or fish. Commonly, commercially harvested species were simultaneously impacted by multiple 568 

stressors, including overharvest, habitat destruction, pollution, and introduction of exotic 569 

species. Examples of species driven nearly to extinction through these processes include 570 

Atlantic salmon in rivers of the eastern United States. An estimated 5-12 million Atlantic salmon 571 

(Salmo salar) spawned in watersheds from the Connecticut River to northern Labrador at the 572 

time of Euro-American contact, but these fish had become scarce by the mid-1700s through the 573 

combined effects of overfishing, upland clearance and river sedimentation, and mill dams 574 

(Montgomery, 2003). Analogous substantial declines occurred during the 18th century in 575 

Atlantic sturgeon (Acipenser oxyrinchus), shad (Alosa sapidissma), alewife (Alosa 576 

pseudoharengus), and other fish species in the eastern United States as a result of the 577 

combined effects of dams that blocked migration routes, overfishing, and sedimentation of 578 

river-bed habitat (Walter and Merritts, 2008; Brown et al., 2013). In this context, the ubiquity of 579 

dams on nearly every river hosting runs of diadromous fish species is worth highlighting. 580 
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Similarly, Pacific salmon and steelhead (Oncorhynchus spp.) populations in coastal rivers of the 581 

western United States (Lichatowich, 1999) have declined severely as a result of habitat loss, 582 

altered connectivity and flow regime caused by dams, overfishing, and nonnative, hatchery-583 

raised fish (Nehlsen et al., 1991).  584 

Unionid mussels in the Mississippi River drainage provide a second example of 585 

overharvest. These mussels were harvested for freshwater pearls and for their shells, which 586 

were used to culture pearls and to manufacture buttons and other items. Much of the harvest 587 

occurred between 1890 and 1930, until mussel populations were severely depleted. Use of the 588 

crowfoot, which consisted of multiple, four-pronged hooks attached to an iron bar that was 589 

dragged along the streambed, severely disrupted mussel beds and increased bed erosion and 590 

water turbidity (Scarpino, 1985). Commercial harvest of at least 50 species of freshwater 591 

mussels in many rivers of the United States began in the 1850s and continues today, with the 592 

result that many commercial mussel fisheries are now collapsing, leaving mussel populations at 593 

dangerously low levels (Anthony and Downing, 2001). 594 

A third example comes from lake sturgeon (Acipenser fulvescens) in the Great Lakes, 595 

which were abundant prior to the late 1800s and are now estimated to be less than 1% of 596 

historic levels as a result of overfishing and other human-induced stressors (DeHaan et al., 597 

2006). Additional examples can be drawn from any commercially exploited fish species in the 598 

United States. 599 

Fish stocking has also been widespread in the United States since at least 1871, when 600 

Spencer Baird oversaw stocking programs across the nation as head of the US Fish Commission. 601 

Fish stocking can involve introduction of species from outside of the United States; introduction 602 
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of U.S. species to different portions of the country where they do not naturally occur; or 603 

introduction of native or nonnative species to fish-less lakes. At least some fish introductions 604 

have involved simultaneous attempts to eradicate native species viewed as undesirable, with 605 

the most infamous example likely being the 1962 rotenone poisoning of 720 km of the Green 606 

River in Utah prior to introduction of game fish for recreational fishing (Wiley, 2008).  607 

One of the most successful examples of nonnative fish stocking involves the 608 

introduction of common carp (Cyprinus carpio), which were first brought to the United States in 609 

1831, as imports to the State of New York. Baird aggressively promoted carp as a food fish for 610 

the farm ponds starting to appear across the eastern and Midwestern U.S. and the fish 611 

commission distributed thousands of free carp (Sandiford, 2009).  612 

Introductions of species native to different portions of the country are exemplified by 613 

the spread of brook trout (Salvelinus fontinalis; native to eastern North America) and rainbow 614 

trout (Oncorhynchus mykiss; native to cold water, North American tributaries of the Pacific 615 

Ocean). Introduction of fish to fishless lakes was typically undertaken to create recreational 616 

fisheries in high-elevation mountain lakes (Knapp et al., 2001). Today, 60% of all naturally 617 

fishless lakes and 95% of larger deeper lakes in western North America contain nonnative trout 618 

(Knapp et al., 2001; Bahls, 1992). Other fish species and freshwater organisms also spread to 619 

new habitats through accidental introductions. 620 

Alteration of species present in freshwater ecosystems creates a plethora of effects that 621 

ecologists continue to investigate. Among these changes are altered energy subsidies among 622 

freshwater, riparian, terrestrial, and marine environments (Cederholm et al., 1999; Baxter et al., 623 

2004). Changes in physical process and water quality can also be associated with the introduced 624 
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organisms, such as increased turbidity caused by feeding behavior of some types of introduced 625 

fish (Zambrano et al., 2001) or changes in lake trophic structure that affect nutrient cycling and 626 

water quality (Covich et al., 1999; Schindler and Parker, 2002). 627 

Accidental or deliberate stocking of nonnative freshwater species began with Euro-628 

American settlement of each region of the United States (Halvorson, 2011). The peak period of 629 

deliberate stocking of nonnative fish species likely occurred between circa 1870 and 1970, but 630 

accidental introductions such as those from ship ballast water continue to substantially impact 631 

freshwater ecosystems, as exemplified by zebra mussels from Russia (Dreissena polymorpha, 632 

introduced circa 1988), several carp species introduced from Asia during the 1970s, and species 633 

of algae (e.g., Didymosphenia geminata), crayfish (e.g., Orconectes rusticus), and other aquatic 634 

organisms native to specific regions in the United States but now invading other areas of the 635 

country.  636 

Contamination of surface and ground waters 637 

 Contamination of surface waters with organic and industrial wastes occurred as soon as 638 

Euro-American settlers began commercial exploitation of resources or developed permanent 639 

communities. Primary contaminants during the 18th and 19th centuries included human and 640 

animal wastes; increased sediment yield from upland soil erosion associated with changes in 641 

land cover; and industrial by-products such as sawdust, mercury from placer mining, tannery 642 

effluent, or distillery slops (Pisani, 1984; Colten, 1992). Continued development of industry and 643 

commercial agriculture during the 20th century dramatically increased the range of 644 

contaminants entering surface and ground waters, particularly with rapid advances in the 645 
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synthesis of organochlorine compounds after circa 1950. National water-quality assessments 646 

undertaken during the past two decades indicate ubiquitous contamination of surface and 647 

ground waters throughout the conterminous United States (e.g., USGS, 1999; Nowell, 2001; 648 

Dubrovsky et al., 2010) as a result of both point sources and non-point sources including 649 

atmospheric deposition and terrestrial runoff (Carpenter et al., 1998). Pervasive contamination 650 

has resulted in multiple iterations of the Clean Water Act, but the great majority of surface and 651 

ground waters in the conterminous United States remain unsafe to drink without treatment. 652 

Nutrients from sewage treatment plants, industrial agriculture, and animal feeding operations 653 

have caused widespread eutrophication in the United States, leading to substantial loss of 654 

biodiversity, increased algal productivity, taste and odor issues, and increasingly harmful algal 655 

(cyanobacterial) blooms that are toxic to fish and people. Contamination of surface and ground 656 

waters is a primary contributor to the continuing extinction of freshwater species. 657 

Dams and water diversions 658 

Dams were built for diverse purposes following Euro-American settlement of a region, 659 

but many of the earliest were mill dams. As Walter and Merritts (2008) documented for the 660 

mid-Atlantic Piedmont, tens of thousands of mill dams were built along smaller rivers during 661 

the 17th to 19th centuries. The backwater from each dam extended nearly to the base of the 662 

next dam upstream as a result of the proliferation of early milling acts that promoted damming 663 

for water power. Each of these dams accumulated a 1-5 m thick wedge of sediment in its 664 

backwater, effectively burying the small, anabranching channels that existed within extensive 665 
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vegetated wetlands prior to damming. Sequences of dams affected river process and form for 666 

the entire upstream watershed by changing base level.  667 

Mill dams were built within every region of the United States settled by Euro-Americans, 668 

primarily with the intent of powering grist mills, saw mills, or early industries. The earliest 669 

known commercial dam in the United States is Stockbridge Dam in Massachusetts, built in 670 

1640. Although many of the mill dams were abandoned by the late 19th century, the sediment 671 

stored behind each dam still affects river corridors. Merritts et al. (2011) document continuing 672 

channel adjustments via processes of bank erosion that release much of the fine sediment and 673 

nutrients that create problems in downstream depositional environments such as Chesapeake 674 

Bay. Geologists describe these continuing channel adjustments as a transient response to past 675 

changes in land cover and rise in base level caused by the presence of mill dams (Merritts et al., 676 

2013), but two or more centuries of adjustment is persistent on human timescales. 677 

 In the western United States, Spanish Catholic missionaries built a diversion dam on the 678 

San Diego River in California near the end of the 18th century to provide water for irrigating 679 

crops (Anonymous, 1916). In portions of the arid and semiarid western United States initially 680 

settled by Euro-Americans during the 19th century, water diversions were the first form of 681 

freshwater alteration to follow beaver trapping. The South Platte River drainage in Colorado 682 

provides an example. Euro-American settlement of the region accelerated dramatically 683 

following the 1859 discovery of placer gold. The earliest settlements were mining towns in the 684 

mountains and the earliest water diversions were driven by the need to provide water for use 685 

in separating precious metals from sediment in placer deposits (Wohl, 2001). Within less than a 686 

decade, agricultural settlements were established along the eastern base of the mountain 687 
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front, and these uniformly relied on surface water diverted from rivers to irrigate crops. By 688 

1876, for example, all of the available surface water had been appropriated in the Poudre River, 689 

a tributary of the South Platte, and conflicts were arising from over-appropriation (Wohl, 2001, 690 

2013b).  691 

A similar history of water diversion for mining and agriculture, along with massive 692 

increases in sedimentation along river corridors in association with mining, occurred along the 693 

western base of the Sierra Nevada in California (James, 1994, 1999). Some diversion structures 694 

simply siphon water from a river channel into a pipe or canal. Many forms of diversion, 695 

however, rely on water storage via dams within or outside of channels. In river networks 696 

simultaneously experiencing multiple human alterations, such as California rivers with mining in 697 

the upper basin and irrigated agriculture in the lower basin, dams within channels can store 698 

substantial volumes of human-generated sediment and create delays in the downstream 699 

movement of this sediment and associated contaminants to depositional environments such as 700 

nearshore areas (D. Merritts, pers. comm., March 2017). 701 

Construction of large dams accelerated substantially during the 20th century. By the end 702 

of the century, only about 2% of the 5.6 million km of rivers within the United States were 703 

unaffected by dams and dams impounded a volume of water approximately equal to the annual 704 

continental runoff (Graf, 2001). Among the primary effects of dams large and small on 705 

freshwater ecosystems are substantial changes in flow regime; storage of sediment and 706 

nutrients; creation of a local base level at the dam and reservoir; loss of migration routes and 707 

aquatic and riparian habitat; and changes in water temperature and chemistry and the cycling 708 
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of carbon, nitrogen, and silica (e.g., Ligon et al., 1995; Nilsson and Berrgren, 2000; Poff and 709 

Zimmerman, 2010). 710 

In addition to large dams, hundreds of thousands of stock ponds store water, carbon, 711 

and nutrients. These human-created water bodies may have replaced some of the effects of 712 

lost beaver-created wetlands. Annual burial rates of organic and inorganic carbon tend to be 713 

highest in small, eutrophic lakes and impoundments, for example, and the concentration of 714 

organic carbon in sediment is greatest in lakes with a low ratio of watershed to impoundment 715 

area (Downing et al., 2008). Small water bodies may thus be disproportionately important with 716 

respect to organic carbon storage relative to their size. Severe reductions of beaver populations 717 

throughout the United States significantly reduced organic carbon storage in beaver ponds, 718 

which have the potential for substantial carbon concentrations in pond sediments and adjacent 719 

wet riparian areas (Naiman et al., 1986, 1988; Wohl, 2013a; Johnston, 2014). Small agricultural 720 

impoundments have greater sedimentation rates than natural lakes (Downing et al., 2008) and 721 

have presumably increased sediment storage of carbon in river networks, but the magnitude of 722 

carbon storage in small, natural beaver meadows versus small, agricultural impoundments 723 

remains unknown. 724 

Levees 725 

Although the great era of federally built levees occurred during the 20th century, 726 

individuals and communities built smaller levee systems much earlier. French and Spanish law 727 

that regulated early settlement in the lower Mississippi River region, for example, stipulated 728 

that each landowner agree to build a levee to protect claimed land before obtaining legal 729 



Land Before Water, v. 3, 4/2017 
 

35 
 

possession (Reuss, 2004). Levee construction along the Mississippi River at New Orleans began 730 

in 1717 (NHRAIC, 1992). Levees were commonly built in association with drainage of riparian 731 

wetlands as a means of limiting overbank flows that could inundate those wetlands. Levees 732 

were also built to assist in manipulating water levels in deliberately inundated areas, such as 733 

rice fields along river corridors. In valley bottoms affected by excess sediment from upstream 734 

mining, such as rivers draining California’s Sierra Nevada, levees were built to limit overbank 735 

flooding exacerbated by sediment deposition that raised channel beds by several meters (e.g., 736 

James, 1994). Levee construction in this region accelerated following a major flood in 1862. 737 

Continued expansion of levees in regions such as Yuba County, California facilitated 738 

urbanization of flood-prone areas that were then inundated by several major floods associated 739 

with levee breaks during the 20th and 21st centuries (Montz and Tobin, 2008). 740 

Because systematic records of individual or community levee construction were not 741 

kept, it is difficult to estimate the spatial extent and effects of levees built prior to the late 19th 742 

century. A massive flood on the Mississippi River in 1858 initiated a national flood-control 743 

policy focused on levees and this focus did not change until after the 1927 Mississippi River 744 

flood revealed its limitations, although levees continued to be built extensively after 1927. No 745 

systematic analysis of the extent of levees appears to exist at present, but many rivers are 746 

heavily affected. Along the Mississippi River between St. Louis, Missouri and Head of Passes, 747 

Louisiana, for example, federal flood-control levees have reduced floodplain area connected to 748 

the channel by 70-90% (Flor et al., 2010).   749 

The ecological effects of levees include severing lateral connectivity between channels 750 

and floodplains. Fluxes of water and dissolved and particulate nutrients and organic matter 751 
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sustain biotic productivity throughout a river corridor, and the ability of organisms to physically 752 

move between channels and floodplains is critical to the survival of some species of fish and 753 

other aquatic organisms (Junk et al., 1989; Bayley, 1991). By confining peak flows to channels 754 

rather than allowing water to spread across the river corridor, levees also increase flow velocity 755 

within channels, which can alter habitat and nutrient availability for aquatic organisms 756 

(Mattingly et al., 1993). 757 

Changes in water and sediment yields to river corridors 758 

Of all the types of alterations of freshwater ecosystems occurring after Euro-American 759 

settlement, change in water and sediment yields to river corridors is the only one present prior 760 

to Euro-American settlement, as noted earlier. However, the magnitude of water and sediment 761 

entering river corridors increased substantially following Euro-American settlement because of 762 

the greater intensity and extent of removal of native upland vegetation. Increased water yields 763 

came primarily in the form of greater surface runoff and decreased infiltration, which led to 764 

flashier hydrographs, less groundwater recharge, and the drying of springs and ponds (Cronon, 765 

1983). Sediment yields to rivers, lakes, and wetlands typically increased by an order of 766 

magnitude following removal of native upland vegetation, a scenario documented repeatedly in 767 

the stratigraphy of freshwater environments across the United States (Gottschalk, 1945; Happ, 768 

1945; Knox 1977; Cooper and Brush, 1993; Köster et al., 2007; James, 2011; James and Lecce, 769 

2013; Trimble, 2013).  770 

Increased sediment yields and associated aggradation of channels and floodplains 771 

commonly drove additional efforts to engineer river corridors by dredging and straightening 772 
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channels, for example, in an effort to reduce bottomland flooding exacerbated by loss of 773 

channel conveyance (Shields et al., 1995). In the eastern half of the United States, increases in 774 

sediment yield were initially driven by upland agriculture and associated removal of native 775 

vegetation (e.g., Jackson et al., 2005). In the western half of the country, increased sediment 776 

yields initially resulted from mining (Gilbert, 1917; James, 1999) or commercial timber harvest 777 

(Whitney, 1994), because agriculture was mostly confined to river corridors or low-lying areas 778 

to which surface water could be easily diverted. In either scenario, increased sediment yields 779 

typically adversely affected the diversity, abundance, and stability of aquatic and riparian 780 

habitat. 781 

U.S. rivers circa 1900 A.D.  782 

The cumulative effects of Euro-American alteration of river corridors can be assessed by 783 

considering the characteristics of these environments after one or more centuries of Euro-784 

American occupation. By 1900, river corridors across much of the United States had already 785 

been extensively altered. Hundreds of millions of beavers had been killed, thousands of 786 

hectares of wetlands had been drained, and millions of logs had been removed from river 787 

corridors (Harmon et al., 1986; Wohl, 2014), which had also been physically simplified through 788 

diverse forms of direct channel engineering.  789 

The net effect of these activities was twofold: (1) to reduce the extent of riparian 790 

wetlands, both directly through draining wetlands and indirectly by removing or reducing the 791 

primary processes responsible for creating riparian wetlands, including beaver dams, logjams, 792 

lateral channel movements, and high riparian water tables (Triska, 1984; Patrick, 1995; Vileisis, 793 
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1997; Wohl, 2014); and (2) to physically simplify and homogenize river corridors. 794 

Homogenization resulted from burying original valley bottoms beneath historic sediment within 795 

impoundments; straightening and dredging rivers; removing instream obstructions; blocking 796 

lateral connectivity to floodplains and secondary channels; and reducing intra- and inter-annual 797 

variability in flow through diversions and dams (Poff et al., 2007; Peipoch et al., 2015). 798 

Essentially, Euro-Americans did everything they could to make spatially complex and temporally 799 

variable natural river corridors more like simple, uniform irrigation canals. 800 

Physical simplification of river corridors tends to increase flow velocity and the peak 801 

magnitude of floods if dams are not present (Higgs, 1987). These changes in hydrology and 802 

hydraulics cause increased erosion of the channel boundaries and sediment transport. 803 

Increased channel erosion can result in further wetland drainage as riparian water tables 804 

decline and can also reduce ground water recharge for base flow (Schoof, 1980). Numerous 805 

studies indicate that physically simplified and homogenized river corridors have lower biotic 806 

integrity in terms of species richness, diversity, and biomass (Groen and Schmulbach, 1978; 807 

Scarnecchia, 1988; Rhoads et al., 2003; Moyle and Mount, 2007).  808 

Mountain streams in the Colorado Rockies provide an example of how physical 809 

simplification and homogenization alter biotic communities. Historically, abundant logjams and 810 

beaver dams created obstructions with backwaters characterized by greater channel cross-811 

sectional area, deeper flow with lower velocity, finer-grained streambed sediment and storage 812 

of organic matter, and enhanced overbank flow and formation of secondary channels (Wohl, 813 

2011; Polvi and Wohl, 2013). The spatial heterogeneity associated with logjams and beaver 814 

dams facilitates retention of dissolved and particulate nutrients (Day et al., in review), greater 815 
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abundance and diversity of aquatic habitat, and greater biomass of salmonid fish (Herdrich et 816 

al., in review) and aquatic insect predators such as riparian spiders (Venarsky et al., in review). 817 

Historical removal of logjams and beaver dams, even where this removal occurred several 818 

decades ago, results in contemporary channels with less spatial heterogeneity (Livers and Wohl, 819 

2016) and lower levels of biotic productivity (Herdrich et al., in review; Venarsky et al., in 820 

review). 821 

20th century acceleration of human effects on river corridors 822 

The 20th century was a period of intense, federally financed river engineering in the 823 

form of dredging and channelization, as well as construction of levees and dams (Reuss, 2004). 824 

Nearly every major river within the conterminous United States was extensively affected by 825 

these direct modifications by the end of the century (Graf, 2001). Although ground water 826 

pumping for irrigated agriculture began during the 1880s and 1890s in drier regions of the 827 

United States, drilling of wells into shallow aquifers greatly accelerated during the 20th century. 828 

Early wells were less than 30 m deep, but turbine pumps developed during the early 1960s 829 

allowed irrigation wells to access much deeper ground water. Simultaneous development of 830 

center-pivot irrigation systems substantially expanded the extent of irrigated crop lands. 831 

Withdrawal of shallow and deeper ground water resulted in drying of springs and small streams 832 

in arid and semiarid regions (Falke et al., 2010).  833 

The 20th century also saw widespread introduction of algae-enhancing nutrients and 834 

persistent pollutants in the form of synthetic chemicals such as pesticides into freshwater 835 

environments (Wohl, 2004). As population grew and the industrial and commercial agricultural 836 
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sectors of the U.S. economy accelerated starting in the 1940s, a national sense of alarm over 837 

the extent and intensity of alteration of freshwater ecosystems also grew. This resulted in 838 

legislation such as the original Clean Water Act in 1972.   839 

In the final decades of the 20th century, concern grew over the potential effects of 840 

climate change on river corridors. The specific effects of changing climate vary among different 841 

regions of the United States. Systematic records of precipitation and river discharge indicate 842 

that some regions such as the Rocky Mountains are growing drier and experiencing earlier 843 

melting and a smaller snowpack (Mote et al., 2005; Stewart et al., 2005), whereas other regions 844 

such as parts of the northeastern and north-central United States or lower Mississippi Valley 845 

are receiving more precipitation (Karl et al., 1996; National Climate Assessment, 2013). Changes 846 

in the type, magnitude, frequency, and seasonal timing of precipitation will cascade through 847 

freshwater environments, affecting sediment transport, channel morphology and stability, 848 

habitat abundance, connectivity, temperature, and nutrient cycling (Covich et al., 1997; Hauer 849 

et al., 1997; Rood et al., 2008; Goode et al., 2012; Eby et al., 2014). Combined with other 850 

human-induced changes that limit the ability of aquatic organisms to migrate to more suitable 851 

habitat, changing climate may prove to be a major stressor of freshwater environments. 852 

21st century movement toward river restoration 853 

The end of the 20th century and the start of the 21st century also saw a major shift in 854 

river management toward increased efforts to restore river ecosystems. The pace of dam 855 

removals, particularly of small and medium-sized dams, accelerated across the United States. 856 

Many of the rivers affected by dam removal have physically stabilized within months to years as 857 
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sediment stored behind dams is mobilized and redistributed downstream (e.g., O’Connor et al., 858 

2015). Surprisingly, upstream-downstream connectivity for fish and other aquatic organisms is 859 

rapidly restored (Pess et al., in press; Torra et al., 2015), although recovery of biotic 860 

communities may take longer.  861 

River restoration has become a billion-dollar industry in the United States (Bernhardt et 862 

al., 2007). Many restoration projects focus on relatively short lengths of channel (e.g., 1-2 km) 863 

and emphasize physical reconfiguration (Bernhardt et al., 2005). The ability of these types of 864 

projects to restore river ecosystem function and biotic communities is likely to be limited, 865 

especially because the projects are typically not coordinated within a river basin or driven by 866 

ecological understanding of river function (Bernhardt and Palmer, 2011). Major, federally 867 

financed programs designed to restore connectivity within river basins across much larger 868 

spatial and temporal scales, such as those undertaken on Florida’s Kissimmee River (Whalen et 869 

al., 2002) (Figure 7) or the Colorado River in Grand Canyon (Cross et al., 2011), are more likely 870 

to enhance river ecosystem functions. 871 

Water before land vs land before water 872 

To return to the idea proposed at the start of this paper, the body of research 873 

summarized in preceding sections illustrates how Native Americans primarily altered limited 874 

portions of terrestrial ecosystems across the United States, whereas Euro-Americans rapidly 875 

and thoroughly altered both terrestrial and freshwater ecosystems. The timing and magnitude 876 

of alteration of terrestrial versus freshwater environments following Euro-American entry into a 877 

region depended on the specific resources initially exploited by these immigrants (Figure 1). In 878 
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some cases, upland resources such as mineral deposits or timber were exploited first, although 879 

removal of minerals commonly increased sediment yield to river corridors and cutting of timber 880 

typically involved extensive, essentially simultaneous, modification of rivers. In humid climates, 881 

agriculture typically began on uplands because bottomlands were saturated for substantial 882 

portions of the year. In arid and semiarid climates, Euro-American agriculture typically began in 883 

riparian areas and relied on extensive modification of river channels and flow regimes (e.g., 884 

Worster, 1985; Wohl, 2001). Even where initial Euro-American activities focused exclusively on 885 

uplands, the effects on freshwater environments were commonly rapid and significant because 886 

of the lack of any sediment control in regions where native vegetation was removed for mining, 887 

timber harvest, grazing, or cropping.  888 

The speed and magnitude of change in sediment yields and responses of river corridors 889 

depended primarily on two factors. The first was the spatial extent, intensity, and speed of 890 

changes in land cover. The second influential factor was the resistance and resilience of the 891 

portion of the landscape and river network under consideration (Webster et al., 1975; 892 

Brunsden and Thornes, 1979; Brunsden, 2001). Even in relatively small watersheds of a few 893 

hundred square kilometers, headwater portions of the river corridor can respond more rapidly 894 

and in different manners than mainstem or downstream portions of the river corridor (e.g., 895 

Trimble, 2013). 896 

Quantitatively comparing the magnitude of Native American alterations of terrestrial or 897 

freshwater ecosystems to the magnitude of Euro-American alterations is difficult because of 898 

limited quantitative data for the initiation and duration, spatial extent, and intensity of 899 

alterations associated with each group of people, as well as important differences among 900 
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geographic regions within the United States. There is no question, however, that all forms of 901 

ecosystem alteration increased substantially with Euro-American settlement of the United 902 

States. Although many of the alterations associated with Euro-American settlement occurred 903 

nearly simultaneously in terrestrial and freshwater ecosystems because of the synergy in 904 

resource use between uplands and river corridors (e.g., cutting upland timber and floating cut 905 

logs down rivers), we feel justified in making the broad generalization that freshwater 906 

ecosystems were minimally altered by human occupation of the United States prior to Euro-907 

American contact. This situation changed dramatically as soon as Euro-American commercial 908 

interests created a demand for beaver fur and accelerated once Euro-Americans began to settle 909 

in the United States. Consequently, when attempting to evaluate ‘water before land’ versus 910 

‘land before water’ in the context of either Euro-American settlement and resource use alone 911 

or Euro-American alterations relative to those of Native Americans, the most appropriate 912 

formulation varies between diverse geographic regions of the United States. As a whole, 913 

however, Euro-Americans altered freshwater ecosystems earlier in their history of occupation 914 

of a geographic area and to a greater extent than Native Americans.  915 

The contemporary effects of this extensive Euro-American alteration of freshwater 916 

ecosystems across the conterminous United States appear in the form of accelerated extinction 917 

of freshwater species (Ricciardi and Rasmussen, 1999); chronic problems with surface-water 918 

quality in rivers and lakes (e.g., GAO, 2013); increasing flood damages despite more than a 919 

century of focused efforts to reduce flood hazards (Cartwright, 2005); and increasing shortages 920 

of water for human consumptive uses (GAO, 2014). Although some of these problems stem 921 

partly from other causes (increased flood damages, for example, also reflect increasing 922 
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population and infrastructure within floodplains (Cartwright, 2005)), they have helped to make 923 

river and wetland restoration a commercial market worth well over a billion dollars a year in 924 

the United States (Bernhardt et al., 2007). In this context, it is helpful to understand the history 925 

of human alterations of freshwater ecosystems and to use this history to gain insight into the 926 

form and function of these ecosystems through time. 927 

Today the extent of both terrestrial and freshwater ecosystem modification in the 928 

conterminous United States is nearly total, although the alteration took place at different 929 

times. Recovery, too, of terrestrial and freshwater systems, is displaced in time and space. Land 930 

in the eastern U.S. was cleared for Euro-American agriculture and timber and charcoal 931 

production starting in the 1600s and during the period 1820-1880 more than 80% of the land 932 

was open (Foster, 1992). Abandonment and reforestation started in 1850 and increased 933 

progressively through the early 20th century, approaching complete reforestation circa 1940. 934 

Although these second-growth and sometimes third-growth forests differ, in terms of processes 935 

such as carbon fluxes and nutrient retention (Turner, 2010), from forests with a history of only 936 

natural disturbance, tree regrowth has restored many of the functions provided by pre-937 

settlement forests. Restored functions include changing how precipitation inputs move through 938 

and across hillslopes (Jones, 2000); stabilizing hillslopes by intercepting precipitation and 939 

increasing soil cohesion through roots (Johnson et al., 2000); and helping to retain organic 940 

matter and nutrients in upland environments (McLauchlan et al., 2014).   941 

Recovery of freshwaters, where this has occurred, is only a few decades old at most. The 942 

rate of dam removals is increasing (O’Connor et al., 2015) and river and wetland restoration are 943 

widely attempted, with varying success (e.g., Wohl et al., 2015b). Rivers can respond rapidly to 944 
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some restoration actions such as dam removal or restored connectivity (Doyle et al., 2005). 945 

However, recent syntheses suggest that many restoration projects are of limited success for at 946 

least four reasons. First, the scale of restoration does not begin to match the scale of land use 947 

in most watersheds (Bernhardt and Palmer, 2011). Second, the ecological function of rivers 948 

remains impaired by well-established invasive species (Yard et al., 2011), persistent 949 

contaminants (Bernhardt and Palmer, 2007), and increasingly warmer temperatures. Third, 950 

persistent legacy effects of land use may have moved the freshwater ecosystem into a 951 

degraded alternative stable state (Heffernan, 2008; Wohl and Beckman, 2014; Livers et al., in 952 

review). Fourth, it is typically not feasible to restore primary input variables such as natural flow 953 

(Poff et al., 1997), sediment (Wohl et al., 2015a), or wood regimes (Wohl, 2017). In the absence 954 

of dynamic input regimes, river ecosystems are unlikely to fully recover physical complexity that 955 

can support ecosystem functions present prior to Euro-American settlement. 956 

Schumm (1969) introduced the phrase river metamorphosis to describe a complete and 957 

typically rapid alteration of river form and function in response to human activities such as flow 958 

regulation. Schumm referred specifically to rivers of the Great Plains, which transformed from 959 

wide, shallow, braided channels with minimal woody riparian vegetation to relatively narrow, 960 

deep, meandering channels with extensive riparian forests as a result of diversions that reduced 961 

peak flows and increased base flows. Analogous metamorphoses occurred in wide, shallow, 962 

diffuse channels of marshy regions such as the Everglades (Wohl, 2004) or the mid-Atlantic 963 

Piedmont (Walter and Merritts, 2008), where channel engineering and dams created more 964 

confined, channelized flows. Brierley et al. (2005), contrasting human alteration of rivers in the 965 

Old and New Worlds, proposed that removal of riparian vegetation and instream large wood 966 
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following Euro-American settlement of the New World rapidly reduced the buffering capacity of 967 

riverscapes and effectively lowered the thresholds governing channel stability, such that rivers 968 

became highly sensitive to change. Writing primarily of rivers in Australia, Brierley et al. (2005, 969 

p. 41) noted that “The short lag time between disturbance and metamorphosis, typically 970 

measured in terms of a few decades [during Euro-American settlement], ensured that once 971 

critical trigger events were experienced it was exceedingly difficult for systems to recover.” Our 972 

personal observations of rivers in the conterminous United States and the written and 973 

photographic records of these rivers during the past two centuries support this interpretation. 974 

As a result of rapid, thorough, and extensive changes in inputs (water, sediment, large wood, 975 

nutrients, contaminants), physical configuration, and biotic communities during Euro-American 976 

settlement, river corridors cannot fully or completely return to being physically and biologically 977 

diverse ecosystems that are resistant and resilient to various disturbances. Recognition of this 978 

relatively recent, fundamental, and ubiquitous alteration of river corridors and river ecosystem 979 

functions during the past two centuries should underlie river management in the United States.  980 

One of the most important considerations in the context of river management is 981 

reflected in the observation of Brierley et al. (2005) that rapid change in variables controlling 982 

river form and process creates continuing instability and limits resilience to change. River 983 

corridors experience natural, abrupt disturbances such as floods, droughts, or wildfires. 984 

Individual portions of a river network can have greater or lesser resistance to these 985 

disturbances and exhibit differing degrees of resilience in recovering from the disturbance 986 

(Townsend et al., 1997; McCluney et al., 2014). The rapid, widespread, and continuing 987 

disturbances created by Euro-American alterations of uplands and river corridors since 1600 988 
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have reduced resistance and resilience of rivers throughout the United States, thus increasing 989 

the vulnerability of freshwater ecosystems to ongoing changes such as warming climate. 990 

Recognition of the ubiquity of changes in river corridors is also critical. There are almost no 991 

naturally functioning river corridors remaining in the conterminous United States (e.g., Graf, 992 

2001), which highlights the vital importance of protecting those that do remain. 993 
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